An open dataset of *Plasmodium falciparum* genome variation in 7,000 worldwide samples

MalariaGEN Plasmodium falciparum Community Project

This version: 17 November 2020

Supplementary Note

Analysis of local differentiation score

The ten genes with highest local differentiation scores are shown in Supplementary Table 8, and differentiation scores for all genes are available in the data release (<u>https://www.malariagen.net/resource/26</u>).

We identified genes in the top centile of differentiation scores that have previously been implicated in drug resistance, but for which a second gene is located nearby on the same chromosome and has a higher local differentiation score. The only example of this we found were the genes PF3D7_1012700 (*nif4*, aka *pph*) and PF3D7_1012900 (*atg18*) which contain SNPs that have been associated with artemisinin resistance^{1,2}. *Atg18* has the third highest local differentiation score (0.85) whereas *nif4* is ranked 39th (0.68). Three different SNPs in *nif4*: V1157L, Y1133N and N659S, are the most highly differentiated in WSEA, ESEA and OCE, respectively. For each of these regions, the T38I mutation in *atg18* is more highly differentiated. This lends weight to the hypothesis that *atg18*:T38I is more likely to be the mutation driving the peak seen in GWAS studies²

We also identified transporter genes that had high local differentiation scores but which have not to our knowledge previously been directly implicated in drug resistance in *Plasmodium*. Examples include PF3D7_1218400 (local differentiation score 0.76), a phosphate transporter gene with a highly differentiated SNP adjacent to one of the predicted transmembrane domains. The amino acid transporter *aat1* (PF3D7_0629500; local differentiation score 0.71) also contains several SNPs that are highly differentiated in this analysis and is located in a locus that has been a candidate before^{3,4}. The genomic region has also been previously associated with chloroquine resistance in a GWAS from the China-Myanmar border² and variants in an orthologous gene induces chloroquine resistance in yeast cells⁵ and in a malaria rodent model⁶. Furthermore, variants have recently been associated with drug resistance in a chemogenomics study⁷. Other transporter genes with high local differentiation scores that have not previously been associated with drug resistance include PF3D7_1440800 (*mfs6*, local differentiation score 0.73) and PF3D7_1129900 (*mfr5*, local differentiation score 0.71).

We also examined which SNPs were driving high local differentiation scores in known drug resistance genes. For example, the most commonly reported mutations in *dhps* are 437G and

540E, but the variants driving the high local differentiation score in *dhps* are 581G (which is the most highly differentiated *dhps* SNP in EAF, WSEA and ESEA) and 431V. To date there have been relatively few reports of frequencies of $431V^{8-10}$. Likewise, the most highly differentiated SNPs in *crt* do not include any in amino acid positions 72-76. These findings highlight the need for constant evaluation of, and monitoring of the changes in allele frequencies of, SNPs in key drug resistance genes.

The classic 76T chloroquine resistance mutation in crt is found on multiple haplotypes

We analysed the haplotypes at amino acids 72-76 in *crt* (Supplementary Table 11). The two most common haplotypes are the wild-type CVMNK which has high frequency in Africa but is rare in Asia, and CVIET which is dominant in Asia but also has appreciable frequency across Africa. However, we observe overall seven different *crt* amino acid 72-76 haplotypes. It is worth noting that one haplotype in particular, CVIDT, is present at high frequency in ESEA only, and sympatrically with the more common and wide-spread CVIET. This high prevalence raises questions about its phenotypic and fitness effects. The amino acid haplotype **S**VMNT is dominant in OCE, but also relatively common in SAM. This is two different haplotypes at the nucleotide level with 72S in OCE being due exclusively to a T/A mutation at Pf3D7_07_v3:403,612, whereas the 72S in SAM is due exclusively to a G/C mutation at Pf3D7_07_v3:403,613. Haplotypes CVMET and CVMNT are seen exclusively in SAM and **YVIET** is seen exclusively in ESEA.

Suplhadoxine-pyrimethamine resistance is widespread and associated with many haplotypes

Many studies on resistance to sulphadoxine-pyrimethamine (S-P) have focused on a small number of specific haplotypes at eight amino acids in the genes *dhfr* (amino acids 51, 59, 108 and 164) and *dhps* (amino acids 437, 540, 581 and 613), though in our dataset we see 62 different haplotypes for these positions (Supplementary Table 12). Most samples have at least four mutations in these codons, with the exception of SAM where the majority of samples have the single 108N mutation (giving the eight amino acid haplotype NCNI/AKAA). The majority of samples from WAF and CAF have the quadruple IRNI/GKAA haplotype, whereas the quintuple haplotype IRNI/GEAA dominates in EAF. IRNI/GEAA is also at high frequency throughout Asia, though other quintuple and sextuple mutants are common such as IRNL/GEAA which is seen in SAS (18%), WSEA (13%) and ESEA (9%). The most common haplotype in both SAS and OCE is the quadruple mutant NRNI/GEAA, which is relatively rare elsewhere. The most common haplotype in WSEA is the septuple mutant IRNL/GEGA (58%), whereas the most common in ESEA is the septuple mutant IRNL/GEGA.

Duplications of *gch1* have also been associated with resistance to S-P. We found eleven different sets of duplication breakpoints around *gch1*, including two examples of DUP-TRP/INV-DUP rearrangements (Supplementary Table 4). DUP-TRP/INV-DUP rearrangements have previously been observed in human data, but to the best of our knowledge this is the first report in Plasmodium species¹¹. Most of the common sets of duplication breakpoints were seen across

multiple sites and among samples with different *dhfr/dhps* haplotypes. An interesting exception to this was the DUP-TRP/INV-DUP rearrangement PfGCH1_DTD_2, which was seen almost exclusively in samples from the island of Papua, all of which carried the N**RN**I/**GE**AA haplotype.

mdr1 duplications have many different breakpoints

Amplifications of the gene *mdr1* are markers of resistance to mefloquine. We identified 28 different sets of breakpoints for *mdr1* duplications (Supplementary Table 5). 27 of these are tandem duplications, but we also see evidence of a DUP-TRP/INV-DUP rearrangement. Many of the more common sets of *mdr1* duplication breakpoints are seen at multiple geographical sites, and also in combination with multiple different *kelch13* mutations, suggesting either gene flow between sites or multiple independent events. Many of the breakpoint pairs share one breakpoint with at least one other pair, suggesting there are breakpoint hotspots around *mdr1*.

Artemisinin, piperaquine, and mefloquine resistance

Amplifications of the genes *plasmepsin 2-3* are marker of resistance to piperaquine, a drug commonly used in ACTs^{12,13}. We see just three sets of tandem duplication breakpoints (Supplementary Table 5). The 9kb duplication PfPlasmepsin_1 is by far the most common. This is seen at many different sites in ESEA, and is the duplication seen in the strain recently reported to be spreading throughout ESEA^{14,15}. The vast majority of samples carrying this duplication also have *kelch13* 580Y mutations, though samples with wild-type and other non-synonymous *kelch13* mutations are also seen. A 17kb duplication is seen exclusively in samples from Pursat, all of which have 493H *kelch13* mutations. Similarly, a 80kb duplication is seen exclusively in Pailin in two samples which both have the 580Y *kelch13* mutation.

Amongst samples from ESEA carrying *kelch13* mutants, 223/555 (40%) have *plasmepsin 2-3* duplications, which is a significantly higher proportion than the 23/627 (3%) carrying wild-type *kelch13* (Fisher's exact p=9.2x10⁻⁵⁹). Similarly, amongst samples from ESEA carrying *kelch13* mutants, 117/472 (24%) have *mdr1* duplications, which is a significantly higher proportion than the 19/559 (3%) carrying wild-type *kelch13* (Fisher's exact p=3.2x10⁻²⁵). However, of the 186 samples from ESEA carrying both *kelch13* mutations and *plasmepsin 2-3* duplications, only 12 (6%) also carry *mdr1* duplications, which is a significantly lower proportion than the 103/284 (36%) *kelch13* mutants without *plasmepsin 2-3* duplications (Fisher's exact p=7.0x10⁻¹⁵), highlighting the previous reported antagonistic effect between *plasmepsin 2-3* and *mdr1* duplications¹⁶.

