
Supplementary Materials
A Proofs of Main Results

Proposition 2.1. Consider (4) with T (·) being ReLU and a hyper-prior on ↵0,

⇡(↵0) / �(�↵0)
a0�1(1� �(�↵0))

b0�1
�(↵0),

where � and � are the pdf and cdf of N(0, 1), respectively. Then, the resulting prior

distribution is identical to the form of (3) with the Beta prior (8) on ⌘.

Proof of Proposition 2.1. It is clear that P (✓j 6= 0 | ↵0) = P (↵j > ↵0 | ↵0) =
�(�↵0). The term �(�↵0) in the neuronized prior controls the sparsity level, and
it corresponds to the hyper-parameter ⌘ in (8) for the standard SpSL priors. Then,
after applying a change of variable as �(�↵0) = ⌘, where ⌘ ⇠ Beta(a0, b0), we ob-
tain the transformed density function of ↵0 as �(�↵0)a0�1(1��(�↵0))b0�1

�(↵0).

Lemma 2.2. With the activation function T (t) = t, the marginal density of ✓ result-

ing from the neuronized prior is proportional to
R1
0 z

�1 exp{�✓2/(2⌧ 2wz2)�z
2
/2}dz.

Proof of Lemma 2.2. Let ✓ = ↵w and z = w. With a change of variable, we obtain
the Jacobian term is z

�1. A simple plug-in of ↵ = ✓/z and w = z completes the
proof.

Proposition 2.3. Let ⇡L be the marginal density function of ✓ defined in (4) with

T (t) = t and ↵0 = 0. Then, 8✏ 2 (0, 1), 9✓0 and constants c1, c2 > 0, such that

c1 exp{�(1 + ✏)1/2|✓|/⌧w}  ⇡L(✓)  c2 exp{�(1� ✏)1/2|✓|/⌧w} when ✓ > ✓0.

Proof of Proposition 2.3. We first show that the lower bound holds. By the change
of variable u = z

2, for any 0 < ✏ < 1, we have

⇡L(✓) =

Z 1

0

z
�1 exp{�✓2/(2⌧ 2wz2)� z

2
/2}dz

= (2⌧ 2w)
�1

Z 1

0

u
�1 exp{�✓2/(2⌧ 2wu)� u/2}du

= (2⌧ 2w)
�1

Z 1

0

u
�1/2 exp{✏u/2}u�1/2 exp{�✓2/(2⌧ 2wu)� (1/2 + ✏/2)u}du

� (2⌧ 2w)
�1
✏
1/2 exp{1}

Z 1

0

u
�1/2 exp{�✓2/(2⌧ 2wu)� (1/2 + ✏/2)u}du

= (2⌧ 2w)
�1
✏
1/2 exp{1}(⇡/(1/2 + ✏/2))1/2 exp{�(1 + ✏)1/2|✓|/⌧w}.
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Second, we show that the upper bound holds.

⇡L(✓) =

Z 1

0

z
�1 exp{�✓2/(2⌧ 2wz2)� z

2
/2}dz


Z 1

0

exp{�(1� ✏)✓2/(2⌧ 2wz
2)� z

2
/2}dz

/ exp{�(1� ✏)1/2|✓|/⌧w}.

Proposition 2.5. Let ⇡E be the marginal density of ✓ defined in (4) with T (t) =
exp(�1sign(t)t2) for 0 < �1  1/2. Then, for any  > 0, there exists ✓0 such that

c1(log |✓|)�
1
2 |✓|(�1� 1

2�1
)(1+)  ⇡E(✓)  c2(log |✓|)�

1
2 |✓|(�1� 1

2�1
)(1�)

if ✓ > ✓0, where

c1 and c2 are some positive constants.

Proof of Proposition 2.5. Without loss of generality, we assume ↵0 = 0 and ⌧ 2w = 1.
Because the tail behavior of ✓ is governed by the positive region of ↵, we assume
that ↵ > 0. Then, letting ✓ = T (↵)w and z = w, it follows that

exp

⇢
�↵

2

2
� w

2

2

�
d↵dw = J(✓, z) exp

⇢
�{T�1(✓/z)}2

2
� z

2

2

�
d✓dz,

where J(✓, z) is the determinant of the Jacobian term, and one can show that
J(✓, w) =

h
2✓�1/21 {log(✓/z)}1/2

i�1

when T (t) = exp{�1sign(t)t2}. As a result, the
marginal density of ✓ given z is proportional to

⇡E(✓) /
Z 1

0

�
�1/2
1 {log(✓/z)}�1/2

✓
�1/(2�1)�1

z
1/(2�1) exp

⇢
�z

2

2

�
dz

By the dominated convergence theorem, the proof is completed.

Proposition 4.1. Let rj = y�
P

k 6=j Xk✓k and ↵ = (↵1, . . . ,↵p), and let Ntr(a, b; c, d)
denote the truncated Gaussian with mean a and variance b on (c, d). The conditional

distribution [↵j | ↵�j,w,y, �2] based on the posterior distribution (5) with the ReLU

activation function is Ntr(0, 1;�1,↵0) + (1 � )Ntr(e↵j, e�2
j ;↵0,1), where e↵j =

(rj+Xj↵0wj)TXjwj

XT
j Xjw2

j+�2 , e�2
j = �

2
�
X

T
j Xjw

2
j + �

2
��1

, and

 =
�(↵0) exp

n
�krjk22

2�2

o

�(↵0) exp
n
�krjk22

2�2

o
+
n
1� �

⇣
↵0�e↵j

e�j

⌘o
e�j exp

n
e↵2
j

2e�2
j
� krj+Xj↵0wjk22

2�2

o .

