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1 Examples of regression modeling in shrinkage esti-
mation

This section illustrates how the proposed regression approach can be applied to common
simultaneous estimation problems.

Example 1. Let Y; ~ N(6;,0%) with ¢ known. In model (3), let C¢; and C}; be null
and Cy; = 1, so that §;(Y,C,N) = 8Y;. The vector X; equals Y; and the empirical risk

function (5) becomes
. l &
W(8) = =0 +20°3 4 — Y; — Y;5)°.
R (B) 0+aﬁ+n;( 5)

This is minimized by § = 1 — no? />, Y2 The resulting estimate BY; for O is nearly
identical to the estimator of James and Stein (1961).

Ezample 2. Let Y; ~ N(6;,0?) with ¢ known. The ¢? vary with i and may be
informative for 6;, so they should be included as a covariate in model (3). Let C¢; =
(1,062)T, Cy; = 1, and Cj; be null, so that 6;(Y,C,N) = By + Bi0? + $Y;. Though
not at first evident, it can be shown (Biscarri, 2019) that the resulting estimate for 0 after
empirical risk minimization is nearly identical to the subspace shrinkage estimator of Oman
(1982).

Ezample 3. Let Y; follow the state-space model in equation (14) of Greenshtein et al.
(2019), where for i =1,...,n,

Y;=0;+¢~N(0,1), 0;=®0,_,+U;

for some ®, where U; are independent random variables and ¢; and U; are independent.

This suggests that both Y; and Y;_; should be used to estimate #;. Define the index



neighborhood NV; = {i — 1} and let C¢; = 1, Cy; = 1, and C}; = 1 for k = 1. Then model
(3) becomes §(Y,C,N) = g+ 51Y; + B2Y; 1.

Though not discussed in detail here, the regression approach also encompasses more
complex regression models. For example, let ¥; ~ N(6;,02) with ¢ known. Motivated
by a Bayesian hierarchical model, several authors (Kou and Yang, 2017; Xie et al., 2012,
2016) have considered semiparametric estimators of the form (1 —b;)Y; + b;0;, where 6; can
depend on covariates but not ¥; and the b; € [0,1] obey b; < b; whenever o7 < ¢7. This
satisfies the intuition that €; should be close to Y; for observations with small variance o?.
Similarly, model (3) could be extended to allow components of the regression coefficient
B to depend on i, and the constrained estimator (7) could be used to impose the same

ordering constraints on the coefficients.

2 Estimating V, (12)

An estimate of the matrix V,, (12) from Theorem 5 is presented here. As in model (3),
partition the covariate vector C; into C¢;, Cy;, and Cy;, kK = 1,...,q, and denote the

lengths of the component vectors by pc, py, and p; respectively. Define the p x p block

matrix
A B C
V.=|D E F (1)
G H I



where A, B, and C have rows indexed by 7 = 1,...,pc and entries equal to
Ajj/ = l i CCijCCij’Uz'2>j/ = 17 - Po,
i

1< ,
BJJ/ = E Z CCZ]CYZ]’(O-?}/; + KSi))J/ = 17 -5 Py,
i=1

I ) ,
Oj,/cj’ = E Zlccwckwlo-l}/““ k= 17 s 7Qaj, = 17 -y Pk
D, E and F have rows indexed by 7 = 1,...,py and entries equal to

Djy =By;,3' =1,...,pc,

1 & _
Ejy == > CyiiCyiji (7Y + 2Vikss + kai — 20)), 5 = 1,... . py,
=1

1< ) .
Fjry = n Z_; CYijCkij’Y;k(o_iY; + k3i), k=1,... 7 =1, Dk,
and G, H, and I have rows indexed by kj, k =1,...,q, 7 =1,...,pr and entries equal to
ij:j/ :Cj/,kj7j/ = 17 -, Do,

-/
Hyjj =Fyr;,7 = 1,...,py,

1 « 1 ,
[kj,k/j/ - g Z Cijcij’U?Y;kY;k/ + ; Z Cijclj’o'izo'?éilk/(sikla kl = 17 s 7q7.7/ = 17 <y Py
i=1 il

where 0, = 1 if ¢ = b and 0 otherwise.



3 Proof of Proposition 1

Let ¢, = Y; — 6;. Then the true risk R,(3) obeys

ZE (& —2¢,(Y; - X[ B) + (Y — X B)°}

.
_ ! 2 . 15 T
= n;af n<;EeX> ﬁ+n;E{<Yz X/ B)*}.