No evidence of resistance to less commonly used antimalarials

Samples carrying the *dhfr* double mutant 16V and 108T have been associated with resistance to proguanil but this specific combination is completely absent other than in three samples from western Cambodia. Similarly, we do not see any evidence of resistance to atovaquone, resistance to which has been associated with mutations at amino acid 268 in mitochondrial gene *cytB*. This is compatible with the very limited and restricted usage of this drug so far, and with the notion

that mutations in this gene are usually acquired within the course of the infection but are unlikely to be transmitted¹⁷.

Supplementary references

- 1 Miotto O, Amato R, Ashley EA, *et al.* Genetic architecture of artemisinin-resistant Plasmodium falciparum. *Nat Genet* 2015; **47**: 226–34.
- 2 Wang Z, Cabrera M, Yang J, *et al.* Genome-wide association analysis identifies genetic loci associated with resistance to multiple antimalarials in Plasmodium falciparum from China-Myanmar border. *Sci Rep* 2016; **6**: 33891.
- 3 Takala-Harrison S, Clark TG, Jacob CG, *et al.* Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia. *Proc Natl Acad Sci U S A* 2013; **110**: 240–5.
- 4 Amambua-Ngwa A, Amenga-Etego L, Kamau E, *et al.* Major subpopulations of Plasmodium falciparum in sub-Saharan Africa. *Science (80-)* 2019; **365**: 813–6.
- 5 Tindall SM, Vallières C, Lakhani DH, Islahudin F, Ting K-N, Avery S V. Heterologous Expression of a Novel Drug Transporter from the Malaria Parasite Alters Resistance to Quinoline Antimalarials. *Sci Rep* 2018; **8**: 2464.
- 6 Kinga Modrzynska K, Creasey A, Loewe L, *et al.* Quantitative genome re-sequencing defines multiple mutations conferring chloroquine resistance in rodent malaria. *BMC Genomics* 2012; **13**: 106.
- 7 Cowell AN, Istvan ES, Lukens AK, *et al.* Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. *Science (80-)* 2018; **359**: 191–9.
- 8 Apinjoh TO, Mugri RN, Miotto O, *et al.* Molecular markers for artemisinin and partner drug resistance in natural Plasmodium falciparum populations following increased insecticide treated net coverage along the slope of mount Cameroon: Cross-sectional study. *Infect Dis Poverty* 2017; **6**: 136.
- 9 Chauvin P, Menard S, Iriart X, et al. Prevalence of *Plasmodium falciparum* parasites resistant to sulfadoxine/pyrimethamine in pregnant women in Yaoundé, Cameroon: emergence of highly resistant *pfdhfr / pfdhps* alleles. *J Antimicrob Chemother* 2015; **70**: 2566–71.
- 10 Oguike MC, Falade CO, Shu E, *et al.* Molecular determinants of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum in Nigeria and the regional emergence of dhps 431V. *Int J Parasitol Drugs Drug Resist* 2016; **6**: 220–9.
- 11 Carvalho CMB, Ramocki MB, Pehlivan D, *et al.* Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome. *Nat Genet* 2011; **43**: 1074–81.
- 12 Amato R, Lim P, Miotto O, et al. Genetic markers associated with dihydroartemisinin-

piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype– phenotype association study. *Lancet Infect Dis* 2017; **17**: 164–73.

- 13 Witkowski B, Duru V, Khim N, *et al.* A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study. *Lancet Infect Dis* 2017; **17**: 174–83.
- 14 Imwong M, Suwannasin K, Kunasol C, *et al.* The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study. *Lancet Infect Dis* 2017; **17**: 491–7.
- 15 Amato R, Pearson RD, Almagro-Garcia J, *et al.* Origins of the current outbreak of multidrugresistant malaria in southeast Asia: a retrospective genetic study. *Lancet Infect Dis* 2018; 18: 337–45.
- 16 Amaratunga C, Lim P, Suon S, *et al.* Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: A multisite prospective cohort study. *Lancet Infect Dis* 2016; **16**: 357–65.
- 17 Goodman CD, Siregar JE, Mollard V, *et al.* Parasites resistant to the antimalarial atovaquone fail to transmit by mosquitoes. *Science (80-)* 2016; **352**: 349–53.

Supplementary tables

Supplementary Table 1. Breakdown of analysis set samples by geography. Sites are divided into eight regions as described in the main text. Note that samples from Mae Sot and Ranong in western Thailand have been assigned to the Western SE Asia (WSEA) region, whereas samples from Sisakhet in eastern Thailand have been assigned to the Eastern SE Asia (ESEA) region. 8 returning travellers were reported as returning/passed sample QC from Ghana (3/2), Kenya (2/1), Uganda (2/1) and Mozambique (1/1). 16 samples which were identified as lab strains were excluded from analysis.

Regio n	Country	Site	Sequenced samples	Analysis set samples
		Buenaventura	3	3
	Colombia	Guapi	4	4
C A A A	Colombia	Quibdo	3	3
SAIVI		Tumaco	6	6
	Doru	Iquitos, Loreto Province	11	11
	Peru	Loreto	12	10
	Benin	Homel	102	36
	Burkina Faso	Bobo-Dioulasso	57	56
	Cameroon	Buea	239	235
		Basse	124	102
	Combio	Brikama	123	116
	Gampia	Madina Samako	14	0
		Njaiyel	16	1
		Cape-Coast	101	100
	Ghana	Kintampo	61	44
		Navrongo	841	705
	Guinoa	Faranah	60	37
	Guinea	Nzerekore	137	112
	Ivory Coast	Abobo	31	31
WAF		Koumassi	19	19
		Yopougon	20	20
		Bamako	164	162
		Bandiagara	9	8
	Mali	Faladje	173	157
		Kolle	51	47
		Nioro du Sahel	52	52
		Aioun	9	9
	Mauritania	Kobeni	23	21
	Ividui italiid	Nema	33	27
		Selibaby	21	19
	Nigoria	Badagry	34	24
	Nigeria	llorin	8	5
	Senegal	Pikine	86	84
CAF	Congo DR	Kinshasa	366	344
EAF	Ethiopia	Shewa Robit Town Health Centre	15	10

		West Arsi Zone	19	11
		Kilifi	68	49
	Kenya	Kisumu	34	34
		Kombewa	27	26
		Antsohihy	6	5
Madagascar		Farafangana	1	1
		Maevatanana	18	18
	Malauri	Chikwawa	300	221
	Waldwi	Zomba	51	33
		Mkuzi-Muheza	160	152
		Morogoro	34	32
	Tanzania	Muheza	16	15
		Muleba	61	52
		Nachingwea	79	65
	Uganda	Арас	14	12
CAC	Bangladach	Bandarban	42	28
JAJ	Dangiauesh	Ramu	51	49
		Bago	94	61
	Myanmar	Kawthaung	51	50
		Myitkyina	28	26
WSEA		Pyin Oo Lwin	23	22
	Thailand	Thabeikkyin	54	52
		Mae Sot	935	848
	Indiidiiu	Ranong	27	20
		Pailin	157	132
		Preah Vihear	210	144
	Cambodia	Pursat	539	376
		Ratanakiri	243	194
ECEA		Tasanh	65	50
ESEA	Laos	Attapeu	86	84
	Laus	Xepon	45	36
	Thailand	Sisakhet	28	20
	Viet Nam	Binh Phuoc	126	114
	VIELINAIII	Phuoc Long	138	112
	Indonesia	Timika	92	80
OCE		East Sepik	53	48
UCE	Papua New Guinea	Madang	56	44
		Milne Bay	30	29
Ret	urning travellers	Various locations	8	5
	Lab samples	Various locations	16	0
Total		otal	7,113	5,970

Supplementary Table 2. Studies contributing samples. Information provided in here is correct at the time of publication and to the best of our knowledge. For the most up to date partner study and contact information, please refer to the *Plasmodium falciparum* Community Project page on the MalariaGEN website: https://www.malariagen.net/projects/p-falciparum-community-project