Proof of Proposition 4.1. We note that the conditional distribution of ↵j given the
others is

⇡(↵j | ↵(�j), w, �
2
,y) / (2⇡)�1/2 exp

(
�
krj �XjT (↵j � ↵0)wjk22

2�2
�
↵
2
j

2

)
.
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Since the activation function is the ReLU function, it follows that

⇡(↵j | ↵(�j), w, �
2
,y) /

(
(2⇡)�1/2 exp

�
�krjk22 /(2�2)� ↵

2
j/2
 
, if ↵j < ↵0

(2⇡)�1/2 exp
�
�kerj �Xj↵jwjk22 /(2�2)� ↵

2
j/2
 
, if ↵j � ↵0,

where erj = rj +Xj↵0wj. By doing a simple calculation, we obtain that

(2⇡)�1/2 exp
�
�kerj �Xj↵jwjk22 /(2�

2)� ↵
2
j/2
 

= e�j exp{�kerjk22 /(2�
2) + e↵2

j/(2e�2
j )}�(↵j; e↵j, e�2

j ),

where �(·; u, z) is the Gaussian density function with mean u and variance z, and
e↵j and e�2

j are defined in the statement of the proposition. This completes the proof.

Theorem 5.1. Assume that (A1) – (A4) hold and �
2
is known. Suppose, for the neu-

ronized prior defined in Definition 1.1 with T be the ReLU function, (n log p)�1
/16 

⌧
2
w  n

�1
p
2

and ↵0 follows the distribution in (9) with (a0, b0) = (1, pu) for some

constant u > 1. Then, the posterior distribution based on this neuronized prior

achieves the optimal posterior contraction rate ✏n, i.e.,

✏n =

(
|t|
p
log p/n, under l1 norm,p

|t| log p/n, under l2 norm.

Proof of Theorem 5.1. Castillo et al. (2015) investigated asymptotic posterior behav-
iors for high-dimensional linear regression models. They suggested some sufficient
conditions for a certain class of priors to achieve the model selection consistency
and the optimal posterior contraction rate. We will show that the conditions on
the neuronized SpSL prior satisfies the sufficient conditions proposed in Castillo
et al. (2015) to achieve an optimal posterior contraction rate. The first condition is
imposed on the model prior as

A1p
�A3⇡(|�|� 1)  ⇡(|�|)  A2p

�A4⇡(|�|+ 1), (15)

where � = {�1, . . . , �p}T for some positive constants A1, A2, A3, and A4, and |�|
indicates the number of non-zero �j’s. It was shown that the condition (15) is met
when a beta prior, Beta(1, pu) for some u > 1, is imposed on ⌘ in (3). For the
neuronized prior, this condition can be satisfied by imposing a hyper-prior of ↵0

proposed in Proposition 2.1 with a0 = 1 and b0 = p
u.

The other condition they considered is on the Laplace slab prior as follows:

⇡1(✓j) = 2�1
�n exp{��n|✓j|} with kXk /p  �n  4 kXk (log p)1/2, (16)

where kXk = max1jp kXjk2.
As shown in Proposition 2.3, the tail behavior of the neuronized BL prior is

decaying at a rate of exp{�t/⌧w} when t is large enough, so by plug-in 1/⌧w in �n,
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its asymptotic property can be preserved by setting (n log p)�1
/16  ⌧

2
w  n

�1
p
2 in

the neuronized prior under (A2).
One important concept in Castillo et al. (2015) is the compatibility condition

that is defined as below:

�(k) = inf
✓

⇢
kX✓k2 |k|1/2

kXk k✓kk1
: k✓kck1  7 k✓kk1

�
.

The other definitions used in Castillo et al. (2015) follow

�(s) = inf
✓k,k

⇢
kXk✓kk2

kXkk k✓kk1
: 0 6= |k|  s

�
, e�(s) = inf

✓k,k

⇢
kXk✓kk2

kXkk k✓kk2
: 0 6= |k|  s

�
(17)

The first equation in (17) is a stronger version of the compatibility condition, which
uniformly controls the minimum eigenvalue of Gram matrices in a l1 sense, and the
second equation in (17) is a restricted eigenvalue condition that is similar with (A3).
Under these notations, one can show that �(s) � C

�1
2 C

1/2
3 s

�1/2 by using (A2) and
(A3). Then, consider

 (k) = �

✓⇣
2 +

3

A4
+

33�n
2�(k)2 kXk

p
log p

⌘
|k|
◆

e (k) = e�
✓⇣

2 +
3

A4
+

33�n
2�(k)2 kXk

p
log p

⌘
|k|
◆
,

where A4 is defined in (15) and �n appears in (16).
Theorem 1 in Castillo et al. (2015) states that sup✓0 E✓0⇡

�
|k| > |t| + M(1 +

32/�(t)2)|t|/A4 | y
�
! 0, and the condition (A3) (restricted eigen value condition)

implies a compatibility condition, i.e. �(k) > 0 for |k|  |t| log n, as shown in van de
Geer et al. (2009). It thus follows that sup✓0 E✓0⇡

�
|k| > |t| log n | y

�
! 0, since the

term M(1 + 32/�(t)2)|t|/A4 is bounded when �(t) > 0. Now we can restrict our
focus on models such that {k : |k|  |t| log n}.

