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1 Calculating sequence covariance

Let us assume we are given a multiple sequence alignment of homologous proteins as an
N × n matrix Aki. In order to calculate correlations in the alignment, we need a way
of transforming it to numeric data. There are three main ways in which this was done
in the literature [1–5], which we describe below; generally all these methods yield highly
similar results. In the present work, we used the projection method (item 3 below), which
is the default in the latest SCA release from the Ranganathan lab. Note that SCA requires
positional weighting to be done on top of the covariance analysis. This is described in the
next section.
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1. The binary approximation.

We start by describing the simplest approach, which constructs a “binary approxima-
tion” of the alignment [1,2]. In the binary approximation, each amino acid is replaced
by 1 if it is equal to the consensus amino acid at its position, and 0 otherwise,

Xki = δ(Aki, ci) , (S1)

where the consensus amino acid ci is the most frequent amino acid found in column i
of the alignment.1 Here Aki is the amino acid found at position i in sequence k, and
the Kronecker symbol δ(a, b) is 1 if and only if a = b.

The covariance matrix is then defined in the standard way,

Cbin
ij = fij − fifj , (S2)

where

fij =
1

N

∑
k

XkiXkj , fi =
1

N

∑
k

Xki , (S3)

with N being the number of sequences in the alignment. Note that fi is simply the
frequency of the consensus amino acid at position i, which is often used as a measure
of the conservation level at that position. Also, fij is the frequency at which the
consensus amino acids occur simultaneously in the two columns i and j.

2. The reduction method.

The most generic statistical analysis that can be performed with categorical data is
using contingency tables. In this context, these are tables of the frequencies at which
various combinations of amino acids occur simultaneously in a sequence—we can, for
example, define the frequency fi(a) with which amino acid a is found at position i,
and the frequency fij(a, b) with which amino acids a and b co-occur at positions i
and j, respectively. It is then convenient to define a “binary representation” of the
alignment [5], xki(a), where xki(a) is equal to 1 if Aki is a, and 0 otherwise; in short,

xki(a) = δ(Aki, a) . (S4)

Note that here there are 21 columns for each column in the original alignment. It is
important to keep in mind that—despite the potentially confusing nomenclature—the
binary representation xki(a) is very different from the binary approximation Xki.
The former is an exact representation of the alignment data, while the latter is an
approximation that keeps only part of the information in Aki.

1This is typically restricted to non-gaps, though in practice this usually does not affect the results.
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The single-site and pairwise frequencies, fi(a) and fij(a, b), are thus averages involving
the binary representation

fi(a) =
1

N

∑
k

xki(a) ,

fij(a, b) =
1

N

∑
k

xki(a)xkj(b) .

(S5)

Now we can define the covariance

Cij(a, b) = fij(a, b)− fi(a)fj(b) . (S6)

For each pair of sites, we obtain a covariance value between every pair of amino acids,
a and b. There are 21 choices of amino acid (including the gap), so for each pair of
sites (i, j), Cij is a 21× 21 matrix. Note, however, that frequencies are normalized—∑

a fi(a) = 1 and
∑

b fij(a, b) = fi(a)—which means that not all numbers in the
covariance matrix are independent. In fact, if we are given the values of Cij(a, b) for
all amino acids except one (commonly, the gap), it is straightforward to infer the
missing values. For this reason, unless otherwise stated, we will always assume a and
b to exclude the gap, and will treat the matrix Cij as having size 20× 20 instead of
21× 21.

