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In each of the updating steps, the algorithm uses the current values of

various parameters/latent variables. Any quantity that is conditioned on is

implicitly using the most recent value of that quantity unless stated other-

wise. When it is necessary to distinguish between the current value and the
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proposed value of an arbitrary quantity ξ, ξc will represent the current value

and ξ∗ will represent the proposed value. When it is important to identify

the iteration number, ξ(m) represents the value of ξ at the end of the mth iter-

ation. At the end of each iteration, ξ(m) must equal ξc because ξc is updated

whenever ξ changes.

Different techniques are used to update z, depending on whether the la-

tent variables correspond to binomial or rank data. First, consider binomial

data. There is an intricate relationship between the cutpoint parameters τ

and the latent variables z. It is possible to update each cutpoint parameter

using its full conditional (a truncated Cauchy). Then the latent variables

for binomial data can be updated using their full conditionals (truncated

normals). These full conditionals are now stated; for convenience, param-

eters and latent variables not appearing in the functional form of the full

conditionals are not explicitly stated.

π(τj|z,y) ∝ Cauchy(mj, s
2
j)1(τj ∈ (lcj , u

c
j)), ∀j : B(j) = 1 (1)

π(zijt|τj,u1, . . . ,uP , σ
2
ε ,y) ∝ N(u1,l(1,i,j,t) + · · ·+ uP,l(P,i,j,t), σ

2
ε )

× 1(zijt ∈ (Lcijt, U
c
ijt)) ∀i, t, j : B(j) = 1

(2)

The truncation regions are dependent on the current values of z or τ .

lcj = max(−∞,max
i,t
{zcijt : yijt = 0})
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ucj = min(∞,min
i,t
{zcijt : yijt = 1})

Lcijt =


−∞ if yijt = 0 or is missing

τ cj if yijt = 1

U c
ijt =


τ cj if yijt = 0

∞ if yijt = 1 or is missing

It is conceptionally easy to update these cutpoint parameters and latent

variables. However, the approach of updating τ and z with Gibbs sampling

in separate blocks is problematic because it tends to mix poorly (see Cowles

1996, p. 104).

Such recognized inefficiency led Cowles (1996) to explore an alternative

strategy for MCMC sampling of ordinal probit models, which is equally ap-

plicable to the special case of binomial data when the cutpoint is not fixed.

Cowles proposed that instead of updating the cutpoint parameters and the

latent variables in separate blocks, they be updated in one block. How-

ever, instead of simultaneously sampling both z and τ from π(z, τ | all else),

this step was split into sampling from π(τ |all else except z) and then from

π(z| all else). The implication is that by marginalizing over z in the full con-

ditional of τ , exact sampling is no longer practical. Cowles used a Metropolis-

Hastings step to simultaneously update the multiple cutpoints in her ordinal

probit setting, and then updated the latent variables only if the proposed

cutpoint draws were accepted.
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Unlike the scheme proposed by Cowles (1996), the following sampling

scheme updates the latent variables regardless of whether or not the pro-

posed cutpoint draws were accepted and thus matches the implementation

of Cowles’ algorithm explained by (Johnson and Albert, 1999, pp. 135–136).

1. Update τ by individually updating each τj with a Metropolis step using

a normal distribution as the proposal distribution.

2. Regardless of whether τj was accepted in the previous step, update

each zijt : B(j) = 1 using its complete conditional.

A potential advantage of updating zijt in every instance is better chain mix-

ing. Although this mandatory update is not required for the algorithm to

be valid, the consequences of less frequent updating of the latent variables

might involve poorer mixing of other model unknowns, such as the random

effects.

The details for updating each τj with a Metropolis step are adapted from

Cowles’ approach. Let uijt ≡
∑

p up,l(p,i,j) be the sum of the random effects,

and let f(τj) be the unnormalized full conditional of τj after integrating over

the latent variables z.

f(τj) = (1 + (τj −mj)
2/s2j)

−1

×
I∏
i=1

Tj∏
t=1

[
(Φ ((τj − uijt)/σε))1−yijt (1− Φ ((τj − uijt)/σε))yijt

]wijt

(3)

As usual, Φ(·) represents the cdf of the standard normal. To set τ
(m)
j , the pro-
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posed value τ ∗j is sampled from theN(τ cj , v
2
j ) distribution, where v2j is a tuning

parameter. Note that this proposal distribution is symmetric; the transition

kernel q has the property that q(τ ∗j |τ cj ) = q(τ cj |τ ∗j ). Thus, the Metropolis

ratio implies that the acceptance probability is min(1, f(τ ∗j )/f(τ cj )). With

this probability, set τ
(m)
j = τ ∗j , and otherwise set τ

(m)
j = τ cj .

