
Proof of Theorem 3.1

In the first part of the proof it will be shown that the lower and the upper extremes of
the design space are points of the three–point equally weighted design maximizing the
determinant. Then the explicit expression of the intermediate point will be found.

The transformation x = φC − φ will be used to prove these results. Thus, the design
space is [xL, xU ]. A design of type

ξ =

{

x1 x2 x3

1/3 1/3 1/3

}

, (1)

is considered. We need to prove that the determinant of the FIM for this designs increases
in x3 and decreases in x1. Let define h = x3 − x1, then the determinant is proportional to

(−x1 (h+ x1 − x2) log (x1) + (h+ x1) (x1 − x2) log (h+ x1) + hx2 log (x2))
2

x2
1 (h+ x1)

2 x2
2

.

It is enough to prove that the squared root is either an increasing or a decreasing
function of h for fixed values of x1, x2,

−x1(h+ x1 − x2) log (x1) + (h + x1)(x1 − x2) log (h+ x1) + hx2 log (x2)

x1(h+ x1)x2
.

In particular, we have to prove that the derivative of the square root of the determinant
of the information matrix for the design ξ with respect to h is less than or equal to 0 for
any value of h, while 0 < x1 < x2 are assumed constant,

∂
√

|M(ξ, θ)|

∂h
=

(h+ x1)(x1 − x2) + x1x2(− log (x1) + log (x2))

x1(h + x1)2x2

.

Thus, the denominator of this expression is always positive. We will see that the
numerator is negative for all h. Consequently, the square root of the determinant will be a
decreasing function on h and the determinant will be an increasing function on h.

After some algebra it may be seen that the numerator will be negative if the following
inequality is satisfied,

x1

x2
+

x1 log
(

x2

x1

)

(h+ x1)
< 1.

If h = 0 (this would mean x1 = x2 = x3), the preceding expression is equal to 1.
And while increasing the value of h, with the constraint x1 < x2, it decreases. Thus, it is
satisfied.

This proves that the greatest possible value of x3 has to be in the design, that is x3 = xU .
Using a symmetrical argument the lowest possible value has to be in the design as well.
This is true for any middle point x2, which will be optimized in what follows.
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The optimal middle point, x⋆, has to satisfy the equation

∂|M(ξ, θ)|

∂x2

= 0.

The following solutions of this equation are obtained,

x⋆

1 =
xLxU(log (xL)− log (xU ))

xL − xU

,

x⋆

2 =
xLxU(− log (xL) + log (xU))

(xL − xU )W (g(xL, xU))
,

where

g(xL, xU) =

−xLxU

(

x
xU/xL
U

xL

)

xL
xL−xU

(log (xL)− log (xU))

xL − xU

and W (g(xL, xU)) is the Lambert W function that provides the main solution of the equa-
tion z = W (z)eW (z) for any complex number. It is well known that the Lambert function
is double-valued on (−1/e, 0). It will be proved that g(xL, xU) remains if z ≥ −1/e for
0 < xL < xU .

Let ∆ = xU − xL the range of the interval, then

g(xL, xL +∆) =

xL(∆ + xL)

(

(∆+xL)
∆+xL
xL

xL

)

−
xL
∆

(log (xL)− log (∆ + xL))

∆
.

It is satisfied that

lim
∆→0

g(xL, xL +∆) =
−1

e
,

lim
∆→∞

g(xL, xL +∆) = 0.

On the other hand the function g(xL, xL +∆) will increase as ∆ increases if

∂g(xL, xL +∆)

∂∆
> 0, ∆ > 0,

which is true if
(

∆− xL log

(

xL +∆

xL

))(

∆ log

(

xL +∆

xL

)

−∆+ xL log

(

xL +∆

xL

))

> 0.

It is straightforward to see that both factors are positive. Thus, g(xL, xU) ∈ (−1/e, 0),
0 < xL < xU and then x⋆

2 has actually two values, say x∗

21 and x⋆

22, and the derivative of
the determinant of the information matrix vanishes at three different points.
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Let us prove that xL < x∗

1 < xU . Applying the Mean Value Theorem to the logarithm
it is easily checked that

xL <
xLxU(log (xL)− log (xU))

xL − xU

< xU .

This means there are either two maxima and one minimum or one maximum and two
minima. But the determinant is always non-negative and it vanishes for both x⋆

21 = xL and
x⋆

22 = xU . Thus, they should be minima and x⋆

1 needs to be the maximum. This proves
the theorem.
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