In the binary approximation, for each pair of sites i and j, we were able to calculate
one number Cbin

ij showing the amount of covariance between the sites. In contrast, the
full covariance matrix Cij(a, b) contains an entire matrix of numbers for each pair of
sites. It is sometimes useful to collapse this matrix to a single number that measures
the overall covariance between two sites, as was the case in the binary approximation.
This is usually done using a heuristic approach, for example by using the Frobenius
norm [6]

Cred
ij =

[∑
a,b

C2
ij(a, b)

]1/2
, (S7)

or the spectral norm [3]

Cred
ij = largest singular value of Cij(a, b) . (S8)

The binary approximation described above can actually also be seen as a reduction
method, in which

Cred
ij = Cij(ci, cj) , (S9)

with ci being the consensus amino acid in column i, as before.
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Another approach for carrying out the reduction starts from a ratio of frequencies,

Dij(a, b) = log
fij(a, b)

fi(a)fj(b)
= log

[
1 +

Cij(a, b)

fi(a)fj(b)

]
. (S10)

The mutual information is then a natural measure of the independence of two random
variables that can be constructed from D [7, 8],

MIij =
∑
a,b

incl. gaps

fij(a, b)Dij(a, b) =
∑
a,b

incl. gaps

fij(a, b) log
fij(a, b)

fi(a)fj(b)
.

(S11)

Note that here we include gaps in the summation because the definition of the mutual
information given in eqs. (S10) and (S11) assumes that fi(a) and fij(a, b) are proper
frequencies; in particular, they should sum up to 1, and this is only true if the values
for the gaps are included in the sum.

3. The projection method.

Instead of calculating the full covariance matrix and then reducing it, the projection
method starts by projecting the binary representation onto an N × n numeric matrix
Yki,

Yki :=
∑
a

xki(a)vi(a) , (S12)

where vi are unit vectors. We can then use the definitions (S2) and (S3) with Y
instead of X to obtain the covariance matrix,

Cproj
ij =

1

N

∑
k

YkiYkj −
1

N2

∑
k,l

YkiYlj . (S13)

The projection vectors that we use in this paper are given by [4]:

vi(a) =
fi(a)√∑
b fi(b)

2
. (S14)

Note that, as we did above for the covariance matrix, here too we do not include the
gap, i.e., we assume that vi(gap) = 0, and we have b 6= gap in the summation.

It is interesting to note that a different choice for the vi can be used to recover the
binary approximation,

vbinaryi (a) = δ
(
a, arg max

b 6=gap
fi(b)

)
≡ δ(a, ci) . (S15)

For both the binary approximation and the projection method, the approximation is
most accurate for highly conserved sites.
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2 Statistical coupling analysis

There are two main features that distinguish SCA from a standard covariance analysis: the
introduction of positional weights and the positivity of the matrix elements. Starting again
with the binary approximation, for simplicity, the covariance matrix C defined in (S2) is
transformed to [1]

C̃ij = |φiφjCij | , (S16)

where the weights φi are specific functions of the single-site statistics, chosen based on the
idea that entries of the covariance matrix corresponding to poorly conserved sites are less
likely to be informative than those corresponding to highly conserved sites, and thus should
be given less weight.

The absolute value that appears in the formula was justified by the requirement of finding
blocks of coevolving residues regardless of the sign of the correlations [1]. It also avoids
a certain instability to small perturbations that appears in cases in which the consensus
amino acid has a frequency that is very similar to that of the next most common amino acid.
In these cases, a small perturbation in the alignment can flip the order of the top amino
acids, thus flipping the sign of some correlations in the binary approximation.2 Taking the
absolute value may, however, introduce artifacts, as described in the main text.

The expression commonly used for the positional weights is [1, 2, 4]

φi = log

[
fi

1− fi
1− q(ci)
q(ci)

]
, (S17)

where fi is the conservation at site i, i.e. the frequency in the alignment of the consensus
amino acid, while q(ci) are background frequencies for the consensus amino acids ci. Note
that we are assuming that the background frequencies depend only on the identity of
the consensus amino acid, and not on the position i in the protein. These background
expectations can be estimated by averaging over a large set of proteins. The functional
form (S17) for the positional weights was chosen to match the original 1999 formulation of
SCA [1,9] and to fulfill the role of down-weighting poorly conserved sites, but is otherwise
arbitrary.