By the definition of X; in , each coordinate of X; is of the form Cj;, Y;C;;, or Y, Cyj,
for j =1,...,pand k = 1,...,¢. Since FeC;; = 0, FeY;, C;; = 0 because i, # @
by definition, and E¢Y;Ci; = 02C;i;, Fe;X; can be expressed as 020X ;/0Y;. Finally,
>, 070X ,;/0Y; = EZ because 67 is an unbiased estimate of o7.

4 Proof of Theorem 1

Let ¢, = Y; — 0;. Since
—ZY X/ B) Z{e+2ez = X{B)+ (0 - X[ B)*}
it follows that

sup |R,.(B) — £,(B)| = sup
BeM, BeM,,

9 n
ZO' ——Z 526191

Each term in (2) can be shown to converge to zero in expectation.

=1

2 1 «
——262+ ~Z'B+ - Z(e?mei@—zeiﬂﬁ)‘

.
1 1 &
+ +2 sup <—Z—— ‘EiXi) Bl (2)
n n

/BEMTL 7/:1

The first term obeys

<E

n

D EEI

i=1 =1

2 2
1 — ] —
) <B {52(62—6?)} ~ > vlat =),




This is at most
1 ~2 2 ~2 2
— E {var(6;) + var(e;) + 2|cov (7, €; )|}

1 n
< 3 Z{Var(&?) + var(e?) + 2var(6i2)1/gvar(e?)1/2}
i=1

" " " 1/2 " 1/2
1 . 1 1 . 1
< 3 Zvar(aiz) + 3 Zvar(e?) +2 {ﬁ Zvar(af)} {E Zvar(e?)} ,
i=1 i=1 i=1 =1

which converges to zero by Assumption la because 0 < Var(e?) = Kuaj — af < Ky, where Ky,

is the fourth central moment of Y;. For the second term,

(E

which also converges to zero by Assumption la.

To bound the third term in (2), first partition 8 = (85, By, B ,. .. ,BqT)T as in model

n

% Z q@i

i=1

n

2 n 2 n
) S FE <% Zﬁlez) = % ;V&r(ﬁiei) = % 20226‘127

i=1 i=1

(3). Denote the lengths of B, By, and B, by pc, py, and py respectively. In other words,
pc + py +p1+ ... pg equals the total number of covariates p. Finally, given the definition
of X; and Z =Y,670X,/0Y; in (5),

n n T
Z = (o,...,O,Z&foﬂ,...,zf}fo@,o,...,0,...,0,...,0) .
=1 =1

Then ignoring the constant factor 2, the third term in (2) is upper-bounded by

n q n

1 & 1 X 1
sup § (= Y 6CLBY |+ =D (67 —eY)Cy.By |+ ) |- > eV, CLB,
BeMn (|1 N 1 | i
bc n by n q Pk n
M, M, M,
< — iCoij — 57 — €Y;)Cvij — iV, Clij 3




where M,, = supgeuq, |18l = 0(n'/?) by assumption.
The first term of (3) can be upper-bounded because

2
MT% - MT% . 2,2
(E > S F ;Var(eicﬁj) == F ZO_Z» CC’ij7

i=1
which converges to zero by Assumption 1b and the fact that M? = o(n). The second term

n

% Z EiCCij

n <
=1

of (3) can be bounded because E(6? — ¢;Y;) = 0 from the proof of Proposition 1, so
M oy
n ~9 n ~2 2
7 ;(O’l — ei}/i)CYij ) S ? ZV&T(O’i — Gthi)CYij

< n_zn 'Z{Var(&i2 — €2) 4 var(e;0;) + 2|cov(6? — €2, eiQi)]}Cg/ij.

Showing that the first two terms above converge to zero under Assumption 1b is similar to

controlling the first two terms of (2). The third term above is no more than

1/2 1/2
{ 2 Zvar Cg,w} { Zvar €:0;) Y”} ,

=1
which therefore also converges to zero.

The third term of (3) can be upper-bounded because

My
(E n ZQ‘Y;,CCMJ'

: M & 2v/2 2 M
< n_gn Z E 1Y;ka7,] + n_2n Z ‘E(E’iY;kaijelYEkalj)"
i=1 i=1
Since i # [ and ¢; and Y;, are independent for all i, E(¢;Y;, CkijeY), Cij) = 0 unless i = [,

i#l

and [ = i;. Therefore

% Z EiYik Ckij

M2
> <3 ZU o +67) C,f,-j+n—2" Z |E(€:Y5, Crije1Yy, Craj) |-

i=1 1L =l I=i)



The first term above converges to zero by Assumption lc and M? = o(n). By Cauchy-

Schwarz, the second term is at most

1/2 1/2

MTZL 2y 2 2 M72L 2,12

{F Z ( zY;kaz]) F Z ( Y Ckl]) :
i;él,i:lk,l:zk l;ﬁl,lzlk,l ”Lk

But for each i there is only one [ such that ¢, = [, so the previous line is at most

iE EY2CH )

€; ik kz]

which converges to zero by previous arguments.