Study ID	Study title	Contact	Samples	Sites
1001-PF-ML-DJIMDE	Developing the Community Project with partners	Abdoulaye Djimdé	96	Bandiagara (Mali), Faladje
	in Mali	adjimde@icermali.org		(Malí), Kolle (Malí)
		Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Mali		
1004-PF-BF-OUEDRAOGO	Developing the Community Project with partners	Jean-Bosco Ouedraogo	57	Bobo-Dioulasso (Burkina
	in Burkina Faso	jbouedraogo.irssbobo@fasonet.bf		Faso)
		Institut de Recherche en Sciences de		
		la Santé, Burkina Faso		
1006-PF-GM-CONWAY	Genome-wide analysis of genetic variation in The	Alfred Amambua-Ngwa	79	Brikama (Gambia)
	Gambia	angwa@mrc.gm		
		Medical Research Council Unit, The		
		Gambia at the London School of		
		Gambia		
		Wellcome Sanger Institute, UK		
1007-PF-TZ-DUFFY	Mother Offspring Malaria Study (MOMS) in	Patrick Duffy	50	Morogoro (Tanzania),
	Tanzania	duffype@niaid.nih.gov		Muheza (Tanzania)

		National Institute of Allergy and Infectious Diseases (NIAID), NIH, USA		
1008-PF-SEA-RINGWALD	Containment of artemisinin tolerant malaria	Pascal Ringwald	234	Kawthaung (Myanmar),
	parasites in South-East Asia (ARCE)	ringwaldp@who.int		Phuoc Long (Viet Nam), Yonon (Laos)
		World Health Organization (WHO), Switzerland		Aepon (Laos)
1010-PF-TH-ANDERSON	Genetic variation underlying drug resistance at	Tim J C Anderson	108	Mae Sot (Thailand)
	the Thai-Burmese border	tanderso@txbiomed.org		
		Texas Biomedical Research Institute, San Antonio, USA		
1011-PF-KH-SU	Genome-wide scans of cultured adapted parasites	Thomas E Wellems	41	Pursat (Cambodia)
	in Cambodia	twellems@niaid.nih.gov		
		National Institute of Allergy and Infectious Diseases (NIAID), NIH, USA		
1012-PF-KH-WHITE	Developing the Community Project with partners	Nicholas J White	2	Pailin (Cambodia)
	in Cambodia	nickw@tropmedres.ac		
		Mahidol-Oxford Tropical Medicine Research Unit (MORU), Thailand		
1013-PF-PEGB-BRANCH	Developing the Community Project with partners	Julian C Rayner	16	Iquitos, Loreto Province
	in Peru	jr9@sanger.ac.uk		(Peru)
		Wellcome Sanger Institute, UK		

1014-PF-SSA-SUTHERLAND	Analysis of <i>Plasmodium falciparum</i> samples from UK travellers returning from malaria endemic countries	Colin Sutherland colin.sutherland@lshtm.ac.uk London School of Hygiene and Tropical Medicine, UK	8	Ghana returning traveller (Ghana), Kenya returning traveller (Kenya), Mozambique returning traveller (Mozambique), Uganda returning traveller (Uganda)
1015-PF-KE-NZILA	Genome-wide association study of in vitro drug resistance in Kenya	Irene Omedo iomedo@kemri-wellcome.org KEMRI Wellcome Trust Research Programme, Kenya	60	Kilifi (Kenya)
1016-PF-TH-NOSTEN	Developing the Community Project with partners in Thailand	Francois Nosten francois@tropmedres.ac Nuffield Department of Medicine, University of Oxford, UK Shoklo Malaria Research Unit	21	Mae Sot (Thailand)
1017-PF-GH-AMENGA- ETEGO	Population genetics of natural populations in Northern Ghana	Lucas Amenga-Etego lucasmenga@gmail.com West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana	390	Navrongo (Ghana)
1020-PF-VN-BONI	Measuring in vitro drug sensitivity in Vietnam	Tran Tinh Hien hientt@oucru.org	24	Binh Phuoc (Viet Nam)

		Oxford University Clinical Research Unit (OUCRU), Vietnam		
1021-PF-PG-MUELLER	Building a national repository of malaria isolates	Ivo Mueller	57	East Sepik (Papua New
	in Papua New Guinea	mueller@wehi.edu.au		Guinea), Madang (Papua New Guinea)
		Barcelona Centre for International Health Research, Spain		
		Walter and Eliza Hall Institute, Australia		
1022-PF-MW-OCHOLLA	Genome variation and selection in clinical isolates	Brigitte Denis	351	. Chikwawa (Malawi), Zomba (Malawi)
	from rural Malawi	bdenis@mlw.mw		
		Malawi-Liverpool Wellcome Trust Clinical Research Programme, Malawi		
1023-PF-CO-ECHEVERRI-	Comparative analysis of permeome genes and drug resistance in Colombia	Diego F Echeverry	17	Buenaventura (Colombia),
GARCIA		difereg77@gmail.com		Guapi (Colombia), Quibdo (Colombia). Tumaco
		Centro Internacional de Entrenamiento e Investigaciones Médicas - CIDEIM, Cali, Colombia		(Colombia)
		Universidad Icesi, Cali, Colombia		
1024-PF-UG-BOUSEMA	FightMal - Correlating protection from malaria	Teun Bousema	14	Apac (Uganda)
	with immune profile of infected individuals in	Teun.Bousema@radboudumc.nl		
		London School of Hygiene & Tropical Medicine, UK		
		Radboud University Medical Centre, The Netherlands		

1026-PF-GN-CONWAY	Effects of transmission intensity on population structure and signatures of selection in Guinea	David Conway david.conway@lshtm.ac.uk London School of Hygiene & Tropical Medicine, UK	197	Faranah (Guinea), Nzerekore (Guinea)
1027-PF-KE-BULL	Genomics of severe malaria and low host immunity in Kenya	Irene Omedo iomedo@kemri-wellcome.org KEMRI Wellcome Trust Research Programme, Kenya	11	Kilifi (Kenya)
1031-PF-SEA-PLOWE	Artemisinin Resistance Confirmation, Characterization and Containment (ARC3)	Chris Plowe plowe.chris@gmail.com University of Maryland, USA	192	Bandarban (Bangladesh), Mae Sot (Thailand), Pailin (Cambodia), Tasanh (Cambodia)
1044-PF-KH-FAIRHURST	Genomics of parasite clearance and recrudescence rates in Cambodia	Thomas E Wellems twellems@niaid.nih.gov National Institute of Allergy and Infectious Diseases (NIAID), NIH, USA	602	Preah Vihear (Cambodia), Pursat (Cambodia), Ratanakiri (Cambodia)

1052-PF-TRAC-WHITE	Tracking Resistance to Artemisinin Collaboration (TRAC)	Elizabeth Ashley liz@tropmedres.ac Mahidol-Oxford Tropical Medicine Research Unit (MORU), Thailand	1,172	Attapeu (Laos), Bago (Myanmar), Binh Phuoc (Viet Nam), Ilorin (Nigeria), Kinshasa (Congo DR), Mae Sot (Thailand), Myitkyina (Myanmar), Pailin (Cambodia), Preah Vihear (Cambodia), Preah Vihear (Cambodia), Pursat (Cambodia), Pyin Oo Lwin (Myanmar), Ramu (Bangladesh), Ranong (Thailand), Ratanakiri (Cambodia), Sisakhet (Thailand), Thabeikkyin (Myanmar)
1062-PF-PG-BARRY	Understanding malaria parasite populations and outbreaks in Papua New Guinea	Alyssa Barry barry@wehi.edu.au Walter and Eliza Hall Institute, Australia Deakin University, Australia Burnet Institute, Australia	82	East Sepik (Papua New Guinea), Milne Bay (Papua New Guinea)
1083-PF-GH-CONWAY	Alternative molecular mechanisms for erythrocyte invasion by <i>P. falciparum</i> in Ghana	Gordon Awandare gawandare@ug.edu.gh West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Ghana	101	Kintampo (Ghana), Navrongo (Ghana)
1093-PF-CM-APINJOH	Population genetics of <i>P. falciparum</i> parasites in South-Western Cameroon	Tobias Apinjoh apinjohtoby@yahoo.co.uk	239	Buea (Cameroon)