Instead of performing the positional weighting at the level of the covariance matrix, it
could have been performed on the binary alignment itself. The covariance matrix of the
transformed binary alignment

X̃ki = φiXki (S18)

directly yields C̃ij , after taking the absolute value of each element. This can be generalized
to apply to the binary representation matrix; we define

x̃ki(a) = φi(a)xki(a) , (S19)

2We thank O. Rivoire for this observation.
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in which we replace (S17) by [5]

φi(a) = log

[
fi(a)

1− fi(a)

1− q(a)

q(a)

]
. (S20)

With this positionally-weighted binary representation we can use either the reduction
method [5] or the projection method [4] described in the previous section. When using the
projection method, the absolute value of each element is taken when calculating the SCA
matrix, as is done with the binary approximation. An interesting empirical observation is
that the mutual information defined in eq. (S11) is well-approximated by a weighted SCA
matrix using the reduction method, in which the positional weights are chosen equal to the
logarithm of the frequencies.

For the results in the main text, after the SCA matrix was calculated, the sector positions
were identified by placing a threshold on the components of its top eigenvector. Note that,
due to the positivity of the elements of the SCA matrix, the Perron-Frobenius theorem
guarantees that all these components are positive.

3 Alignments

As described in the Methods section of the paper, the software package HHblits [10] was
used to generate the alignments used in the the main text. We also analyzed a number of
alignments from other sources to make sure the results weren’t sensitive to this choice. For
the cases of PDZ [4], DHFR [3], and the potassium channels [11], we ran the analysis on
the alignments that were used in the papers that first applied the SCA method to those
proteins. For PDZ and DHFR we also ran the analysis on Pfam alignments (PF00595 and
PF00186, respectively). This was not done for the potassium channels and lacI because no
suitable alignments were available in Pfam. See Table 1 for a summary of the results.

To improve the quality of the alignments, it has been suggested [5] to filter them by
removing repeated sequences, sequences with too many gaps, and positions with too many
gaps. From our tests, however, these procedures do not make a big difference to the results
of this paper. For this reason, the only filtering we perform is to remove the insert states
from HHblits alignments, which in our case amounts to removing columns containing 40%
or more gaps.

In addition, for the PDZ alignment from McLaughlin Jr. et al. [4], we removed the
columns containing more than 20% gaps, because this is how that alignment was processed
in the scripts provided by the authors of that article [4]. There is a minor glitch in the
procedure of mapping alignment columns to PDB coordinates in McLaughlin Jr. et al. that
leads to the misidentification of one of the columns (corresponding to PDB position 334).
For consistency with the older work, we worked with this minor error in the alignment, but
we checked that the results are not significantly affected by it.
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Table 1: Results of the analysis performed in this paper when run on different alignments.

Alignment Contingency table for
sectora

Contingency table for
conservation

Comparison
(χ2 p value)

PDZ [4]

S NS

F 15 5
NF 8 53

C NC

F 15 5
NF 8 53

pχ2 = 1.00

PDZ (Pfam)

S NS

F 13 7
NF 7 52

C NC

F 9 11
NF 11 48

pχ2 = 0.45

DHFRb [3]

S NS

F 14 0
NF 33 17

C NC

F 12 2
NF 27 23

pχ2 = 0.30

DHFRc (Pfam)

S NS

F 14 0
NF 35 15

C NC

F 12 2
NF 29 21

pχ2 = 0.29

potassium
channelsd [11]

S NS

F 18 19
NF 17 67

C NC

F 18 19
NF 20 64

pχ2 = 0.96

aC, S, and F stand for conserved, sector, and functional, respectively.
bFor DHFR we are counting the residues that are “touched” by either sector or conserved residues.

Although the number of conserved residues we are considering is equal to the number of residues in the
sector, the number of surface residues that are “touched” is different.

cSee footnote b.
dThe number of residues in the SCA sector is the same as the number of conserved residues we considered.