5 Proof of Theorem 2

Because both ,Bi/[ and Bi/[* lie in M,,,

0< 6By ) = Ca(Bh ) =Ca(Bh) = Ru(By ) + Ru(By) — Ru(Br )+ Ru(Br ) — 6B )
<2 sup [£(8) = Ra(B) +R.(B)) = Ra(BL ).

By construction, Rn(BnM) < ]%n(BnM*), SO
~ M ~ M ~
0 < E6(8,) = (B, )< 2Eﬁ81}£ |£n(B) — Rn(B)],
EMn

which converges to zero by Theorem 1.

6 Proof of Theorem 3

Define ¢; = Y; — 6; and € = (e1,...,6,)". Then 3, — B, = (X ' X)"'(X e — Z). The
bound on (3) in the proof of Theorem 1 shows that each component of
1 IR
—(X'e—2Z)=— X, — Z
(XTe-2)= (X~ 2)

n -
=1



has zero mean and variance converging to zero under Assumption 1b. By Chebyshev’s
inequality, each component therefore converges to zero in probability. It remains to show
that each entry of (X ' X /n)~! converges to a constant in probability, as Slutsky’s theorem
will then imply that 3, — [3; =op(1).

The entries of X ' X /n consist of six types of terms:
L n '3 CoiyCeij

2. n1 Y CoiiCyiiYs

3. n Y CoijCriy Vi,

4. n~! E?:l CYijCYij’Y;Q

5. n 1Y " CyiiChif YiYi,

6. n7' Y00 CriiCri Vi, Y, -

Since E(X X /n) converges by assumption, the expected value of each type of term con-
verges to a constant. The variance of the first type is zero and the variances of the second

and third types are given by

1 & 1 &

2 2 2

var EE CeijCyijrYi ZEE CijCyiy07
i=1 =1

1< 1 o

§ § : 2 2 2
var H CCijCk:ij’Yrik = ﬁ CiCjCkij/Uik‘

i=1 i=1



The variance of the fourth type equals

Z C’f/w CYZ],var (07 + 20;¢; + €7)
Z Cy;C i {var(20;¢;) + var(e}) 4 2cov(20;€;, €;)}

=1

1/2

n 1/2 n
1 1 Z
=1 i=1

where ky; is the fourth central moment of Y; and the last line is due to the Cauchy-Schwarz
inequality. Therefore the variances of the first four types of terms converge to zero under
Assumptions 2a-b.

The variance of the fifth type equals

Zvar Cyi;Criy YiYi,) Zcov Cyi;Chiy Y3V, Cy1;Criy VIV,
i=1 i#l

The second term above is at most
1
— > |eov(CyijCriy YiYs,, CyijCray YiYi, )
(3,0)esS
where the set S consists of all pairs (¢,() such that ¢ # [ and i = Iy, iy, = [, or i;, = lx. By
Cauchy-Schwarz this is upper-bounded by

1/2 1/2

1
Z var CYUCMJIYY ) - Z Var(CYleklj’Y}YZk)

n
(Z es (i,)eS
For fixed k, for each i there is at most one [ such that i, = l. By (11), there are at most

D,, indices i such that i = [ or i = [. Since D,, = o(n) by assumption, the previous line

10



1S at most

Zvar CyijCriyYiYs,) = ZCZCZQJ (070; +6; 07 +0l07),
1=1 =1
SO
< ZC’YZ]C;WYY ) ChigYiYi,) = 0

under Assumption 2c.

Finally, the variance of the sixth type of term when k = k' takes the same form as the
the variance of the fourth type of term and so converges to zero. When k # &/, the variance
is

i g i g

n
1
2 2 2 ~2 (2 2
EE CrijCrigvar(Y;, Yy, ) = E CriiCriy(0: 02, + 07 07 + 0} U,)
i=1

which also converges to zero by Assumption 2d.
Chebyshev’s inequality implies that X ' X /n—FE(X "X /n) = 0,(1). Since E(X ' X /n)
converges to a positive-definite matrix by assumption, by the continuous mapping theorem

(XX /n)~! converges in probability to the inverse of the limit of F(X "X /n).

