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Supplementary Information S1: Reversible Jump Markov chain

Monte Carlo Procedure

Within Model Moves

This section describes the details for making parameter updates for within model moves. These steps

are necessary even if parameter value inference is not the main objective. This must be done in order to

maintain the correct properties of the Markov transitions for the MCMC. Updating the parameters in

step 1 proceeds as follows:

1. update θ1, θ2, α1, and α2 separately with the following generic procedure:

(a) Let ϑ be the current value of one of the spatial parameters.

(b) Draw a proposal ϑ∗ from N(ϑ∗|ϑ, γ), where γ is a tuning parameter set by the researcher to

promote good mixing (usually done by trial and error).

(c) Calculate

R(ϑ∗;ϑ) =
N(z|Xkβk,Σ

∗)p(ϑ∗)

N(z|Xkβk,Σ)p(ϑ)

(d) Draw U from a Uniform(0,1) distribution. If U < R(ϑ∗;ϑ), set ϑ∗ as the new value, else retain

the old value as the current value.

2. Update the anisotropy parameter ψ in the same general way as the other spatial parameters.

(a) Draw ψ∗ from a uniform distribution with lower bound κ(ψ) = max{−1, ψ − η} and upper

bound λ(ψ) = min{1, ψ + η}, where η is a tuning parameter.

(b) Draw U ∼ U(0, 1) and accept ψ∗ if U is less than

R(ψ∗;ψ) =
N(z|Xkβk,Σ

∗)p(ψ∗)

U(ψ∗|κ(ψ), λ(ψ))
× U(ψ|κ(ψ∗), λ(ψ∗))

N(z|Xβk,Σ)p(ψ)

3. Draw new βk value from full conditional distribution

p(β∗| . . . ) = N(β∗k|µ̂k, V̂k)

where V̂k = V−1k + X′kΣ−1Xk and µ̂k = V̂k

(
V−1k µk + X′kΣ−1z

)
. No Metropolis-Hastings ac-

ceptance evaluations are necessary since the full conditional distribution is a common form and

updates can be easily drawn.

4. Update z with a Langevin-Hastings proposal [1].
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(a) Let z be the current value of the latent spatial process

(b) Draw candidate update z∗ from a normal distribution with mean ζ(z) = z+h
2∇ log {p(y|z)N(z|Xβk,Σ)}

and covariance matrix hIn, where ∇ represents the derivative with respect to z. For the fish

abundance example

ζ(z) = y − exp{z} −Σ−1(z−Xkβk);

heuristically a very sensible choice for drift, the term contrasts likelihood fit versus spatial

spatial smoothing.

(c) As with the spatial parameters, draw a standard uniform variable U . If U is less than

R(z∗; z) =
p(y|z∗)N(z∗|Xkβk,Σ) exp

(
−‖z− ζ(z∗)‖2 /(2h)

)
p(y|z)N(z|Xkβk,Σ) exp

(
−‖z∗ − ζ(z)‖2 /(2h)

) ,

accept the new proposal, else retain the current value.

General Reversible-Jump and PARJ MCMC

The general RJMCMC method proceeds as follows for a current state q = (ϑk,mk):

1. Draw proposal move of type i to mk∗ from distribution Ji(q)

2. Draw parameter proposal ϑk∗ from Gi(q,mk∗)

3. Accept new state q∗ with probability

min

{
1,
p(q∗|Data)Ji(q

∗)Gi(q
∗,mk)

p(q|Data)Ji(q)Gi(q,mk∗)

}
. (1)

Typically, an RJMCMC algorithm involves several move types in order to obtain an ergodic chain. Move

types can be systematically or randomly selected. Both Metropolis-Hastings and Gibbs samplers are

special cases of RJMCMC [2]. The PARJ acceptance ratio for spatial regression models results from

substitution of Gi(x) = p(βk∗ |mk∗ , ξ, z) in (1) and the identity

p(mk∗ |ξ, z) =
p(βk,mk∗ |ξ, z)

p(βk∗ |mk∗ , ξ, z)
.

To obtain the acceptance probability ratio note that if p(βk|ξ) = N(µk,Vk), then, since z = Xkβk+δ,

one obtains p(z|ξ,mk) = N(Xkµk, XkVkX′k + Σ), where Σ = Cov(δ). Finally, Bayes theorem is used
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to obtain

p(mk|ξ, z) =
p(z|ξ,mk)p(mk|ξ)

p(z|ξ)

∝ p(z|ξ,mk)p(mk)

∝ exp

{
−1

2
(z−Xkµk)′(XkVkX′k + Σ)−1(z−Xkµk)

}
p(mk).

(2)

The ratio of the previous calculation evaluated at the proposed model mk∗ to the current model mk forms

the acceptance probability for model jump. Only the model proposal is needed to calculate the ratio.
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