Using the aforementioned results, Theorem 2 in Castillo et al. (2015) shows the
following results:

sup
✓0

E✓0⇡

⇣
k✓ � ✓0k2 >

M

e (t)2

p
|t| log p

kXk�(t)
�� y
⌘
! 0

sup
✓0

E✓0⇡

⇣
k✓ � ✓0k1 >

M

 (t)2
|t|
p
log p

kXk�(t)2
�� y
⌘
! 0,

for a large enough constant M > 0. Since the restricted eigenvalue condition (A3)
implies that �(k) > 0 for |k| < |t| log n, by using condition (A2) and (A3)), it follows
that

sup
✓0

E✓0⇡

⇣
k✓ � ✓0k2 > M

0
C

2
2C

�1
3

p
|t| log p/n

�� y
⌘
! 0

sup
✓0

E✓0⇡

⇣
k✓ � ✓0k1 > M

00
C

2
2C

�1
3 |t|

p
log p/n

�� y
⌘
! 0,
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for some constant M
0 and M

00 that are larger than M .

Theorem 5.2. Assume that (A1) – (A4) hold and �
2

is known. Suppose that

T (t) = exp{t2/{2(r � 1)}} for r � 2, and let ⌧w � p
�(u+1)/(r�1)|t| log p/n and

� log ⌧w = O(log p) for some u > 0, and ↵0 = 0. Then, the posterior distribution of

✓ based on the corresponding neuronized prior achieves the optimal contraction rate

in (14).

Proof of Theorem 5.2. We will show that our proposed conditions on the continu-
ous neuronized prior satisfy the sufficient conditions introduced in Song and Liang
(2017), and as a result, the optimal contraction rate for the standard shrinkage prior
also can be applied to its neuronized counterpart.

We first list the regularity conditions in Song and Liang (2017) as follows:
B1(1) : All covariates are uniformly bounded.
B1(2) : The dimensionality is high p ⌫ n.
B1(3) : There exist some integer p̄ and fixed constant �0 such that

p̄ � |t|, and inf
k:|k|<p̄

�min(X
T
kXk) � n�0.

B2(1) : |t| log p � n.
B2(2) : max1jp |✓0,j/�2

0|  �3En for some fixed � 2 (0, 1) and En is a non-
decreasing sequence.

It is clear that our condition (A2) guarantees B1(1), and our (A1) and (A3)
imply B1(1), and B2(1). We further assume that p̄ = |t| log n to assure that (A3)
leads to B1(3). Also, (A4) leads to B2(2). Thus, our conditions (A1) – (A4) satisfy
these regularity conditions.

In Corollary 3.1 in Song and Liang (2017), under B1 and B2, they proposed some
conditions on the shrinkage prior to achieve the optimal posterior contraction rate
for standard continuous shrinkage priors. Consider a continuous prior with r degree
of polynomial tails, e.g. a Cauchy attains r = 2, and the prior has a scale parameter
�n. Then, their conditions on the global shrinkage parameter follows:

⌧w  anp
�(u+1)/(r�1)+1

, � log ⌧w = O(log p),

for some u > 0 and an ⇣ (|t| log p/n)1/2/p.
By Proposition 2.5, setting T (t) = exp{t2/{2(r�1)}} guarantees that the result-

ing marginal density of the coefficient decays at a polynomial rate with r � 2. Also,
we set � log ⌧w = O(log p) and ⌧w = O(p�(u+1)/(r�1)

p
|t| log p/n) for some u > 0.

This completes the proof.

Theorem 5.4. Consider the case with X being orthogonal, �
2

known, and ↵0 fixed.

Suppose the activation function T for a neuronized prior has stable tails. Then,

Algorithm 1 is geometrically ergodic.
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Proof of Theorem 5.4. Without loss of generality, we assume that �2 = 1 and ↵0 = 0.
Since n

�1/2
X is orthogonal, it follows that

⇡(↵j | y) =

Z
⇡(↵j, wj|y)dwj

/ {nT 2(↵j) + 1/⌧ 2w}�
1
2 exp[(XT

j y)
2
/{2(nT 2(↵j) + 1/⌧ 2w)}� ↵

2
j/2]

and ⇡(↵ | y) =
Qp

j=1 ⇡(↵j | y). Then, it follows that

��P t(↵(0)
, ·)� ⇡y(·)

��
TV

 max
1jp

kP t
j (↵

(0)
j , ·)� ⇡y,j(·)kTV

, (18)

where ⇡y,j(↵j) = ⇡(↵j | y), ⇡y(↵) = ⇡(↵ | y) =
Qp

j=1 ⇡(↵j | y), and P
t
j is a

Markov transition kernel of the Metropolis algorithm for ↵j at iteration t. Since the
conditional posterior distribution of w given ↵ is explicitly represented, which is a
product of independent Gaussians with mean X

T
j y/(nT

2(↵j) + 1/⌧ 2w) and variance
(nT 2(↵j)+1/⌧ 2w)

�1, the convergence behavior of Algorithm 1 is solely determined by
the convergence rate of max1jp kP t

j (↵
(0)
j , ·)� ⇡y,j(·)kTV

, so it is sufficient to show
that P

t
j results in a geometrical ergodicity for any j 2 {1, . . . , p}.