		University of Buea, Cameroon		
1094-PF-GH-AMENGA- ETEGO	Population genetics of <i>P. falciparum</i> parasites in Northern Ghana	Lucas Amenga-Etego lucasmenga@gmail.com West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana	256	Navrongo (Ghana)
1095-PF-TZ-ISHENGOMA	Genome variation and its effect on ACT treatment outcome in Tanzania	Deus Ishengoma deusishe@yahoo.com National Institute for Medical Research (NIMR), United Republic of Tanzania East African Consortium for Clinical Research (EACCR), United Republic of Tanzania	300	Mkuzi-Muheza (Tanzania), Muleba (Tanzania), Nachingwea (Tanzania)
1096-PF-GH-GHANSAH	Population genetics of <i>P. falciparum</i> parasites in Southern Ghana	Anita Ghansah aghansah2013@gmail.com Nogouchi Memorial Institute for Medical Research, Legon-Accra, Ghana	101	Cape-Coast (Ghana)
1097-PF-ML-MAIGA	Detection of artemisinin-resistant <i>Plasmodium falciparum</i> parasites in Southern Mali	Abdoulaye Djimdé adjimde@icermali.org Malaria Research and Training Centre, University of Science,	137	Faladje (Mali)

		Techniques and Technologies of Bamako, Mali		
1098-PF-ET-GOLASSA	The prevalence of asymptomatic carriage;	Lemu Golassa	34	Shewa Robit Town Health
	emergence of parasite mutations conferring anti- malaria drug resistance: and G6PD deficiency in	lgolassa@gmail.com		Centre (Ethiopia), West Arsi Zone (Ethiopia)
	the human population, as possible impediments to malaria elimination in Ethiopia	Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Ethiopia		(
1100-PF-CI-YAVO	Drug resistance and Plasmodium falciparum	William Yavo	70	Abobo (Ivory Coast),
	diversity in forest zone of Côte d'Ivoire	yavowilliam@yahoo.fr		Koumassi (Ivory Coast), Yopougon (Ivory Coast)
		Malaria Research and Control Center of the National Institute of Public Health, Côte d'Ivoire		
		University Félix Houphouët-Boigny, Côte d'Ivoire		
1101-PF-CD-ONYAMBOKO	Efficacy of 3 ACTs in treating <i>falciparum</i> malaria in	Caterina A. Fanello	174	Kinshasa (Congo DR)
	the Democratic Republic of Congo	caterina@tropmedres.ac		
		Mahidol Oxford Tropical Medicine Research Unit (MORU), Thailand		
1102-PF-MG-	Genotyping P. falciparum and P. vivax in	Milijaona Randrianarivelojosia	25	Antsohihy (Madagascar),
RANDRIANARIVELOJOSIA	Madagascar	milijaon@pasteur.mg		Farafangana (Madagascar), Maeyatanana (Madagascar)
		Institut Pasteur de Madagascar		iviaevalalialia (iviauagascal)
1103-PF-PDN-GMSN-	Population genetics of cross-border P. falciparum	Alfred Amambua-Ngwa	34	Badagry (Nigeria)
NGWA	parasites in West Africa	angwa@mrc.gm		
		Medical Research Council Unit, The Gambia at the London School of		

		Hygiene & Tropical Medicine, The Gambia		
		Wellcome Sanger Institute, UK		
1107-PF-KEN-KAMAU	Population genetics of <i>P. falciparum</i> parasites in	Ben Andagalu	61	Kisumu (Kenya), Kombewa
	Kenya	bandagalu@yahoo.com		(Kenya)
		United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute/Walter Reed Project, Kisumu, Kenya		
1125-PF-TH-NOSTEN	Investigating artemisinin resistance emergence on	Francois Nosten	674	Mae Sot (Thailand)
	Thai-Burmese border	francois@tropmedres.ac		
		Nuffield Department of Medicine, University of Oxford, UK		
		Shoklo Malaria Research Unit		
1127-PF-ML-SOULEYMANE	Genetic analysis of <i>P. falciparum</i> before and after	Abdoulaye Djimdé	164	Bamako (Mali)
	artemether-lumetantrine treatment in Mali	adjimde@icermali.org		
		Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Mali		
1131-PF-BJ-BERTIN	Identification of virulence factors in cerebral	Gwladys Bertin	102	Homel (Benin)
		gwladys.bertin@ird.fr		
		Institute of Research for Development (IRD), Paris, France		
1134-PF-ML-CONWAY	Population Genetics of <i>P. falciparum</i> in West Africa	David Conway	52	Nioro du Sahel (Mali)

		david.conway@lshtm.ac.uk		
		London School of Hygiene & Tropical Medicine, UK		
1135-PF-SN-CONWAY	Parasite adaption in Senegal at molecular,	David Conway	86	Pikine (Senegal)
	functional and population level	david.conway@lshtm.ac.uk		
		London School of Hygiene & Tropical Medicine, UK		
1136-PF-GM-NGWA	Plasmodium falciparum anti-malarial drug	Alfred Amambua-Ngwa	100	Basse (Gambia), Brikama
	resistance in the Gambia: Identification of potential genetic markers by retrospective whole genome approaches	angwa@mrc.gm		(Gambia)
		Medical Research Council Unit The		
		Gambia at the London School of Hygiene and Tropical Medicine, The		
		Gambia		
		Wellcome Sanger Institute, UK		
1137-PF-GM-	Malaria transmission dynamics in The Gambia:	Alfred Amambua-Ngwa	68	Basse (Gambia)
DALESSANDRO	Defining the spatial and temporal spread of malaria at micro-level (village)	angwa@mrc.gm		
		Medical Research Council Unit The		
		Gambia at the London School of Hygiene and Tropical Medicine, The		
		Gambia		
		Wellcome Sanger Institute, UK		
1138-PF-CD-FANELLO	Parenteral artesunate compared to quinine as a	Caterina A. Fanello	77	Kinshasa (Congo DR)
	cause of late post-treatment anaemia in African children with hyperparasitaemic P. falciparum	caterina@tropmedres.ac		
	malaria (DHART)	Mahidol Oxford Tropical Medicine Research Unit (MORU), Thailand		

1141-PF-GM-CLAESSENS	Genomic characterization of <i>P. falciparum</i> from asymptomatic infections in The Gambia	Antoine Claessens antoineclaessens@gmail.com Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, The Gambia LPHI, MIVEGEC, INSERM, CNRS, IRD, University of Montpellier, France	31	Madina Samako (Gambia), Njaiyel (Gambia)
1145-PF-PE-GAMBOA	Genotype-phenotype study of erythrocyte invasion in Peruvian <i>P. falciparum</i> isolates	Dionicia Gamboa dionicia.gamboa@upch.pe Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru	13	Loreto (Peru)
1146-PF-MULTI-PRICE	Characterisation of drug resistance in Indonesian <i>P. falciparum</i> populations	Sarah Auburn Sarah.Auburn@menzies.edu.au Menzies School of Health Research, Australia Nuffield Department of Medicine, University of Oxford, UK	92	Timika (Indonesia)
1147-PF-MR-CONWAY	Population genetics of <i>P. falciparum</i> parasites in Mauritania	David Conway david.conway@lshtm.ac.uk London School of Hygiene & Tropical Medicine, UK	86	Aioun (Mauritania), Kobeni (Mauritania), Nema (Mauritania), Selibaby (Mauritania)

1151-PF-GH-AMENGA- ETEGO	Testing the effectiveness of selective whole genome amplification on samples collected in Northern Ghana	Lucas Amenga-Etego lucasmenga@gmail.com West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana	155	Navrongo (Ghana)
Total			7,113	

Supplementary Table 3. Summary of discovered variant positions. We divide variant positions into those containing single nucleotide polymorphisms (SNPs) and non-SNPs (indels and combinations of SNPs and indels at the same position). We then further sub-divide each of these into those within exons (coding) and those in intronic or intergenic regions (non-coding). We further sub-divide SNPs into those containing only two alleles (bi-allelic) or those contains three or more alleles (multi-allelic). Discovered variant positions are unique positions in the reference genome where either SNP or indel variation was discovered by our analysis pipeline. Pass variant positions are the subset of discovered positions that passed our quality filters. Alleles per pass position shows the mean number of distinct alleles at each pass position; biallelic variants have 2 alleles have two alleles by definition.

