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Text S4: Computational and statistical methods

Cluster analysis

The data was scaled into zero mean and unit variance to obtain lipid profiles comparable to each other. Model-based clustering was then applied on the scaled data for grouping similarly expressed lipids across the sampling conditions. The analyses were performed using MCLUST 1[]
 which is among the most powerful Bayesian methods for high dimensional multivariate analyses, which is implemented in R statistical language (http://www.r-project.org/) as package “mclust”. In MCLUST the observed data is viewed as a mixture of several clusters and each cluster comes from a unique probability density function. The number of clusters in the mixture, together with the cluster-specific parameters that constrain the probability distributions, will define a model which can then be compared to others. The clustering process therefore selects the optimal model and determines the data partition accordingly. 

In practice we considered the number of clusters ranging from 2 to 15, and included the complete model families that are available in MCLUST. Model comparison was carried out via BIC (Bayesian information criterion) which is an approximation of the marginal likelihood. Therefore the best model is the one which gives the largest marginal likelihood of data, i.e. the highest BIC value.

Partial correlation network analysis

We combined N=60 variables of different domains measured for the n=26 weight-discordant co-twins (i.e., 13 twin pairs), including 9 clinical variables, 6 fatty acids, 5 lipids, 2 pathway profiles and 38 transcripts. The proportion of missing data is 0.4%. If a variable for both twins in a pair is missing, it was imputed by sampling a normal distribution with the mean and variance estimated from the non-missing twin pairs. If either twin was missing, it was imputed with the same observation for the co-twin. Such an imputation method might bring potential bias, but its effect should be negligible due to the small missing percentage 2[]
.
Direct estimation of partial correlation is difficult for such data, as the higher number of variables relative to the sample size prevents reliable estimation of the joint probability distribution of the conditional set 3[]
. One solution is to decrease the size of conditional set down to a lower order q < (n-2) to approximate the entire full-order partial correlation 4[]
. Structure learning of the Gaussian graphs therefore corresponds to a statistical test such as t-test for the hypothesis that a given q-order partial correlation is zero. If all of such hypotheses of zero q-order partial correlations are rejected, then the two variables are joined by an edge. In practice, we tested the hypothesis by default with 4 equidistant q values along the [1, 24] interval, namely q = 1, 7, 12 and 18. For each of the q values, the test was repeated for each pair of variables by sampling 500 elements randomly selected from the subsets of the data which contain q variables. A missing edge is identified if the proportion of such tests where the null-hypothesis is not rejected, e.g. the average non-rejection rate of the hypothesis, is above a certain threshold β. A small average non-rejection rate therefore implies a strong evidence of dependence. For generation of the network in Figure 4 we used β=0.55. The resulting graph thus can be obtained by removing all the missing edges from the complete graph.

Lipid bilayer simulations

To parameterize the lipid molecules, we used the all-atom OPLS (Optimized Parameters for Liquid Simulations) force-field 5


[ ADDIN EN.CITE ,6,7,8]
. Since the force field was not originally developed for lipids we re-parameterized all torsional angles in the glycerol region (details will be published elsewhere). For water, we employed the TIP3P model, which is compatible with the OPLS parameterization 9[]
. This combination of force field was successfully used in our previous studies 10


[ ADDIN EN.CITE ,11]
.

Periodic boundary conditions with the usual minimum image convention were used in all three directions. The LINCS algorithm 12[]
 was used to preserve the hydrogen covalent bond lengths. Time step was set to 2 fs and the simulations were carried out at constant pressure (1 bar) and temperature (310 K), the latter choice implying that the systems are in the fluid phase. The temperature and pressure were controlled using the Nosé-Hoover 13[,14]
 and the Parrinello-Rahman 15[]
 methods, respectively. For pressure we used semi-isotropic control. The Lennard-Jones interactions were cut off at 1.0 nm and for the electrostatic interactions we employed the particle-mesh Ewald method 16[]
 . The list of non-bonded pairs was updated every 10th time step. 

To describe lipid bilayer properties, following parameters were calculated: surface area, bilayer thickness, and order parameter Smol. The order parameter essentially provides the same information as the 2H NMR (or 1H NMR) order parameters determined through selective deuteration. The surface area (per lipid) was calculated by dividing the total area of the bilayer by the number of lipids in a single leaflet. In the cases of mixed bilayers, this quantity does not provide information about the difference between the individual components, but it allows comparison between the mixed systems. For bilayer thickness, the P-P (phosphorous-phosphorous) distance was measured between the average positions of the phosphate atoms in opposite leaflets. Smol parameter was calculated according to the following formula:
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where (n is an instantaneous angle between the nth segmental vector, i.e., (Cn-1, Cn+1) vector linking n – 1 and n + 1 carbon atoms in the acyl (alkyl) chain and the bilayer  normal; < > denotes both the ensemble and the time average. The standard errors of the mean were calculated by using the block analysis method as described in 17[]
.
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