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Language Description

Manipuri (locally known as, Meiteilon), is a low resourced Indian
language:

e ISO 639-2: mni.

e Language Family: Sino-Tibetan.

e Writing system: Eastern Nagari script (also known as, Bengali
Script) and Meitei Mayek.

e Same writing system: Manipuri, Bengali® and Assamese?.

e Lexical influence: Bengali influences Assamese and Manipuri.
Hindi® influences all the other three languages.

ISO 639-2 code: Yben, 2asm, 3 hin.
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Dataset Description

Source: pmindia dataset (Haddow et al., 2020)
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Language sentence words  word

pair pairs / sent.  types

Assamese 9,732 17 26,649
English 20 22,900
Bengali 29,584 15 55,150
English 17 38,781
Hindi 56,831 20 52,441
English 19 59,061
Manipuri 7,419 15 22,289
English 19 18,502

Tablel: Statistics on the dataset used.
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http://data.statmt.org/pmindia/

Motivation

Our main goal: To increase the translation accuracy of Manipuri to
English.

Proposal: To build different machine translation systems by adding
knowledge from the three languages in combination with Manipuri and

learn translation models.
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Our method

1. Baseline:

Translation of Manipuri to English.

HUIDROM & LEPAGE 13th November 2020 6 /15



Our method

1. Baseline:

Translation of Manipuri to English.

2. Combination with other language(s):

Translation by combining Manipuri with 'n’ number of
languages to English; n = 1,2,3.
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Explanation

Figure 1. Explanation of the working of our method. Translation by combining
Manipuri with 'n’ number of languages to English; n = 1,2,3.
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Experiments

Languages used:

Source languages: Manipuri (mni), Bengali (ben), Assamese
(asm), Hindi (hin).
Target language: English (eng).

Experiment setup:

Tool settings: OpenNMT (Klein et al., 2017) RNN model
(encoder type: brnn; decoder type: rnn);
dropout rate: 0.3.

Data settings: 5000 training data for every language pair
and 1000 data each for validation and test for
Manipuri-English language pairs.
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Result

Manipuri
Assamese
Bengali
Hindi
BLEU
Confidence
Interval

10.5+1.1
10.1+£1.1

12.7£1.3

Table2: Translation accuracies as measured with BLEU with 95% confidence.
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Conclusion

e Conclusion: Lexical influence exhibited by related languages helped

in increasing the translation accuracy of Manipuri to English.

A linear increase of translation accuracy is observed, independently

of languages.

e Future work: To conduct the experiment with more amount of data

such as, data from our corpora.
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Experiment settings

RNN model
Embed Dim | 500
RNN Type | LSTM
Num Layers | 2
Hidden Dim | 500
Input Feeding | True
Attention | Global
Attention type | General
Dropout | 0.3
Encoder Type | brnn
Decoder Type | rnn
Optimization
Batch size | 64
Batch type | Sentences
Optimizer | adam
Init learning rate | 0.001
Learning rate schedule
# steps before decay | 50,000
Decay frequency | 10,000
Learning rate decay | lcurr * 0.5

Table3: Parameters used for RNN model. They are mostly from openNMT-py
toolkit suggestions.
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Background

e Languages are often not isolated (Song et al., 2020), it has lexical
influences on one other which results from either belonging to the
same language family or the regional influences on the languages.

e We are observing the phenomenon of leveraging translation
knowledge from other languages.

e The notion of leveraging related languages for translation is widely
applied in research areas of MT as well as in commercial fields*.

4 https://www.sdl.com/
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Background

e Statistical MT is based on purely bilingual systems; in particular,
it is a bilingual model.

e On the other hand, Neural MT's shared representation space is
forced across languages and it induces a sort of transfer-learning
(Lakew et al., 2018) which helps in increasing the translation
accuracy®.

% https://research.google/pubs/pub49064,/
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