Туре	Coding	Multi-allelic	Discovered variant positions	Pass variant positions	% pass	Alleles per pass position
	Coding	Bi-allelic	1,590,717	1,042,291	66%	2.0
CND		Multi-allelic	195,356	139,388	71%	3.1
SINP	Non-coding	Bi-allelic	1,203,255	581,976	48%	2.0
		Multi-allelic	179,393	72,064	40%	3.1
non CND	Coding		882,235	326,199	37%	3.6
non-SNP	Non-coding		2,000,740	949,072	47%	3.5
Total			6,051,696	3,110,990	51%	2.7

Supplementary Table 4. Breakpoints of duplications of *gch1.* Breakpoint IDs are shown in the first column and can be used to match to the per sample breakpoints in the data release. Breakpoints are generally poly-A or poly-T repeats and Breakpoint 1 and Breakpoint 2 show the start and end of each repeat in the reference genome. Breakpoints 3 and 4 are shown for DUP-TRPINV-DUP breakpoint. The Sites column shows the sites where this breakpoint was identified, together with the number of QC pass samples at that site that had this set of breakpoints. DHFR/DHPS shows amino acid haplotypes at the amino acids *dhfr* (51, 59 and 108) and *dhps* (437 and 540) seen in samples with each breakpoint, together with the number of samples for each haplotype in brackets. Note we only show these haplotypes for samples that were homozygous for the haplotype.

Breakpoint ID	Breakpoint 1	Breakpoint 2	Breakpoint 3	Breakpoint 4	Sites	DHFR/DHPS
PfGCH1_dup_ 1	968847-968881	977926-977949			Kinshasa (6), Apac (1), Binh Phuoc (2), Pailin (9), Pursat (39), Ratanakiri (2), Tasanh (1), Bandarban (2), Ramu (1), Abobo (1), Buea (6), Kintampo (1), Navrongo (2), Bago (9), Kawthaung (19), Mae Sot (277), Myitkyina (3), Ranong (1), Thabeikkyin (1)	IRN/AK (2), IRN/GE (280), IRN/GK (20), IRN/GN (24), NRN/GE (19), NRN/GK (3), NRN/GN (1)
PfGCH1_dup_ 2	946265-946284	980622-980659			Pailin (3)	NCT/AK (3)
PfGCH1_dup_ 3	959516-959540	978164-978191			Pursat (5), Cape-Coast (1)	IRN/GK (5), IRN/GN (1)
PfGCH1_dup_ 4	970992-971023	975712-975747			Kintampo (1), Navrongo (1)	IRN/AK (1)
PfGCH1_dup_ 5	953141-953174	978164-978191			West Arsi Zone (2)	IRN/GE (2)
PfGCH1_dup_ 6	959516-959540	981032-981060			Brikama (1), Buea (1)	IRN/AK (1)
PfGCH1_dup_ 7	974100-974119	986443-986465			Maevatanana (3)	IRN/GE (1), IRN/GK (2)

PfGCH1_dup_ 8	973800-973825	976004-976045			Attapeu (2), Binh Phuoc (8), Pailin (13), Phuoc Long (11), Preah Vihear (3), Pursat (4), Ratanakiri (5), Sisakhet (2), Tasanh (2), Ramu (1), Abobo (4), Brikama (2), Buea (21), Cape-Coast (3), Homel (1), Kintampo (1), Koumassi (2), Navrongo (11), Nioro du Sahel (1), Bago (7), Kawthaung (6), Mae Sot (22), Pyin Oo Lwin (2), Ranong (4), Thabeikkyin (1)	IRN/AK (1), IRN/GE (50), IRN/GK (39), IRN/GN (29), NCS/AK (1), NCS/GK (3), NRN/GE (2), NRN/GK (3)
PfGCH1_dup_ 9	968847-968881	976155-976170			Bandarban (2), Ramu (5), Navrongo (9), Bago (4), Kawthaung (14), Mae Sot (73), Myitkyina (4), Pyin Oo Lwin (10), Ranong (2), Thabeikkyin (2)	IRN/GE (86), IRN/GK (5), IRN/GN (4), NRN/AK (2), NRN/GE (18), NRN/GK (1)
PfGCH1_DTD_ 1	929743-929759	940895-940912	978164-978191	980075- 980103	Guapi (1)	NCN/AK (1)
PfGCH1_DTD_ 2	938785-938805	968847-968881	977926-977949	980363- 980386	Milne Bay (4), Timika (32), Mae Sot (1)	IRNGE (1), NRNGE (35)

Supplementary Table 5. Breakpoints of duplications of mdr1. Breakpoint IDs are shown in the first column and can be used to match to the per sample breakpoints in the data release. Breakpoints are generally poly-A or poly-T repeats and Breakpoint 1 and Breakpoint 2 show the start and end of each repeat in the reference genome. Breakpoints 3 and 4 are shown for DUP-TRPINV-DUP breakpoints. The Sites column shows the sites where this breakpoint was identified, together with the number of QC pass samples at that site that had this set of breakpoints. K13 shows mutations in the *kelch13* gene seen in samples with each breakpoint, together with the number of samples for each mutation in brackets. Note we only show these mutations for samples that were homozygous for the mutation. WT=wild-type.

Breakpoint ID	Breakpoint 1	Breakpoint 2	Breakpoint 3	Breakpoint 4	Sites	К13
PfMDR1_dup_1	938329-938357	980012-980040			Kawthaung (4)	C580Y (4)
PfMDR1_dup_2	949514-949527	967253-967266			Mae Sot (9)	WT (5), M476I (1), P441L (3)
PfMDR1_dup_3	947790-947800	962444-962454			Mae Sot (67)	WT (33), A675V (2), C580Y (12), G538V (10), N458Y (7), P527H (1)
PfMDR1_dup_4	953961-953982	973008-973034			Bago (1), Mae Sot (63)	WT (47), A481V (1), C580Y (14)
PfMDR1_dup_5	953961-953982	965409-865428			Mae Sot (21)	WT (11), C580Y (4), P574L (3)
PfMDR1_dup_6	947968-947986	969783-969812			Pailin (5), Phuoc Long (2), Preah Vihear (3), Pursat (17), Sisakhet (10), Tasanh (4), Bago (3), Mae Sot (2), Ranong (1)	WT (5), C580Y (10), R539T (28), Y493H (1), c580y (1)

PfMDR1_dup_7	953961-953982	970215-970252	Pailin (1), Phuoc Long (2), Preah Vihear (4), Pursat (11), Tasanh (1), Kawthaung (2), Mae Sot (98)	WT (53), A675V (5), C580Y (23), K479I (1), N458Y (2), P441L (4), P443S (1), P527H (1), P553L (1), R539T (3), R561H (6), Y493H (9)
PfMDR1_dup_8	780906-780927	980012-980040		
PfMDR1_dup_9	870473-870502	964628-964646	Mae Sot (1)	
PfMDR1_dup_1 0	795494-795527	964505-964540	Kawthaung (1)	WT (1)
PfMDR1_dup_1 1	888324-888349	970215-970252		
PfMDR1_dup_1 2	868667-868699	964505-964540	Pailin (3)	WT (2)
PfMDR1_dup_1 3	946696-946717	964505-964540	Binh Phuoc (4), Pailin (9), Phuoc Long (3), Preah Vihear (6), Pursat (28), Ratanakiri (1), Sisakhet (1), Bago (2), Mae Sot (1)	WT (10), C580Y (26), R539T (6), Y493H (6)
PfMDR1_dup_1 4	946696-946717	970215-970252		
PfMDR1_dup_1 5	946346-946375	970215-970252	Pailin (1), Tasanh (1), Milne Bay (2), Kawthaung (1), Mae Sot (5), Ranong (2)	WT (6), C580Y (2), K479I (1), P574L (1), R539T (1)
PtMDR1_dup_1 6	948197-948217	976430-976456	Mae Sot (8)	WT (8)
PfMDR1_dup_1 7	946346-946375	986036-986067	Kawthaung (1)	WT (1)

PfMDR1_dup_1 8	953961-953982	976144-976170			Pursat (1), Mae Sot (2)	WT (2), C580Y (1)
PfMDR1_dup_1 9	953961-953982	989700-989721				
PfMDR1_dup_2 0	946696-946717	969783-969812			Pursat (1)	C580Y (1)
PfMDR1_dup_2 1	946346-946375	973140-973162			Pursat (5)	WT (5)
PfMDR1_dup_2 2	943418-943437	970215-970252			Mae Sot (1)	A675V (1)
PfMDR1_dup_2 3	942351-942376	970215-970252			Mae Sot (1)	C580Y (1)
PfMDR1_dup_2 4	939060-939083	976144-976170			Bago (1)	WT (1)
PfMDR1_dup_2 5	938329-938357	973140-973162			Thabeikkyin (1)	
PfMDR1_dup_2 6	953961-953982	976430-976456			Mae Sot (1), Myitkyina (1)	WT (1), F446I (1)
PfMDR1_dup_2 7	937002-937024	969783-969812			Pyin Oo Lwin (7)	P574L (7)
PfMDR1_DTD_1	928340-928359	938911-938930	964505- 964532	985396-985423	Pursat (4)	Y493H (4)

Supplementary Table 6. Breakpoints of duplications of *plasmepsin 2-3.* Breakpoint IDs are shown in the first column and can be used to match to the per sample breakpoints in the data release. Breakpoints are generally poly-A or poly-T repeats and Breakpoint 1 and Breakpoint 2 show the start and end of each repeat in the reference genome. The Sites column shows the sites where this breakpoint was identified, together with the number of QC pass samples at that site that had this set of breakpoints. K13 shows mutations in the *kelch13* gene seen in samples with each breakpoint, together with the number of samples for each mutation in brackets. Note we only show these mutations for samples that were homozygous for the mutation. WT=wild-type.

