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Figure S1.  eATP induces oxidative stress in dystrophic myoblasts. (A) Images of wild-type (Wt) and dystrophic (Dmdmdx) myoblasts treated with 3 mM ATP for 30 min in the presence of MitoTracker Green (200 nM) and RedoxSensor Red CC-1 (1 M); The yellow signal resulting from colocalization of these 2 markers indicates oxidative stress in mitochondria. (B) Graphical representation of changes in fluorescence values: Dmdmdx myoblasts exposed to eATP displayed a 2.2-fold increase in CC-1 fluorescence compared to untreated (control) cells. This change was significantly greater than the 1.3-fold increase observed in Wt myoblasts. Mean +/- SE, n=3, P<0.05* and 0.0001***. (C) The Dmdmdx myoblasts treated with 3 mM eATP in the presence of MitoTracker Red (200 nM, membrane potential-dependent) and MitoTracker Green (200 nM, membrane potential-independent) markers revealed an immediate reduction in mitochondrial membrane potential (decrease in red signal), with accompanying cell shrinkage, and alterations in mitochondrial shape.

Figure S2. The mechanism of autophagic cell death following P2RX7 LP formation in dystrophic myoblasts is distinct from autosis. (A) Representative western blots of triplicate samples showing LC3-II responses in dystrophic myoblasts treated with 1 mM BzATP for 30 min with or without a 30-min preincubation with cardiac glycosides digoxin or digitoxigenin (10 M). Densitometric analysis of western blot data showed that cardiac glycosides had no significant effect on the level of autophagic flux following P2RX7 activation in dystrophic myoblasts. (B) Cardiac glycosides had no significant effect on P2RX7-dependent LP formation in dystrophic muscle cells (left panel) or cell death (LDH release, right panel). Mean +/- SE, n=5, P<0.001**.

Figure S3.  P2RX7 expression levels are significantly higher in macrophages compared to dystrophic myoblasts (Mbs). (A) Immunoblots of triplicate samples showing P2RX7 expression levels relative to ACTB loading control in Wt myoblasts, Wt macrophages (MØ), Dmdmdx myoblasts and P2RX7-transfected HEK-293 cells. (B) Macrophages were found to express significantly (over 3 fold) more P2RX7 than Dmdmdx myoblasts. Mean +/- SE, n=3, P<0.05* and p<0.0001***.

Figure S4.  Western blots demonstrating LC3-II levels in skeletal muscles of wild-type and Dmdmdx mice. In contrast to the recently reported reduced LC3-II levels in tibialis anterior10 and increased LC3-II levels in diaphragm muscles of the Dmdmdx mouse,31 great individual variability but no overall significant difference in LC3-II levels was found in these muscles.

[bookmark: _GoBack]Figure S5.  Autophagy in skeletal muscle disease. Summary of studies reporting changes in autophagy levels in models of mammalian skeletal muscle disease and how these changes affect muscle health. Basic concept adapted from Grumati et al.14 Red and green arrows indicate detrimental and beneficial effects on muscle health, respectively. Red squares represent studies that have reported negative effects of autophagy in diseased versus wild-type muscles - note the variability reported between Dmdmdx animal studies. In vivo studies (summarized above the x-axis) have suggested that in general autophagy exists at equilibrium in normal muscle, where too little or too much can result in atrophy.14 Specific results however, have proved conflicting. For example, in the Dmdmdx mouse, four different studies (including this one) have shown three different LC3-II levels in unstimulated mice compared to Wt controls.11,31,35 Moreover, the impairment of autophagy can be muscle-type dependent35 and both autophagy augmentation10,31 and inhibition16 have been shown to ameliorate Dmdmdx pathology. Studies carried out using cell cultures (summarized below the x-axis) have invariably shown detrimental effects of autophagy overactivation in both myoblasts and myotubes.4,7,8,11,18,20-23,32,36,38,39  Interestingly, in macrophages any increase in autophagy levels can result in beneficial effects on surrounding muscle12,17 and dendritic cells33 and the opposite effect is seen if the levels are decreased.28,29 Given that multiple in vivo studies have documented beneficial effects of upregulating autophagy in skeletal muscle,10,15,31,35 it is possible that the in vivo data reflect the tonic stimulation of autophagy leading to beneficial effects, whereas the detrimental effects seen in culture conditions could be the result of chronic or excitotoxic stimulations. Another explanation may involve the role of autophagy in infiltrating immune cells, which are prevalent in diseased muscles and play a significant role in both damage and regeneration.38 Hence the interplay between muscle and immune cells should be carefully considered when interpreting in vivo manipulations of autophagy in muscle disease models, as it will certainly affect the derived therapeutic benefits of such manipulations.2,5,10,31,35  SM, skeletal muscle; KO, knockout; mbs, myoblasts; MTs, myotubes; sIBM, sporadic inclusion body myosistis.

Supplementary Video 1. Time-lapse live cell confocal microscopy images of EtBr influx, membrane blebbing and cell death in dystrophic myoblasts exposed to 3mM eATP for 0 to 60 min. Cells were incubated with MitoTracker Green (100 nM, green signal) and EtBr (5 M, red signal) during stimulation with eATP. Images were taken every 5 min for a period of 1 h at 500 x magnification using an aqueous immersion lens and 37 oC heated stage attached to a Zeiss LSM 510 Meta confocal microscope.
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