To simplify the description, we first introduce some concepts regarding a distri-
bution. We consider a distribution with a density function ⇡, and define

V = lim sup
|x|!1

x

|x|r log ⇡(x). (19)

The distribution is called super-exponentially light if V = �1 in (19) ; exponentially

light if V is a negative constant; and sub-exponentially light if V = 0 (Johnson and
Geyer, 2012; Mengersen and Tweedie, 1996; Roberts and Tweedie, 1996). Using
these definitions, Theorem 4.3 in Jarner and Hansen (2000) considers a Metropolis
transition kernel induced by a proposal density that contains strictly positive amount
of density around zero. Since we are using a Gaussian kernel in Algorithm 1, our case
satisfies this condition. Then, their theorem implies that the resulting random-walk
Metropolis algorithm targeting ⇡ is geometrically ergodic, if ⇡ is super-exponentially
light and satisfies

lim sup
|x|!1

x

|x|
r⇡(x)
|r⇡(x)| < 0. (20)

However, in one-dimensional cases, equation (19) implies (20). Thus, the proof will
be completed if we show that ⇡y,j is super-exponentially light.

Note that

x

|x|r log ⇡y,j(x) = sgn(x)

⇢
� nT (x)T 0(x)

nT 2(x) + 1/⌧ 2w
�

nT (x)T 0(x)(XT
j y)

2

(nT 2(x) + 1/⌧ 2w)
2

� x

�
, (21)

where sgn is a sign function. Since the activation function T has stable tails, i.e.,
9 C1, C2, C3 > 0 such that (a) when x < �C3, either |T 0(x)|  C1 or |T 0(x)| � C2

and the sign of T 0(x) does not change; and (b) when x > C3, either |T 0(x)|  C1 or
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|T 0(x)| � C2 and the sign of T 0(x) does not change. It is clear that for either tail, if
|T 0(x)| is bounded from above, then the RHS of (21) is dominated by �|x| and hence
diverges to �1 as either x ! 1 or x ! �1. If |T 0(x)| is bounded from below and
T

0(x) does not change sign after x > C3, then, as x ! 1, either T 0(x) � C2, which
implies that T (x) will become positive eventually and thus limx!1 T (t)T 0(t) � 0;
or T

0(x)  �C2, which means that T (x) will become negative eventually and also
limx!1 T (t)T 0(t) � 0. Thus, all the three terms inside the parenthesis of the RHS
of (21) are of the same sign and, hence, the RHS diverges to �1. As x ! �1, we
see by the same argument as above that, if |T 0(x)| � C2 and T

0(x) does not change
sign after x < �C3, limx!�1 T (x)T 0(x) < 0. Thus, all terms inside the parenthesis
of the RHS of (21) are of the same sign and hence (21) diverges to �1.

As a result, there exist Cj and ⇢j 2 (0, 1) such that

kP t
j (↵

(0)
j , ·)� ⇡y,j(·)kTV

 Cj(↵j)⇢
t
j,

for j = 1, . . . , p. By plugging this to (18), it follows that
��P t(↵(0)

, ·)� ⇡y(·)
��
TV

 max
1jp

{Cj(↵j)} max
1jp

{⇢j}t.

Theorem 5.5. Under the standard Bayesian linear regression setting, suppose we em-

ploy a standard continuous shrinkage prior as in (2) with a heavy-tailed distribution

⇡⌧ such that ⇡⌧ (x) ⌫ exp{�cx
}, x > 0, for some constants c > 0 and 0 <  < 1.

Then, the corresponding MCMC algorithm cannot achieve geometric ergodicity if

one updates ⌧j conditional on other variables by a RWMH algorithm.

Proof of Theorem 5.5. We first note that when there exists no moment generating
function of a target density of the Metropolis-Hastings algorithm, the resulting MH
algorithm cannot achieve the geometric ergodicity (Mengersen and Tweedie, 1996).
Moreover, it is well-known that if any single conditional density in a Metropolis-
Hastings-within-Gibbs sampler is not geometrically ergodic, neither the full MCMC
is (Diaconis et al., 2008; Robert, 1995; Roberts et al., 2001). So, it is sufficient to
show that the moment generating function of ⇡(⌧j | �j) does not exist regardless of
the value of �j.

Consider the following conditional posterior density of ⌧j for some j 2 {1, . . . , p}:

log ⇡(⌧j | �j) = �(1/2) log(⌧ 2j )� �
2
j /(2⌧

2
j )� c⌧


j + C,

where C is some constant. Because 0 <  < 1, it is clear that for any t > 0 and
�j 2 R, ⌧jt + log ⇡(⌧j | �j) diverges to infinity as ⌧j increases, which concludes
that this conditional posterior density cannot have a proper moment generating
function.

B Updating Matrix Inversion and Determinant

In this section, under a discrete SpSL Gaussian-conjugate prior, we provide an
instruction on how to efficiently evaluate some linear algebra calculations that are
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required to implement the fully-collapsed Gibbs sampler for the Bayesian linear
model selection. When implementing the collapsed Gibbs sampler, one needs to
compute the inversion and determinant of a modified sample covariance matrix at
each iteration. To improve computational efficiencies, we can use the following linear
algebra techniques.