Breakpoint ID	Breakpoint 1	Breakpoint 2	Sites	К13
PfPlasmepsin_1	289611-289621	298782-298792	Pailin (49), Preah Vihear (19), Pursat (173), Ratanakiri (3), Sisakhet (1), Tasanh (11), Mae Sot (3)	WT (26), C580Y (208), F395Y (1), H719N (2), Y493H (6)
PfPlasmepsin_2	283034-283069	300493-300522	Pursat (4)	Y493H (4)
PfPlasmepsin_3	283034-283069	362990-363020	Pailin (2)	C580Y (2)

Supplementary Table 7. Genes ranked by global differentiation score. The table contains the ten genes with highest global differentiation score. The full list of all genes is available in the data release (https://www.malariagen.net/resource/26). Gene=GeneDB ID. Name=GeneDB name. Mut=highest F_{ST} non-synonymous SNP within the gene. F_{ST} = F_{ST} of mutation in Mut column. NRAF=non-reference allele frequency in each region of the mutation shown in the Mut column. SAM=South America, WAF=West Africa, CAF=Central Africa, EAF=East Africa, SAS=South Asia, WSEA=West south-east Asia, ESEA=East south-east Asia, OCE=Oceania. Score=global differentiation score (see Methods).

				NRAF								
Gene	Name	Mut	Fst	SAM	WAF	CAF	EAF	SAS	WSEA	ESE	OCE	Score
										Α		
PF3D7_1346800	P47	S242L and V247A	1.000	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1
PF3D7_0207600	SERA5	K383N	1.000	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.95
PF3D7_0935600	GIG	G171D	0.993	0.00	0.00	0.00	0.00	0.95	1.00	1.00	0.97	0.90
PF3D7_0406200	Pfs16	S90N	0.990	0.00	0.00	0.00	0.00	0.93	0.99	1.00	1.00	0.88
PF3D7_0315200	CTRP	D319N	0.989	0.97	0.00	0.00	0.00	0.99	0.99	1.00	0.98	0.87
PF3D7_1361100	SEC24A	S301P	0.989	0.16	0.00	0.00	0.00	0.95	1.00	0.99	0.98	0.86
PF3D7_1116800	HSP101	R172S	0.989	0.22	0.00	0.00	0.01	0.92	1.00	1.00	1.00	0.85
PF3D7_0320400	Cap380	W2127R	0.986	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.98	0.83
PF3D7_0709000	CRT	C72S	0.980	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.98	0.82
PF3D7_1344300		E497Q	0.980	0.19	0.00	0.00	0.00	0.90	1.00	0.99	0.93	0.81

Supplementary Table 8. Genes ranked by local differentiation score. The table contains the ten genes with highest local differentiation score. We have excluded genes that are within 50kb of a gene with a higher local differentiation score. The full list of all genes is available in the data release (<u>https://www.malariagen.net/resource/26</u>). Gene=GeneDB ID. Name=GeneDB name. Columns WAF to OCE show the most highly differentiated non-synonymous SNP in each region. Numbers in brackets show rank amongst all non-synonymous SNPs. A hyphen indicates that there were no segregating SNPs in the gene in this region. SAM=South America, WAF=West Africa, CAF=Central Africa, EAF=East Africa, SAS=South Asia, WSEA=West south-east Asia, ESEA=East south-east Asia, OCE=Oceania. Score=local differentiation score (see Methods).

Gene	Name	WAF	EAF	SAS	WSEA	ESEA	OCE	Score
PF3D7 131810								
0		P28L (38273)	D193Y (25047)	E125D (2406)	D193Y (129)	D193Y (1)	D193Y (3)	0.91
PE3D7 070900								
0	CRT	I356T (7)	Q271E (56)	1356T (82)	N326S (1226)	N326S (2)	T333S (1097)	0.85
			,				, , , , , , , , , , , , , , , , , , ,	
PF3D7_101290	47040	K301N	K335Q		T201 (204)	T201 (7)	T201 (4)	0.05
U	AIG18	(25704)	(28852)	-	1381 (291)	1381(7)	1381(1)	0.85
PF3D7_052300								
0	MDR1	S1082A (305)	N86Y (27)	S784L (3068)	F1226Y (995)	Y184F (8)	N1042D (2)	0.84
PF3D7_052510								
0	ACS10	N341I (9)	M300I (5)	D170N (1557)	G263S (534)	T172I (807)	P127Q (2181)	0.83
PF3D7 081080						۵5 <u>8</u> 1G		
0	PPPK-DHPS	I431V (12)	A581G (4)	G437A (1705)	A581G (154)	(132)	G437A (251)	0.81
			. ,	. ,	. ,	. ,	. ,	
PF3D7_121840		E12D (2612)		P204C (19)	D204C (166E)	D204C (22)		0.75
0		ETZD (2013)	KZ94C (5889)	K294C (18)	K294C (1005)	KZ94C (23)	-	0.75

PF3D7_040450 0	P52	Q69E (26)	N352K (536)	1473L (1150)	T416I (6)	1473L (2901)	M87I (344)	0.74
PF3D7_122240 0	ApiAP2	C1111S (160)	V740I (12)	E26K and V132G (1252)	T2125N (3999)	Q1489H (26)	H662N (97)	0.74
PF3D7_134370 0	К13	D109H (6417)	K189T (18110)	K189T (2890)	F446I (4)	C580Y (28)	K189T (2059)	0.74

Marker	Associated with resistance to	South America	West Africa	Central Africa	East Africa	South Asia	West south- east Asia	East south- east Asia	Oceania
<i>сг</i> 76Т	Chloroquine	37	1,910	262	697	73	1,075	1,245	195
<i>dhfr</i> 108N	Pyrimethami ne	37	1,943	342	733	76	1,079	1,256	200
dhps 437G	Sulfadoxine	37	1,901	331	702	62	1,078	1,201	197
<i>mdr1</i> 2+ copies	Mefloquine	33	2,050	309	678	63	950	1,055	185
kelch13 WHO list	Artemisinin	37	2,198	335	732	77	1,027	1,195	199
<i>plasmepsin</i> 2-3 2+ copies	Piperaquine	36	2,216	342	736	76	1,076	1,176	201
<i>dhfr</i> triple mutant	SP (treatment)	37	1,851	283	693	65	1,042	1,221	201
dhfr and dhps sextuple mutant	SP (IPTp)	37	2,228	338	701	68	906	867	201
<i>kelch13</i> and <i>mdr1</i>	AS-MQ	37	2,230	343	738	77	1,013	1,128	201
kelch13 and plasmepsin 2-3	DHA-PPQ	37	2,231	344	739	77	1,078	1,188	201

Supplementary Table 9. Number of samples used to determine proportions in Table 2.

Supplementary Table 10. Frequencies of mutations associated with mono- and multi-drug resistance pre- and post-2011. The first column shows the gene and marker used to detect resistance. The second column shows the drug the markers are associated with resistance to. The remaining columns show the proportion of samples within each region that were associated with resistance to each drug. The upper number shows samples collected between 2001-2011 and the lower number samples collected between 2012-2015. The number of samples (n) used to create each proportion varies by drug due to differential missingness among markers. This table includes all samples from the date range 2001-2015, though note that prior to 2007 we had only sequenced samples from Western SE Asia. A hyphen indicates that no samples from the region were available in the date range.