After updating τ , each zijt for binomial data is updated using its full

conditional (Equation 2). This is conceptionally straightforward because

the full conditional is in each case a truncated normal distribution. Actual

implementation might use rejection sampling or evaluation of the quantile

function at a randomly chosen point.

An updating procedure for τ and the latent variables for binomial data

has been detailed; we now demonstrate how the latent variables for rank data

may be updated. The first part of the procedure is given by Johnson et al.

(2002). A Metropolis-Hastings update is used, with each zijt : B(j) = 0 being

individually updated. Recall that the t is optional for rank data because then

t ≡ 1. The proposal distribution for zij is the N(u1,l(1,i,j) + · · ·+uP,l(P,i,j), σ
2
ε )

distribution, truncated to the region

(
max(−∞, max

i′:yi′j<yij
zi′j),min(∞, min

i′:yi′j>yij
zi′j)

)
. (4)

If yij is missing, zij does not affect the proposal distribution’s truncation

region for any of the latent variables, and also the truncation region for

updating zij is defined as (−∞,∞). To calculate the acceptance probability,
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let zc be the collection of current values of zijt, and let z∗ be the collection

of candidate (proposed) values. Note that because the zijt are individually

updated, zc and z∗ will differ by at most a single element. Furthermore, upon

updating each zij, both zc and z∗ are also updated. Let p(ij)(κj)
c be p(ij)(κj)

when using the values of κcj and zc, and let p(ij)(κj)
∗ be p(ij)(κj) when using

the values of κcj and z∗. The acceptance probability for z∗ij : B(j) = 0 is

min

1,

C(j)∏
i=1

p(ij)(κj)
∗

C(j)∏
i=1

p(ij)(κj)
c

−1 . (5)

If yij is missing then the acceptance probability for zij is always one.

Because latent variables are individually updated, it might be difficult

for a group of latent variables with the same observed response to effectively

traverse the support. For example, consider the possibility that two obser-

vations, say y1j and y2j, are tied for being the worst in assessment j, but the

proportion of ties is low because of a very small value of κj. In an overdis-

persed initialization, it is possible that z
(0)
(1)j and z

(0)
(2)j are both much lower

than z
(0)
(3)j. Suppose they are -5.1, -5.09, and -1.8. If the proposal distribu-

tion for z
(1)
1j is very concentrated around, say, -2.0, the proposed value might

be unlikely to be accepted because a value near -2.0 would make p(1j)(κ
(0)
j )

very small. But likewise, if the proposal distribution for z
(1)
2j is concentrated

around -2.0, a proposed value near -2.0 would again cause p(1j)(κ
(0)
j ) to be

very small. The conundrum, then, is that the proposal distributions might

favor values of z1j that are far from z2j (and vice versa) but the likelihood
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might be dramatically smaller if z1j and z2j are not close. This would make

it difficult for either z1j or z2j to move. This problem can persist throughout

any finite run of the MCMC algorithm.

To circumvent this difficulty, we add an extra step to the procedure given

by Johnson et al. (2002) for updating the zij’s associated with rank data.

This step allows shifts in zij values from assessment j that have the same yij

values. The extra step is not essential for the algorithm to be valid, but it is

recommended to help with chain mixing. Let yj be a unique observed value

of the assessment j responses. After updating each individual zij for which

yij = yj (and thus each such zcij), an additive shift of δ is proposed for the

collection of such zij’s.

∀i, z∗ij =


zcij + δ, if yij = yj

zcij, otherwise

Care is taken in choosing δ’s proposal distribution to prevent a proposed shift

that is inconsistent with the observed rankings. The proposal distribution is

a normal distribution with mean 0 and variance given by tuning parameter

v2, truncated to the region that ensures appropriate ordering on the latent

variables. The lower and upper limits, given by Equation 6 and Equation 7,

are denoted by LLcyj and ULcyj to emphasize that they are dependent on the

current values of all zij’s with observed rankings below or above the unique
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yj value being considered.

LLcyj =

(
max

i′:yi′j<yj
zci′j − min

i′:yi′j=yj
zci′j

)
(6)

ULcyj =

(
min

i′:yi′j>yj
zci′j − max

i′:yi′j=yj
zci′j

)
(7)

The Metropolis-Hastings ratio used in the acceptance probability also de-

pends on LL∗yj and UL∗yj, which are analagously defined. The acceptance

probability for the collection {z∗ij : yij = yj} is the minimum of one and the

result of Equation 8.