Let A be a m ⇥ m symmetric matrix and B =

✓
A b

b
T

c

◆
, where b is an m ⇥ 1

vector. Then,

B
�1 ⌘

✓
Q11 q12

q21 q22

◆
=

✓
A

�1 + 1
kA

�1
bb

T
A

�1 � 1
kA

�1
b

� 1
kb

T
A

�1 1
k

◆
, (22)

where k = c� b
T
A

�1
b, and

det(B) ⌘ det
✓
A b

b
T

c

◆
= det(A)⇥ (c� b

T
A

�1
b). (23)

Conversely, if we want to update from B to A, we have

A
�1 = Q11 � q12 ⇥ q21/q22,

and
det(A) = det(B)/(c� b

T
A

�1
b).

To apply the above updating formulas to the fully-collapsed Gibbs sampler, we
let the current model be �, randomly select one index j 2 {1, . . . , p}. If �j = 0,
we propose a candidate model by adding Xj to the current model, and the binary
representation of the proposed model is � 0 = {�01, . . . , �0p}, where

�
0
h =

(
1 if �h = 1 or k = j ,

0 otherwise
,

for h = 1, . . . , p. Let x = Xj and A = X
T
� X� +

�2

⌧22
I, and assume that for the current

model, the inverse and the determinant of XT
� X� + (�2

/⌧
2
w)I are known. We can

obtain the inverse matrix and the determinant of XT
�0X�0 + (�2

/⌧
2
w)I economically

using formulas (22) and (23):
✓
X

T
�0X�0 +

�
2

⌧ 2w

I

◆�1

=

✓
A

�1 + 1
kA

�1
X

T
� xx

T
X�A

�1 � 1
kA

�1
X

T
� x

� 1
kx

T
X�A

�1 1
k

◆
,

where k = x
T
x+ �

2
/⌧ � x

T
X�A

�1
X

T
� x, and

det
✓
X

T
�0X�0 +

�
2

⌧ 2w

I

◆
= det (A)⇥ (xT

x+ �
2
/⌧

2
w � x

T
X�A

�1
X

T
� x).

If �j = 1, the candidate model is the same as the current model but with Xj

excluded, i.e., � 0 is

�
0
h =

(
0 if �h = 0 or h = j ,

1 otherwise,
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for h = 1, . . . , p. Then, it follows that
✓
X

T
�0X�0 +

�
2

⌧ 2w

I

◆�1

= Q11 � q12q21/q22, (24)

and

det
✓
X

T
�0X�0 +

�
2

⌧ 2w

I

◆
=

det(XT
� X� +

�2

⌧2w
I)

c� bTD�1b
,

where Q11, q12, q21, and q22 are block components of
✓
X

T
� X� +

�
2

⌧ 2w

I

◆�1

=

✓
Q11 q12

q21 q22

◆
,

and the second block corresponds to Xj. Also, c, b, and D are block components of
X

T
� X� +

�2

⌧2w
I; i.e.,

X
T
� X� +

�
2

⌧ 2w

I =

✓
D b

b
T

c

◆
=

 
X

T
�0X�0 + �2

⌧2w
I X

T
�0Xj

X
T
j X�0 X

T
j Xj + (�2

/⌧
2
w)

!
,

where � \ j is the model where Xj is discarded from �, and D
�1 can be evaluated

from (24).
Once these inverse matrix and determinant are evaluated, the Metropolis accep-

tance probability can be defined as min
n
1, ⇡(�

0|y,⌘,�2)
⇡(� |y,⌘,�2)

o
, where

⇡(� | y, ⌘, �2) / |XT
� X� + (�2

/⌧
2
w)I|�1/2 exp

n
yT eP�y/2

o
⌘
|� |+a0�1(1� ⌘)p�|� |+b0�1

,

and eP� = X�(XT
� X� + �

2
/⌧

2
wI)

�1
X

T
� . We note that this posterior probability is

based on a prior setting with ✓� ⇠ N(0, ⌧ 2wI) and ⇡(�2) / 1/�2.
The computational complexity of this linear algebra calculation, given the in-

verse matrix and determinant for the current model, is O(|�|n) + O(|�|2). This
updating rule is more efficient than a naive evaluations without the guidance of the
previous result, which requires O(|�|2n)+O(|�|3). However, the computational gain
would be slightly diluted in overall, because after evaluating the inverse matrix and
the determinant, evaluating the marginal likelihood takes an additional complexity
O(|�|n) that is equally applied to both procedures.

In contrast, the half-collapsed Gibbs sampler and N-SpSL(Exact) do not require
the evaluation of the determinant nor the inverse matrix, and their computational
complexity for a single sampling �j is lower than that required for the fully-collapsed
Gibbs, O(n). The HCG and the neuronized SpSL procedure thus appear to be more
efficient, in terms of ESS per second, than the FCG at least for our limited examples.

C Some Auxiliary Results

C.1 Additional optimization paths for CAAN

As a supplement of the synthetic example in Section 4.5, we examine a scenario
where the true model size is five (the other settings are equivalent to the example
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in the main text). Figure 8 show that the CAAN and the SSLasso procedures
consistently chose the same model via EBIC across all ten random initial values,
while the MM and the EMVS fail to achieve the consistency.
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Figure 8: Trace plots of the log-MSE (top row) and EBIC (bottom row) paths from
10 different initial points for the four optimization algorithms, based on a synthetic
data set generated from the Bardet-Biedl dataset (n = 120 and p = 200) with the
true model size 5. The MM procedure used ⌧3 = 10�2.