Marker	Associated with resistance to	South America	West Africa	Central Africa	East Africa	South Asia	West Southeast Asia	East Southeast Asia	Oceania
<i>ст</i>	Chloroquine	1.00 (n=37)	0.43 (n=621)	-	0.12 (n=356)	0.88 (n=26)	1.00 (n=717)	0.96 (n=893)	0.98 (n=63)
76Т		-	0.40 (n=1289)	0.66 (n=262)	0.17 (n=341)	0.96 (n=47)	0.99 (n=358)	0.99 (n=352)	0.99 (n=132)
<i>dhfr</i>	Pyrimethamine	0.97 (n=37)	0.80 (n=609)	-	0.99 (n=361)	1.00 (n=27)	1.00 (n=721)	0.99 (n=901)	0.98 (n=66)
108N		-	0.87 (n=1334)	1.00 (n=342)	0.98 (n=372)	1.00 (n=49)	1.00 (n=358)	1.00 (n=355)	1.00 (n=134)
dhps	Sulfadoxine	0.30 (n=37)	0.78 (n=587)	-	0.95 (n=352)	0.90 (n=21)	1.00 (n=720)	0.86 (n=861)	0.45 (n=66)
437G		-	0.74 (n=1314)	0.97 (n=331)	0.91 (n=350)	1.00 (n=41)	1.00 (n=358)	0.91 (n=340)	0.69 (n=131)
<i>mdr1</i>	Mefloquine	0.00 (n=33)	0.00 (n=611)	-	0.00 (n=304)	0.00 (n=16)	0.45 (n=635)	0.15 (n=760)	0.00 (n=58)
2+ copies		-	0.00 (n=1439)	0.00 (n=309)	0.00 (n=374)	0.00 (n=47)	0.42 (n=315)	0.05 (n=295)	0.02 (n=127)
kelch13	Artemisinin	0.00 (n=37)	0.00 (n=723)	-	0.00 (n=361)	0.00 (n=28)	0.12 (n=696)	0.45 (n=858)	0.00 (n=67)
WHO list		-	0.00 (n=1475)	0.00 (n=335)	0.00 (n=371)	0.00 (n=49)	0.60 (n=331)	0.50 (n=337)	0.00 (n=132)
<i>plasmepsin 2-3</i>	Piperaquine	0.00 (n=36)	0.00 (n=728)	-	0.00 (n=362)	0.00 (n=27)	0.00 (n=718)	0.11 (n=863)	0.00 (n=67)
2+ copies		-	0.00 (n=1488)	0.00 (n=342)	0.00 (n=374)	0.00 (n=49)	0.00 (n=358)	0.34 (n=313)	0.00 (n=134)
<i>dhfr</i>	SP (treatment)	0.00 (n=37)	0.65 (n=570)	-	0.93 (n=345)	0.33 (n=24)	0.91 (n=690)	0.91 (n=875)	0.00 (n=67)
triple mutant		-	0.79 (n=1281)	0.82 (n=283)	0.90 (n=348)	0.49 (n=41)	0.88 (n=352)	0.94 (n=346)	0.00 (n=134)
<i>dhfr</i> and <i>dhps</i>	SP (IPTp)	0.00 (n=37)	0.00 (n=735)	-	0.02 (n=354)	0.15 (n=26)	0.86 (n=576)	0.19 (n=640)	0.00 (n=67)
sextuple mutant		-	0.00 (n=1493)	0.01 (n=338)	0.18 (n=347)	0.21 (n=42)	0.77 (n=330)	0.21 (n=227)	0.00 (n=134)
kelch13 and mdr1	AS-MQ	0.00 (n=37) -	0.00 (n=736) 0.00 (n=1494)	- 0.00 (n=343)	0.00 (n=364) 0.00 (n=374)	0.00 (n=28) 0.00 (n=49)	0.04 (n=696) 0.33 (n=317)	0.11 (n=810) 0.03 (n=318)	0.00 (n=67) 0.00 (n=134)
kelch13 and plasmepsin	DHA-PPQ	0.00 (n=37)	0.00 (n=737)	-	0.00 (n=365)	0.00 (n=28)	0.00 (n=720)	0.09 (n=869)	0.00 (n=67)
2-3		-	0.00 (n=1494)	0.00 (n=344)	0.00 (n=374)	0.00 (n=49)	0.00 (n=358)	0.30 (n=319)	0.00 (n=134)

Supplementary Table 11. Frequency of *crt* **amino acid 72-76 haplotypes.** Here we have only included samples for which we have a homozygous call at amino acid 76, i.e. for which we could assign a chloroquine resistance phenotype. Mutant amino acids are shown in <u>underlined bold</u> font, wild-type in normal font. The first row shows the wild-type CVMNK haplotype. This is the only haplotype that does not have the 76T mutation and as such is the only haplotype considered sensitive to chloroquine. Rows 2-7 show other haplotypes that are seen as homozygotes. We have considered these resistant to chloroquine. Other samples are either heterozygous between different mutant haplotypes, or else the full 5-amino acid haplotype could not be resolved although the sample had the 76T mutation. These samples are included in the 'Other' row and are also considered resistant to chloroquine. The final row shows the sum across rows 2-8 and corresponds to the first row of Table 2. SAM=South America, WAF=West Africa, CAF=Central Africa, EAF=East Africa, SAS=South Asia, WSEA=West south-east Asia, ESEA=East south-east Asia, OCE=Oceania.

<i>crt</i> 72-76 haplotype	SAM (n=37)	WAF (n=191 0)	CAF (n=262)	EAF (n=697)	SAS (n=73)	WSEA (n=107 5)	ESEA (n=124 5)	OCE (n=195)
CVMNK	0.00	0.59	0.34	0.86	0.07	0.00	0.03	0.01
CVMN <u>T</u>	0.27	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>s</u> vmn <u>t</u>	0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.99
CVM <u>ET</u>	0.43	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CV <u>IET</u>	0.00	0.41	0.66	0.14	0.93	1.00	0.75	0.00
CV <u>IDT</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.16	0.00
<u>Y</u> V <u>IET</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00
All with <u>T</u>	1.00	0.41	0.66	0.14	0.93	1.00	0.97	0.99

Supplementary Table 12. Frequencies of *dhfr***(51, 59, 108, 164)** and *dhps***(437, 540, 581, 613) multi-locus haplotypes.** Mutant amino acids are shown in <u>underlined bold</u> font, wild-type in normal font. The first row shows the wild-type NCSI/AKAA haplotype. The following rows shows 61 distinct mutant homozygous haplotypes, ordered by the number of mutations. The proportions in these rows are proportions amongst all samples that had a homozygous haplotype. In addition to these haplotypes, many samples had heterozygous haplotypes, or the full haplotypes could not be resolved. These are shown in the Other row as a proportion of all samples. Note that many haplotypes are rare with only IRNI/AKAA, IRNI/GKAA, IRNI/GEAA, IRNL/GEGA and IRNL/GNGA having frequency > 5%. SAM=South America, WAF=West Africa, CAF=Central Africa, EAF=East Africa, SAS=South Asia, WSEA=West south-east Asia, ESEA=East south-east Asia, OCE=Oceania.