7 Proof of Theorem 4

This proof is similar to the proof of Theorem 3.4 in Rigollet and Hiitter (2017). The result
is clearly true if 8, = BZ When B, # BZ, since R, (B,) < R,(8) for any 8 and

. 1 .
R.(B) = - Z 67 + ZT6+ Ze + = Zez i B)+6.(8),
it follows that

0= (B, ~ (B < 223, ~ B+ = Y aX] (B, B,



A

where ¢; = Y; — ;. Define € = (¢1,...,¢,)". Since X(Bn — BZ) #0

. e 2 e o 2 o X(B,—B) N o
0< (u(By) = a(B,) < =Z7(B, = B,) + —€' ——2— | X(B, - B,)].
(B) = ta(B) < ~Z )+ X (G, ﬁn)lle ( )2

Young’s inequality implies that

~ A K ~ * 2

2 T X(IBn_IBn) X e * 2{ T X(/Bn_ n) } 1 A 25112
— = ~ /Gn_/gn S_ * +_X/6n_/6n :
R X BBl T TR AL

Furthermore,

A 1 Ak - n

*

= (B) + (0~ XB)TX(B, ~ B+ IX (B, - B3
=B+ 20T~ X(XTX) XX (B, - B,) + X (B, - B,)E

Ak 1 Ak -

Therefore

A * 2
Oﬁn(Bn)—En(Bi)s%ZT(B;—BHHE{ r X, - ﬁH } |
2

Since
-
( OZ”CW ,0,...,0)

and by assumption n ! EZ converges to a constant, Assumption 1b combined with Cheby-
shev’s inequality show that n='{Z — E(Z)} = op(1). Since 3, — BZ = op(1) by Theorem
3, the first term above is 0,(1).

To show that the second term above is 0,(1), let ® be a n x p matrix whose columns

constitute an orthonormal basis of the column space of X, as in the proof of Theorem 2.2

12



A

of Rigollet and Hiitter (2017). Then there exists a v € R? such that ®v = X (3, — ,B:L)

Therefore

A A K 2
1 X — 1 P 2 1 2 1 2
—q€ (?n ?*n) = - (ET ° ) = - <6T<I> v ) < (1—/2 sup |€T<I>u|) )
L IX(Be = Bl n\ [|®vll n [v]l2 n? uep,

where B, denotes the closed unit ball in RP. By the arguments in the proof of Theorem

1.19 of Rigollet and Hiitter (2017),

P (sup |eT<I>'u,\ > n1/2t1/2) <P (2 sup \ET<I>u| > n1/2t1/2)

u€EBy ueN

for any ¢ > 0, where N is an 1/2-net of By. For each u € N, by Markov’s inequality

T )2
P(leT ®u| > nV/?1/2/2) < w
n

Let ¢ = (¢1,...,¢,), where ¢; is the jth coordinate of ®u. Then ||c[l; = |[[Pul]; =1, so

E{(e"®u)’} = E(c"e€e' c) < maxo?.

(2

Since the 1/2-net AN has cardinality at most 67 by Lemma 1.18 of Rigollet and Hiitter
(2017),

4 o2
P (sup ]6T<I>u] > n1/2t1/2> < 61’%,
ueBy nt

which goes to zero by Assumption 2. Therefore
o xB -8
—{ET (An_A*n) } >t| =0

for every ¢ > 0, which implies that 0 < £,(3,) — én(B:L) < op(1).

13



8 Proof of Theorem 5

Define

Since 3, — 3, = (X' X) Y(X e - 2),

W28 B, - B =3 XX ) SV
i=1
In the proof of Theorem 3, it was shown that X ' X /n converges to a positive-definite
matrix in probability. It remains to show that >, V/; is asymptotically normal.