C.2 Comparisons Between Different MCMC Algorithms

In this section, we consider extra simulation studies. We first compare the ESS (per
second) of “N-SpSL-L(Exact)” and “N-SpSL-L(RW)”, and the results are shown in
Table 5. The column “Ind” and “Dep” indicates scenarios where the covariates are
generated from iid standard Gaussian and from the Toeplitz design considered in
Section 6, respectively. The other settings are exactly the same with these in the
simulation studies in the main paper. The results show that “N-SpSL-L(Exact)” is
at least two times more efficient in terms of ESS.

Low-dimension
Sample size (n = 200, p = 50) (n = 400, p = 100)
Signal strength Weak Strong Weak Strong
Covariate Ind Dep Ind Dep Ind Dep Ind Dep
N-SpSL-L(Exact) 7625.6 5949.1 8255.1 4551.7 2793.6 1123.9 3479.3 515.0
N-SpSL-L(RW) 2238.5 1666.8 2582.7 1397.9 1000.5 370.7 889.3 210.5

High-dimension
Sample size (n = 100, p = 300) (n = 150, p = 1000)
Signal strength Weak Strong Weak Strong
Covariate Ind Dep Ind Dep Ind Dep Ind Dep
N-SpSL-L(Exact) 919.7 874.5 1271.1 561.6 217.2 131.9 262.2 114.5
N-SpSL-L(RW) 221.9 203.6 294.7 136.6 69.4 43.7 80.3 36.6

Table 5: A comparison of ESS per second between different neuronized SpSL pro-
cedures.

Table 6 compares two different MCMC algorithms: the half-collapsed Gibbs sam-
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pler used in the main manuscript (SpSL-G(HCG)) vs. the fully-collapsed Gibbs sam-
pler (SpSL-G(FCG)). Briefly, by taking advantages of Gaussian conjugacy, SpSL-
G(FCG) marginalizes out all the continuous coefficients to obtain the target distri-
bution ⇡(� | y) and considers as a proposal to flip a randomly selected indicator
from �j to 1� �j. It is well-known that “SpSL-G(FCG)” is highly inefficient (Ji and
Schmidler, 2013), and this finding is also confirmed again in Table 6. The ESS of
“SpSL-G(FCG)” is significantly smaller than that from “SpSL-G(HCG)”. In particu-
lar, under high-dimensional settings, its ESS is less than 10, while “SpSL-G(HCG)”
attains at least hundreds of ESS per second.

Low-dimension
Sample size (n = 200, p = 50) (n = 400, p = 100)
Signal strength Weak Strong Weak Strong
Covariate Ind Dep Ind Dep Ind Dep Ind Dep
SpSL-G(HCG) 15781.0 15422.8 20366.7 9752.9 6175.9 2521.9 8939.6 1205.3
SpSL-G(FCG) 82.2 48.9 487.5 54.0 184.6 21.6 540.7 38.26

High-dimension
Sample size (n = 100, p = 300) (n = 150, p = 1000)
Signal strength Weak Strong Weak Strong
Covariate Ind Dep Ind Dep Ind Dep Ind Dep
SpSL-G(HCG) 2773.3 3015.4 3960.2 1896.2 744.1 506.3 819.5 385.6
SpSL-G(FCG) 1.5 6.8 4.8 6.5 7.0 4.1 7.3 8.8

Table 6: A comparison of ESS per second between different SpSL procedures.

C.3 Additional simulation studies of sparse regression algorithms

We provide the results of more simulation studies for independent covariate cases
with different signal strengths in Table 7 and 8, and Table 9 and 10 show simulations
results for strong signals. The first five true regression coefficients are non-zero, and
the non-zero coefficients of the low-dimensional and high-dimensional settings are
set to be ±s and s⇥ {±0.4,±0.45,±0.5,±0.55,±0.6}, respectively.
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Strong Signal (s = 0.3)
(n = 200, p = 50) (n = 400, p = 100)