(∏C(j)−1
i=1 p(ij)(κj)

∗
)(∏I

i=1 exp(−(z∗ij − u1,l(1,i,j) − · · · − uP,l(P,i,j))2/2σ2
ε )
)

(∏C(j)−1
i=1 p(ij)(κj)c

)(∏I
i=1 exp(−(zcij − u1,l(1,i,j) − · · · − uP,l(P,i,j))2/2σ2

ε )
)

×
[
Φ(ULcyj/vj)− Φ(LLcyj/vj)

][
Φ(UL∗yj/vj)− Φ(LL∗yj/vj)

]
(8)

A new value of δ is proposed for each unique yj of each rank assessment j.

Each κj can be updated using a Metropolis-Hastings step because it is

not convenient to sample directly from its full conditional distribution. As

recommended by Johnson et al. (2002), a lognormal distribution depending

on a tuning parameter c2j is used for the proposal distribution of κ∗j given the
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current state κcj.

q(κ∗j |κcj) =
exp(−(log(κ∗j)− log(κcj))

2/(2c2j))

κ∗j

√
2πc2j

1(κ∗j > 0)

The lognormal distribution is appealing as a proposal distribution because

it is easy to sample from and obeys the restriction that κj be positive. The

acceptance probability for setting κ
(m)
j = κ∗j is

min

1,

C(j)−1∏
i=1

p(ij)(κ
∗
j)/p(ij)(κ

c
j)

 (κ∗j/κ
(m−1)
j )aj exp(−bj(κ∗j − κcj))

 .

(9)

Recall that σ ≡ (σ2
ε , σ

2
u,1, . . . , σ

2
u,P ). The prior for σ is a Dirichlet density,

but the full conditional is much more complicated. A Metropolis-Hastings

step is used to update these variance parameters. The Dirichlet family of

distributions can be used for the proposal distribution. One advantage is

that each proposal will satisfy the modeling constraint that the sum of these

variance parameters must equal 1. The transition kernel depends on two

tuning parameters, aMH > 0 and bMH ≥ 0.

q(σ∗|σc) = Dirichlet[σ∗; aMHσ
c + bMH1]

The shorthand notation Dirichlet[x;α] is used to represent the pdf of the

Dirichlet distribution as a function of x and having parameter vector α. The

general idea is for the proposal distribution to have a mean that is close to
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the current value. The larger the value of aMH is, the tighter the proposal

distribution is. Positive values of bMH essentially shrink each proposed value

towards 1/(P + 1), with the shrinkage more pronounced as bMH increases.

The acceptance probability for σ∗ is quite involved, so the convention

previously undertaken of explicitly stating the acceptance probability in a

specific form is now interrupted. The acceptance probability is the minimum

of one and the quantity given by Equation 10.

q(σc|σ∗)π(σ∗)π(z|u1, . . . ,up,σ
∗)
∏P

p=1 π(up|σ∗)
q(σ∗|σc)π(σc)π(z|u1, . . . ,up,σc)

∏P
p=1 π(up|σc)

. (10)

The random effects can be individually updated using their complete

conditional distributions. For each level of each random effect, u
(m)
p,l(p,i,j) is

sampled from the normal distribution with mean µ and variance σ2, where

σ2 =

1/σ2
u,p +

∑
i′,j′,t′:l(p,i′,j′)=l(p,i,j)

1/σ2
ε

−1 (11)

and

µ =
∑

i′,j′,t′:l(p,i′,j′)=l(p,i,j)

(σ2/σ2
ε )

(
zi′j′t′ −

∑
p′ 6=p

up′,l(p′,i′,j′)

)
. (12)

An alternative is to update all random effects in a block using the com-

plete conditional distribution, a multivariate normal. This approach might

be preferrable if the complete conditional of the random effects block indi-

cates substantial correlation among the random effects. On the other hand,

a block update might not be advisable if the dimensionality of the random
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effects block is fairly large because of computational difficulties with using

large covariance matrices.

Most of this model’s Metropolis or Metropolis-Hastings update steps in-

volve one or more tuning parameters, with z being the lone exception. Be-

cause it is difficult to specify at the outset which tuning parameter values

will give the desired acceptance rates, we suggest that the tuning parameters

be periodically updated through some part of the burn-in period and then

left constant (see, e.g., Gelman et al., 2002, p. 307).

References

Cowles, M. K. (1996), “Accelerating Monte Carlo Markov Chain Convergence

for Cumulative-link Generalized Linear Models,” Statistics and Comput-

ing, 6, 101–111.

Johnson, V. E. and Albert, J. H. (1999), Ordinal Data Modeling, New York:

Springer-Verlag.

Johnson, V. E., Deaner, R. O., and van Schaik, C. P. (2002), “Bayesian Anal-

ysis of Rank Data With Application to Primate Intelligence Experiments,”

Journal of the American Statistical Association, 97, 8–17.

11