The sum of the entries in the S column does not match that in the C column because some of the sector
residues are located at sites where we have no experimental data.
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4 Details about the DHFR analysis

The way in which the DHFR alignment was analyzed by Reynolds et al. [3] has a number
of peculiarities compared to the other datasets we presented, which we describe below. We
note, however, that their results are not significantly different from those obtained with our
simplified protocol.

The SCA method used by Reynolds et al. was the spectral-norm reduction method
described above (see section 1, item 2) using a thresholded form of the positional weights [3],

φi(a) =

log

[
fi(a)

1− fi(a)

1− qa
qa

]
for fi(a) > qa,

0 else.
(S21)

Furthermore, the SCA matrix was “cleaned” by subtracting the average SCA matrix
calculated for 100 randomized alignments. Each of the randomized alignments was obtained
by independently permuting the elements of the alignment columns, which has the effect of
destroying correlations without affecting the single-site amino acid frequencies.3

The sector was defined by the residues for which the component of at least one of the top
five eigenvectors goes above a given threshold [3]. To select the threshold, first a Student’s
t-distribution was fit to the components of each of the eigenvectors, and then the value for
which the t-distribution PDF drops below a certain threshold was used as a cutoff. The
PDF threshold is given by pi for the ith eigenvector, where pi is4

pi =
0.005

2 IQR(vi)n−1/3
, (S22)

where IQR(v) is the interquartile range of v (the range over which the middle half of the
components of v spread), and vi is the ith eigenvector. Despite the complicated selection
procedure, a very similar sector can be obtained by using a constant PDF threshold for
each of the top five eigenvectors, or even just by using the largest components of only the
top eigenvector.

5 Alanine scans

Instead of using all the experimental data for PDZ and for lacI, we can restrict our attention
to alanine mutations, to get an idea for the amount of information contained in an alanine

3Since the number of random samples is finite, the results depend slightly on the state of the random
number generator. The results from the original paper by Reynolds et al. can be obtained by using the
default random number generator in Matlab with the default seed.

4The dependence of the threshold on i is an artifact of the fact that Reynolds et al. applied a constant
threshold to histogram values instead of PDF values, and the bin size for the histograms was determined
using the Freedman-Diaconis rule [12], and thus varied between eigenvectors. This can be seen from the
Matlab scripts provided by the authors.
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Table 2: The results from the paper when restricting to alanine mutations.

Alignment Contingency table for
sector

Contingency table for
conservation

Comparison
(χ2 p value)

PDZ

S NS

F 10 10
NF 11 50

C NC

F 9 11
NF 12 49

pχ2 = 0.98

lacI

S NS

F 16 26
NF 65 221

C NC

F 20 22
NF 61 225

pχ2 = 0.82

scan. As mentioned in the paper, the qualitative results do not change much, though, as
expected, the quality of the match between the predictions from SCA or conservation and
the experimental data is reduced (see Table 2).

6 Diagonal of SCA matrix instead of conservation

In the paper we point out that the top eigenvector of the SCA matrix correlates primarily
with the diagonal elements C̃ii of this matrix (or rather, with their square root), while the
correlation with conservation is weaker. This is because, although both conservation and
the diagonal elements of the SCA matrix can be calculated from the single-site frequencies
fi(a), the relation between them is non-trivial and non-monotonic. We therefore wondered
how the functional significance of the sector residues compared to that of residues that have
high values of C̃ii. The results can be found in Table 3.

7 Multiple sectors

There are two key questions related to multiple SCA sectors: one is how to determine
how many eigenvectors to analyze, and the second one is which linear combinations of
eigenvectors to use for finding sectors. We briefly discussed the second question in the main
text, and pointed out that while there are several approaches that have been used in the
literature to find the appropriate linear combinations, these approaches have little or no
theoretical motivation and have been tested only in a very limited fashion.