DHFR/DHPS	SAM	WAF	CAF	EAF	SAS	WSEA	ESEA	OCE	All (n=4782)
haplotype	(n=37)	(n=1565)	(n=260)	(n=635)	(n=50)	(n=963)	(n=1077)	(n=195)	
NCSI/AKAA	0.03	0.07	0.00	0.01	0.00	0.00	0.00	0.01	0.03
NCSI/ <u>G</u> KAA	0.00	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.03
NC <u>N</u> I/AKAA	0.59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NCSI/AKA <u>S</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NC <u>T</u> I/AKAA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N <u>RN</u> I/AKAA	0.00	0.01	0.00	0.00	0.02	0.00	0.03	0.38	0.03
<u>I</u> C <u>N</u> I/AKAA	0.08	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
NCSI/ <u>G</u> KA <u>S</u>	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NC <u>N</u> I/ <u>G</u> KAA	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NCSI/ <u>GE</u> AA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>IRN</u> I/AKAA	0.00	0.17	0.04	0.03	0.00	0.00	0.09	0.00	0.08
N <u>RN</u> I/ <u>G</u> KAA	0.00	0.04	0.00	0.00	0.00	0.00	0.03	0.05	0.02
<u>I</u> C <u>N</u> I/ <u>G</u> KAA	0.03	0.01	0.15	0.00	0.00	0.00	0.00	0.00	0.01
NC <u>N</u> I/ <u>G</u> K <u>G</u> A	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>I</u> C <u>N</u> I/AKA <u>S</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NC <u>N</u> I/ <u>GE</u> AA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
NC <u>N</u> I/ <u>G</u> KA <u>S</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N <u>RNL</u> /AKAA	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00
<u>IRN</u> I/ <u>G</u> KAA	0.00	0.53	0.73	0.02	0.04	0.00	0.16	0.00	0.25
N <u>RN</u> I/ <u>GE</u> AA	0.00	0.00	0.00	0.02	0.30	0.02	0.01	0.55	0.03
<u>i</u> c <u>n</u> i/ <u>ge</u> aa	0.00	0.00	0.02	0.03	0.02	0.00	0.00	0.00	0.01
<u>IRN</u> I/AKA <u>S</u>	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N <u>RN</u> I/ <u>G</u> KA <u>S</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>IRNL</u> /AKAA	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
N <u>RN</u> I/ <u>G</u> K <u>G</u> A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N <u>RNL/G</u> KAA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>i</u> c <u>n</u> i/ <u>g</u> ka <u>s</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N <u>RN</u> I/ <u>G</u> KA <u>T</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>IRN</u> I/ <u>GE</u> AA	0.00	0.01	0.03	0.75	0.16	0.04	0.17	0.00	0.15
<u>IRN</u> I/ <u>G</u> KA <u>S</u>	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.01
N <u>RNL/GE</u> AA	0.00	0.00	0.00	0.00	0.06	0.03	0.00	0.00	0.01

N rn i/ <u>Geg</u> a	0.00	0.00	0.00	0.00	0.04	0.02	0.00	0.00	0.00
<u>irnl/g</u> kaa	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
<u>IRN</u> I/ <u>G</u> K <u>G</u> A	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00
<u>I</u> C <u>N</u> I/ <u>GEG</u> A	0.08	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
N rn i/ gng a	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N <u>RNL</u> / <u>GN</u> AA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>i</u> c <u>nl/g</u> k <u>g</u> a	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N <u>RN</u> I/ <u>G</u> K <u>GS</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N <u>RNL/G</u> K <u>G</u> A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>IRN</u> I/ <u>G</u> KA <u>T</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>i</u> c <u>nl/ge</u> aa	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>IRN</u> I/AK <u>GS</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>IRN</u> I/ <u>GN</u> AA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>irn</u> i/ <u>gy</u> aa	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N <u>RNL</u> / <u>GI</u> AA	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>IRNL/GE</u> AA	0.00	0.00	0.00	0.00	0.18	0.13	0.09	0.00	0.05
<u>IRN</u> I/ <u>GEG</u> A	0.00	0.00	0.02	0.11	0.02	0.06	0.02	0.00	0.03
IRNI/GNGA	0.00	0.00	0.00	0.00	0.00	0.01	0.07	0.00	0.02
<u>IRN</u> I/ <u>G</u> K <u>GS</u>	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.01
N <u>RNL/GEG</u> A	0.00	0.00	0.00	0.00	0.04	0.02	0.00	0.00	0.00
<u>IRNL/G</u> K <u>G</u> A	0.00	0.00	0.00	0.00	0.04	0.01	0.01	0.00	0.00
<u>IRN</u> I/ <u>G</u> EA <u>S</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
<u>irnl/gn</u> aa	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N <u>RNL/G</u> EA <u>T</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>IRN</u> I/ <u>GE</u> A <u>T</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>i</u> c <u>nl/geg</u> a	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>irnl</u> /gyaa	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>IRNL/GEG</u> A	0.00	0.00	0.00	0.00	0.06	0.58	0.01	0.00	0.12
<u>IRNL/GNG</u> A	0.00	0.00	0.00	0.00	0.00	0.05	0.22	0.00	0.06
<u>IRNL/GE</u> A <u>S</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.01
<u>IRNL/GE</u> A <u>T</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other	0.00	0.30	0.24	0.14	0.35	0.11	0.15	0.03	0.20
(n/total)	(0/37)	(666/2231)	(84/344)	(104/739)	(27/77)	(116/1079)	(185/1262)	(6/201)	(1188/5970)

Supplementary Table 13. Frequency of HRP2 and HRP3 deletions by country. n=number of samples for which an unambiguous HRP deletion genotype (deleted or non-deleted) could be assigned.

Country	HRP2	HRP3	HRP2 and HRP3
Country	deletions	deletions	deletions
Bangladesh (n=77)	0%	0%	0%
Benin (n=36)	0%	0%	0%
Burkina Faso (n=56)	0%	0%	0%
Cambodia (n=896)	0%	3%	0%
Cameroon (n=235)	0%	0%	0%
Colombia (n=16)	0%	0%	0%
Congo DR (n=344)	0%	0%	0%
Ethiopia (n=21)	0%	43%	0%
Gambia (n=219)	0%	0%	0%
Ghana (n=851)	0%	0%	0%
Guinea (n=149)	0%	0%	0%
Indonesia (n=80)	4%	25%	0%
Ivory Coast (n=70)	0%	0%	0%
Kenya (n=110)	0%	1%	0%
Laos (n=120)	0%	1%	0%
Madagascar (n=24)	0%	0%	0%
Malawi (n=254)	0%	0%	0%
Mali (n=426)	0%	0%	0%
Mauritania (n=76)	0%	0%	0%
Mozambique (n=1)	0%	0%	0%
Myanmar (n=211)	0%	0%	0%
Nigeria (n=29)	0%	0%	0%
Papua New Guinea (n=121)	0%	0%	0%
Peru (n=21)	38%	67%	29%
Senegal (n=84)	0%	7%	0%
Tanzania (n=316)	0%	0%	0%
Thailand (n=888)	0%	0%	0%
Uganda (n=13)	0%	0%	0%
Viet Nam (n=226)	0%	4%	0%

Supplementary Table 14. Alleles at six mitochondrial positions used for the species identification. The loci are all located within the *cox3* gene. Nucleotide pairs in square brackets indicate that either allele at that position is a match.

Locu		Allele by Species									
S	Positions	P. falciparum	P. vivax	P. knowlesi	P. malariae	P. ovale wallikeri	P. ovale curtisi				
1	668-671	ATGA	TTTA	TTTT	TTGT	ATTT	ATTT				
	678-683	TTGT[CT]T	TATTAT	TATTAT	ATTAAT	ACATAA	ΑΤΑΤΑΤ				
	728-733	GTTCAT	ТАТ	TCA	GTTCAA	GTTACA					
2	740-740	Т	٦	Г	Т	A					
	749-751	TAA	AA	λA	TAG	ТАА					
	770-773	GA[TC]T	TACA		TACT	TATT					
	861-869	TCGGTAGAA	TCACTATTA	TCACAATTA	TCACTATTT	CCCTTATTT	TCGTTATTA				
3	878-881	TATT	CATT	AACT	ΑΑΤΑ	AACT	AACT				
	884-887	TATT	AACT	TATT	TATC	AACC	AACC				
4	971-982	AGTATATACAG T	ACCAGATATAGC	ACCTGATATAGC	TCCTGAAACTCC	ACCAGATATAGC					
5	1025- 1028 TAGA AA		AA	GT	ТААТ	TAAT	TAAT				
	1046- 1049	TAAT	AA	GT	AAGT	AAGA	AAGG				
	1062- 1066	CAAAT	AATA	\[CT]	ΑΑΤΑΤ	AATAT					
	1073- 1073	A	ļ	A	т	т					
6	1076- 1076	G	ļ	A	Т	Т					
	1082- 1082	A	1	Г	А	Т					
	1091- 1091	Т	1	Г	А	Т					
	1102- 1108	ΤΑΑΑΤΑϹ	TTAG	TTAGAAA		T[GA]AGAAA					

Supplementary figures

Supplementary Figure 1. Histogram of local differentiation score for all genes. Red line shows the 99th percentile. A selection of known drug resistance genes are marked, all of which have high local differentiation score.