Method MSE Cos(Angle) MCC FP ESS MSE Cos(Angle) MCC FP ESS
Oracle 0.025 0.979 0.028 0.987
SpSL-G(HCG) 0.085 0.909 0.89 0.17 20877.1 0.036 0.981 0.99 0.14 6414.5
N-SpSL-L(Exact) 0.072 0.924 0.92 0.40 7957.3 0.042 0.978 0.98 0.47 4100.8
SpSL-C(HCG) 0.073 0.923 0.92 0.28 1608.1 0.038 0.981 0.98 0.27 795.7
N-SpSL-C(RW) 0.091 0.901 0.89 0.10 2423.0 0.036 0.981 0.99 0.13 1307.5
HS 0.087 0.906 0.90 0.15 815.6 0.054 0.972 0.99 0.14 718.5
N-HS(RW) 0.088 0.906 0.90 0.14 1754.4 0.052 0.973 0.99 0.13 619.5
BL 0.154 0.844 0.79 4.14 3374.9 0.134 0.918 0.92 1.69 846.0
N-BL(RW) 0.122 0.866 0.82 2.17 1822.3 0.114 0.936 0.97 0.67 575.5
SkG 0.074 0.922 0.91 0.26 9238.6 0.038 0.980 0.98 0.29 4712.8
SpSL(MM) 0.099 0.905 0.76 3.16 0.112 0.939 0.78 5.31
N-SpSL-L(MAP) 0.078 0.928 0.88 1.07 0.058 0.970 0.93 1.49
EMVS 0.238 0.718 0.71 0.03 0.089 0.954 0.96 0.00
SSLasso 0.096 0.894 0.88 1.09 0.037 0.981 0.93 1.38
Lasso(CV) 0.091 0.906 0.52 10.70 0.095 0.958 0.53 19.72
SCAD(CV) 0.080 0.920 0.55 8.94 0.049 0.974 0.63 12.47
Lasso(BIC) 0.216 0.852 0.90 0.94 0.339 0.904 0.95 1.10
SCAD(BIC) 0.211 0.847 0.89 0.99 0.306 0.896 0.94 1.21
N-BL(MAP) 0.107 0.881 0.78 2.94 0.106 0.942 0.94 1.34

Table 7: Results for the low-dimensional setting with independent covariates. SpSL,
HS, and BL indicate the procedure based on the discrete SpSL, the horseshoe, and
Bayesian Lasso priors, respectively. The sign “N” stands for the neuronized version
of the corresponding prior. The values of the best results are highlighted with bold.

Strong Signal (s = 1.5)
(n = 100, p = 300) (n = 150, p = 1000)

Method MSE Cos(Angle) MCC FP ESS MSE Cos(Angle) MCC FP ESS
Oracle 0.055 0.992 0.037 0.995
SpSL-G(HCG) 0.095 0.985 0.98 0.23 4409.6 0.054 0.992 0.99 0.15 1168.0
N-SpSL-L(Exact) 0.139 0.977 0.94 0.75 1317.1 0.084 0.987 0.96 0.49 389.2
SpSL-C(HCG) 0.120 0.981 0.96 0.48 157.9 0.068 0.989 0.97 0.34 55.7
N-SpSL-C(RW) 0.090 0.986 0.98 0.17 421.2 0.052 0.992 0.99 0.12 131.2
HS 0.164 0.973 0.86 1.98 56.6 0.191 0.968 0.68 6.20 7.3
N-HS(RW) 0.155 0.975 0.87 1.83 182.1 0.190 0.968 0.68 6.36 12.3
BL 1.015 0.808 0.41 24.20 42.1 1.512 0.699 0.65 5.32 12.6
N-BL(RW) 0.864 0.826 0.38 29.32 50.2 1.439 0.736 0.67 5.93 11.9
SkG 0.097 0.985 0.99 0.01 2827.0 0.054 0.992 1.00 0.00 949.7
SpSL(MM) 0.489 0.909 0.82 1.58 1.932 0.613 0.43 8.35
N-SpSL-L(MAP) 0.109 0.982 0.98 0.03 0.041 0.994 1.00 0.03
EMVS 0.483 0.910 0.88 0.01 1.215 0.743 0.71 0.00
SSLasso 0.090 0.986 0.99 0.02 0.042 0.994 1.00 0.04
Lasso(CV) 0.412 0.947 0.44 24.25 0.332 0.965 0.40 33.72
SCAD(CV) 0.153 0.975 0.53 13.72 0.095 0.985 0.50 18.09
Lasso(EBIC) 1.740 0.821 0.96 0.08 1.577 0.861 0.99 0.05
SCAD(EBIC) 1.690 0.825 0.96 0.08 1.568 0.859 0.99 0.05
N-BL(MAP) 0.394 0.941 0.36 30.40 0.332 0.955 0.30 48.70

Table 8: Results for the high-dimensional setting with independent covariates.
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Strong Signal (s = 0.3)
(n = 200, p = 50) (n = 400, p = 100)

Method MSE Cos(Angle) MCC FP ESS MSE Cos(Angle) MCC FP ESS
Oracle 0.071 0.939 0.071 0.966
SpSL-G(HCG) 0.305 0.645 0.56 0.05 12566.5 0.411 0.757 0.70 0.04 1243.8
N-SpSL-L(Exact) 0.269 0.683 0.59 0.14 4260.9 0.326 0.807 0.77 0.15 578.3
SpSL-C(HCG) 0.280 0.677 0.58 0.11 840.2 0.346 0.799 0.76 0.11 153.5
N-SpSL-C(RW) 0.311 0.637 0.56 0.05 1601.8 0.431 0.743 0.69 0.03 204.3
HS 0.278 0.669 0.61 0.09 584.0 0.362 0.782 0.76 0.02 101.1
N-HS(RW) 0.279 0.667 0.61 0.08 1224.2 0.369 0.778 0.76 0.02 168.7
BL 0.247 0.702 0.62 4.11 3124.1 0.265 0.814 0.79 6.41 548.0
N-BL(RW) 0.241 0.720 0.64 2.03 1396.5 0.285 0.834 0.81 5.18 302.3
SkG 0.289 0.662 0.57 0.10 5027.2 0.357 0.791 0.75 0.10 459.8
SpSL(MM) 0.328 0.573 0.49 1.23 0.464 0.711 0.61 2.66
N-SpSL-L(MAP) 0.310 0.671 0.62 0.86 0.268 0.860 0.82 1.49
EMVS 0.454 0.478 0.49 0.01 0.729 0.554 0.55 0.00
SSLasso 0.363 0.572 0.53 0.81 0.499 0.714 0.68 1.19
Lasso(CV) 0.244 0.686 0.46 6.96 0.316 0.815 0.47 20.19
SCAD(CV) 0.357 0.614 0.41 4.89 0.367 0.800 0.50 12.74
Lasso(BIC) 0.356 0.541 0.56 0.60 0.568 0.635 0.67 1.74
SCAD(BIC) 0.385 0.524 0.52 0.89 0.628 0.602 0.59 2.97
N-BL(MAP) 0.247 0.694 0.59 2.19 0.280 0.835 0.80 2.53