In the main text, we pointed out that we can instead use linear regression to find the
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Table 3: The results of the paper when replacing conservation by the diagonal of the SCA
matrix.

Alignment Contingency table
using C̃ii

Comparison to sector
(χ2 test p value)

PDZ

C NC

F 12 8
NF 9 52

pχ2 = 0.87

DHFR

C NC

F 13 1
NF 34 16

pχ2 = 0.61

potassium
channels

C NC

F 16 21
NF 16 74

pχ2 = 0.95

lacI

C NC

F 43 27
NF 38 220

pχ2 = 0.55
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Figure S1: SCA top eigenvectors fit to trypsin data. We attempt to fit A. binding
affinity, or B. denaturation temperature for the single mutants of rat trypsin described in
Halabi et al. [1] against the components of the top four eigenvectors of the SCA matrix
corresponding to the mutated residues. The best linear regressions are shown on the x-axis.
The dashed line has slope 1 and intercept 0.

linear combinations that best approximate the measured quantities.5 Here we show the
results of such an analysis for the case of serine protease (Figure S1), PDZ (Figure S2), and
the potassium channels (Figure S3). While for serine protease the regression works well for
both measured quantities, for PDZ we can only fit the mutational effect on binding to the
CRIPT ligand, and for potassium channels the fit is not very good to either the activation
potential V50 or the equivalent charge z.

The number of eigenvectors to consider for sector determination is itself a difficult
problem. It was addressed by Halabi et al. using an approach inspired from the analysis of
financial markets [1]. Essentially, the eigenvalue spectrum of the SCA matrices obtained for
randomized alignments was obtained, and a threshold was established at the upper edge
of this distribution. Any eigenvalues of the SCA matrix for the real alignment that fell
below this edge were considered noise and were ignored. This approach was motivated by
the Marčenko-Pastur distribution, that describes the eigenvalue spectrum for a covariance
matrix C = XTX associated to a random i.i.d. data matrix X. However, the assumption of
identically distributed elements does not hold for alignment data, because different columns
in the alignment have different amino acid distributions, even when there are no correlations
between columns. For this reason, the spectrum of the SCA matrix does not resemble the

5This of course assumes that the relation is linear, which is far from obvious, but can be thought of as a
first-order approximation.
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Figure S2: SCA top eigenvectors fit to PDZ data. We attempt to fit the measured
mutational effect for binding to A. the CRIPT ligand, or B. the T−2F ligand as measured
for the single mutants of PSD95pdz3 described in McLaughlin Jr. et al. [4] against the
components of the top three eigenvectors of the SCA matrix corresponding to the mutated
residues. The best linear regressions are shown on the x-axis. The dashed line has slope 1
and intercept 0.
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Figure S3: SCA top eigenvectors fit to potassium channels data. We attempt to fit
A. the activation voltage V50, or B. the equivalent charge z measured for single mutants of
the drk1 voltage-gated K+ channel in Li-Smerin et al. [13] against the components of the
top three eigenvectors of the SCA matrix corresponding to the mutated residues. The best
linear regressions are shown on the x-axis. The dashed line has slope 1 and intercept 0.

Marčenko-Pastur distribution, and intuitions based on this distribution need not hold in the
case of SCA. In particular, eigenvalues that are below the edge obtained from randomized
samples could contain perfectly valid information about the protein.