The standard Lindeberg-Feller central limit theorem cannot be applied because the V;
are not independent. Specifically, V; and V; are dependent when i € N(I) or I € N (i),
due to the inclusion of ¥;, in X;. On the other hand, the assumption that D,, (11) is O(1)
guarantees that this dependence is sufficiently local such that a central limit theorem still
holds. Let I' be a graph with n vertices where an edge exists between vertex ¢ and vertex
[ if and only if V; and V; are dependent. Then I'" is a dependency graph for the V; with

maximum degree D,,, and the local dependence central limit theorem in Corollary 1 of Rai¢
(2004) implies that 3. V. '/2V; — N(0,I,) as long as

i (14 D) Y £ {1V Vil (12 2Vil > ) =0
for every n > 0, where

V.= (1+D.)) E|V, Vi

i=1

14



To establish this last condition, first bound

VL2V <M (V) VS
:Al(vn)_liZ{%w €+ 2, (Y — +ZC,W szi},
j=1
where A;(V,,) is the minimum eigenvalue of V,,. Therefore
V, < ;):D 2121{0% Z%—C’YUVMEY +ZC’,W o; 6’2 + o} )}
i=1j
As in the proof of Theorem 1, two applications of Cauchy-Schwarz give

n
ZC%ijvar(QY;; ) < ZC’%Uvar €:0;) ZCéwvar & —62)+

i=1 1=1
n 12 ¢ 4, 1/2
2 {Z C’%ijvar(ei@i)} {Z Cyi;var (e — 61.2)} :
i=1 i=1

This, combined with Assumption 1 and the assumption that lim, A;(V',) > 0, implies

_(+omy

This in turn implies that for any 7 > 0,

1
P {I <||V;1/2Vi||§ > Vi> > r} < ;p (HVT—Ll/QVi”% S Vi)
< Z 1 e < n 112
<lp{nwavigs L) e )E||Vz||
p
__ V. 1 Z C2,.07 + C%, var(e —|—ZC’k o767
7’]7’)\1(‘/ ) oy g ij ij

Therefore

AV VIR (Vv > o)

n

15



converges to zero in probability. By the dominated convergence theorem, this is also true

in expectation, so that

(1+Dn)2n:E{||V;1/2V,-H§I(HV 12y, |;2>V—>}_{1+0 )= Zo

i=1

9 Proof of Proposition 2

Define

1 X,
so that

V,= znzvar(vi) + Z cov(V,, V).
i=1

i#l

If 02, K3;, and ky; are known, the variance term can be written as the p x p block matrix

) A B C
Y var(Vi)=|D E F|,
G H I

where the jj’th entries of the p x p blocks A, B= D", and E are

A= Z Ci;Cij (e Z Ci;Cijro?
1 n
Bjy =Dy = Z CijCip Bei(eY; — 0f)} = n > CiiCiy(076; + ki)
i=1 =1

I 1 <
By = > GGy E{(eY; — 07)’} = - > CiiCip(076] + 20,55 + Kai — 07)
i=1 =1

16



for j, 5 =1,...,p. The matrices C = G' and F = H' are p x pg-dimensional, with rows
indexed by j and columns indexed by pairs (j', k). Their entries take the form

Cijrw) = Zc CiiB(2Y;,) = Zc”c”,o 0;,
Firw =Hrws = Z CiiCiy E{(&Y: — 07 )€Y, } = " Z CiiCijri, (070; + Kzi)
Py i—1

for j = 1,...,p and columns indexed by pairs (j',k) for j/ = 1,...;pand k = 1,...,q.
Finally, the matrix I is pg X pg-dimensional with rows and columns indexed by pairs (j, k)

and (j', k') with entries
1 n

Lmy ey = Y CuCyB(EY]) = Z CijCiyai (05 +07,) if k=K,
=1

€ Xy Zk’

1 n
- C.iCinE(€2Y, Y, )= — C;:Cinc20, 0,  if k+ K
n; Vg (€ 0 ; I AL TS #

The covariance term can be written as the p x p block matrix

A B C’
 ecov(Vy,V))=|D' E F'|,
i G H T

17



where the entries of the blocks are

1
A;‘j’ “n Z CijCijreov(e, &) =0,

i#l
1
B;j/ = D;»/j = ﬁ ZCﬁjCZjICOV(E,;, GI}/Z - 0'12) = 0,
i;él
C]/',(j’,k) = /(J/ k) ZCZJCZJ/COV €, El lk = ZCz]Cl] ) (El) O,
1751 z;él
1
E],-j/ = E Z Cz‘jclj/COV(EiY; — 0'2-2, EZYE — Ul2) = O,
i#l
Fl ey =Hijp, Z Cy;Ciycov(€Y; — o7,6Y;,) =0,
z;él
1 1
Lk Gy = ” Z CijCijrcov (€Y, €Yy,,) = o Z CijCiyr 7076, 040
i#l i#l

where 0, = 1 if a = b and 0 otherwise.
In each of the above terms, replacing 6; with Y; and 6% + ¢ with Y;? gives an unbiased

estimate.
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