Table 9: Results for the low-dimensional setting with dependent covariates. SpSL,
HS, and BL indicate the procedure based on the discrete SpSL, the horseshoe, and
Bayesian Lasso priors, respectively. The sign “N” stands for the neuronized version
of the corresponding prior.

Strong Signal (s = 1.5)
(n = 100, p = 300) (n = 150, p = 1000)

Method MSE Cos(Angle) MCC FP ESS MSE Cos(Angle) MCC FP ESS
Oracle 0.150 0.980 0.080 0.989
SpSL-G(HCG) 0.980 0.823 0.76 0.11 2149.6 0.607 0.890 0.84 0.11 592.5
N-SpSL-L(Exact) 0.948 0.827 0.76 0.28 557.4 0.610 0.890 0.84 0.33 162.6
SpSL-C(HCG) 0.858 0.848 0.79 0.22 68.8 0.509 0.910 0.87 0.27 26.7
N-SpSL-C(RW) 1.046 0.809 0.75 0.11 175.9 0.628 0.886 0.84 0.10 58.1
HS 1.059 0.805 0.79 0.80 20.2 0.769 0.859 0.69 4.13 4.2
N-HS(RW) 1.019 0.814 0.79 0.84 95.2 0.719 0.868 0.71 4.03 7.9
BL 1.631 0.503 0.41 17.68 102.1 2.030 0.515 0.74 1.21 24.2
N-BL(RW) 1.494 0.682 0.62 7.53 130.0 1.715 0.622 0.74 0.96 34.0
SkG 1.402 0.736 0.65 0.02 1068.0 1.304 0.751 0.66 0.00 317.3
SpSL(MM) 2.106 0.577 0.50 1.36 2.143 0.544 0.44 2.24
N-SpSL-L(MAP) 1.640 0.678 0.65 0.06 1.105 0.782 0.76 0.03
EMVS 2.317 0.538 0.56 0.00 2.553 0.451 0.51 0.00
SSLasso 0.993 0.821 0.81 0.07 0.491 0.910 0.90 0.10
Lasso(CV) 1.240 0.759 0.46 14.56 1.258 0.762 0.38 26.23
SCAD(CV) 1.484 0.731 0.39 12.40 1.338 0.752 0.36 21.14
Lasso(EBIC) 2.422 0.544 0.62 0.00 2.311 0.562 0.65 0.08
SCAD(EBIC) 2.467 0.537 0.60 0.07 2.383 0.547 0.61 0.14
N-BL(MAP) 1.204 0.758 0.35 21.03 1.223 0.760 0.28 37.99

Table 10: Results for the high-dimensional setting with dependent covariates.

C.4 Numerical Approximation Errors for Horseshoe Prior

In the simulation and real data studies examined in Section 6 and 7, it was shown
that the horseshoe prior and its neuronized counterpart produced slightly differ-
ent numerical results, even though they should have resulted in exactly the same
posterior distribution for the coefficients. We here investigate a high-dimensional
example with a much larger number of MCMC iterations and show that the observed
differences are due to numerical approximation errors of MCMC.

We generate a synthesized data set by following the same high-dimensional set-
ting used in Section 6, with a strong signal, n = 150 and p = 1000. We consider
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100,000 iterations after 10,000 burn-in (20 thinning size). The resulting approxi-
mated posterior distributions for several coefficients are illustrated in the first two
columns of Figure 9. A short chain with 10,000 iterations and 2,000 burn-in steps
is also presented on the other columns.

Figure 9 shows that when the length of the chain is large enough, the standard
horseshoe prior and its neuronized counterpart lead to nearly identical posterior
distributions for ✓3, ✓5, and ✓9. For short MCMC chains, the both standard and
neuronized procedures successfully approximate the posterior distributions of ✓5 and
✓9. However, the shorter chain did not provide a good mixing for the posterior
distribution of ✓3 under the standard horseshoe prior (the left panel of (b)), with
the chain stuck around the origin for a long time, leading to an over-estimation of
the posterior probability around zero. Comparing with the result from the longer
chain, we observe that the algorithm with the neuronized HS prior appears to have
done a much better job mixing for the shorter chain.
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Figure 9: The first two columns indicates the cases with a long chain; the other
columns shows the results with a short chain. (a) and (b) illustrate the posterior
distribution of ✓3; (c) and (d) are for the posterior distributions of ✓5; (e) and (f)
are for ✓9. The left and rights panel within each sub-figure represent the standard
horseshoe prior and the neuronized horseshoe prior, respectively.
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