Another difficulty with SCA is that the absolute value of all the elements in the covariance
matrix is taken, which makes the top eigenvector become an outlier. As described in the
main text, although this top eigenmode is much over the “noise” edge described above, the
information it contains is essentially independent of correlations, and is thus indistinguishable
from noise.6

8 Top eigenmode of SCA matrix—some details

Here we fill in some of the details for the model presented in the paper that can explain
the correlation between the components of the top eigenvector of the SCA matrix and its
diagonal entries. As in the paper, suppose we have a covariance matrix with off-diagonal

6This is because the randomized alignments used with SCA, which are used to calculate the noise
distribution, are obtained by shuffling elements in the alignment columns. This keeps the single-site
frequencies intact while destroying correlations, implying that the single-site frequencies are a feature of the
noise model.
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entries that are biased towards positive values. The simple model we wrote for this is

M =


d21(1 + x) d1d2x · · · d1dnx
d2d1x d22(1 + x) · · · d2dnx

· · · · · · . . . · · ·
dnd1x dnd2x · · · d2n(1 + x)

 ≡


∆1 d1d2x · · · d1dnx
d2d1x ∆2 · · · d2dnx

· · · · · · . . . · · ·
dnd1x dnd2x · · · ∆n

 . (S23)

For simplicity, let us assume that there are no degeneracies between the di, i.e., that di 6= dj
for i 6= j, and that M is not singular, i.e., di 6= 0 for all i. Let v = (v1, . . . , vn) be an
eigenvector of this matrix with eigenvalue λ. Then we have

d2i vi + dix
∑
j

djvj
!

= λvi , (S24)

which yields7

vi =
(∑

j

djvj

) dix

λ− d2i
. (S25)

This implies that the components of the eigenvectors are related to the diagonal elements
∆i = d2i (1 + x) by

√
∆i

vi
∝ λ− ∆i

1 + x
. (S26)

If we multiply eq. (S25) by di and sum over i, we can divide through by
∑

j djvj , and get

1 = x
∑
i

d2i
λ− d2i

, (S27)

which can be used to estimate λ. In particular, this equation allows us to show that between
each consecutive pair of values di1 and di2 , there is exactly one eigenvalue.

By the Perron-Frobenius theorem, the top eigenvector can be chosen to have all com-
ponents positive, and thus it should have λ larger than all d2i . Assuming λ � d2i , which
empirically seems to be the case for SCA matrices, we get an estimate for the top eigenvalue

λtop ≈ x
∑
i

d2i =
x

1 + x

∑
i

∆i ≡
x

1 + x
TrM . (S28)

7We may worry about division by zero. Note that, from the eigenvalue equation (S24), λ = d2i for some
i if and only if

∑
j djvj = 0 (since we assumed all di 6= 0). However, feeding this back into eq. (S24), we

see that this is only possible if all the vj for which d2j 6= λ are zero. Since we assumed that none of the dj
vanish,

∑
j djvj = 0 can only hold if at least two components of v are non-vanishing. This, however, would

imply that there is a degeneracy, which we explicitly disallowed. We thus conclude that λ 6= d2i for any i.
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It should be checked that this is consistent with the condition that λ is much larger than all
d2i ; this seems to be true for empirical SCA matrices. The Perron-Frobenius theorem also
guarantees that all other eigenvectors of M will have both positive and negative components,
and therefore, according to eq. (S25), the corresponding eigenvalues will have to be smaller
than the largest d2i . This implies that for the SCA matrices, the top eigenvector will be an
outlier, i.e., the SCA matrices are approximately rank-1, which can indeed be observed for
real alignments.

Using λtop � d2i in eq. (S25), we get

vi,top ≈
(∑

j

djvj,top

) x

λtop
×
√

∆i , (S29)

which is the observed linear relation between the top eigenvector and the square root of
the diagonal elements of the SCA matrix. This argument shows that the top eigenvector is
strongly correlated with single-site statistics and thus largely independent of correlations
between positions. It is important to emphasize that this does not mean that there is no
information contained in this mode, but only that most of this information can be obtained
without any analysis of correlations.

As mentioned in the paper, we emphasize again that in this derivation the origin of the
off-diagonal entries is not specified. They could be an artifact of sampling noise, they could
come from actual non-specific correlations between positions, or they could be due to a
non-trivial phylogenetic structure of the alignment, as suggested by Halabi et al. [1].
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