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APPENDIX A: OBSERVABILITY CONDITION

A discrete-time system,

Yo = H X,

mxn

X, = F Xy

nxn

(1)

is completely observable if and only if the obsdrility matrix,

H
HF
Q=| HF* |has rankn (Luenberger, 1979).

H.F"_1
Observability is related to the ability to infer atithe model is doing in terms of the unique
estimation of state variables from a given sequeho®dserving time series (see Joo and Jun
1997 Jun et al. 2012). The observability matrix must be mogslar to prevent spurious
decomposition. We aim to prove tltamust be no more thag1 to satisfy the observability

condition inARC(p,C).

A.1 ARC(L 2)
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BecausdQ]| # 0, the observability condition is satisfied.



A.2 ARC(p,2)

For p>2,
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whereF=| . . . |, A= (O qi) , andO is a zero matrixQ = )
O -1 0 HF?2P2

To prove tha{Q| # 0, we consider the equatiapH +c,HF? +--- +c HF?**"=0. To show
that the rows of2 are linearly independent, we aim to verify tat-c, =---=c, =0 is the only
solution of the equation for aflp,@,---,¢,). Suppose that there is a nonzero solution for the
equation. From the equatiog, (C;,C,-++,C, )V, + 9,(C;,C o+ Co W+ -+ 0, €C1C - S ¥, =

O, for someg,,q,,...,d,, wherev,,v,,---,v are the row vectors &. Because the determinant

xp

of Fis not zero, the rows &f are linearly independent. Thus, gieng,---,¢,),

gi (C_I_lCZl'”le |ﬂ_1¢2 U ,¢p ): CfOfI =1,...,p.
The equations can be transformed into the folloveiystem of linear equations:

f11(¢i'"'1¢p) f12(¢1’“'!¢p) fp((ol""'(”p) C, 0

f (@, c 0
21(¢1: #) . :2 =| . | or simplyRC=0.

fpl(ql'“’(op) fpp(q"“’¢p) Cp 0



If the rank ofR is zerog = 0Ofor alli. This is a contradiction becaugg # 0; therefore,
1<rank(R) < p. Then, the dimension of the null spacd&Rak p —rank(R), which indicates that
p-rank(R) equations ofg,@,---,@ must be satisfied; therefore, the dimension of the space of
(4., --.@,)is less thap for the system to have a nonzero solution. Thesdentradiction.
Consequently, a nonzero solution does not exigeireral.

A.3 ARC(p,c)

Casel ptl<c
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ThusQis singular.
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for somecxcmatrix A.

1 .o 1
Q= for somgc—1)x (c—1)matrix B.
B O(c—l)Xl

With the proof in Appendix A.2, we can verify tlsais nonsingular.

Caselll ptl>c
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for somepx p matrix A.
|Q| # 0; the proof is the same as in Appendix A.2.
APPENDI X B: PROOFS
InARC(p,c),
#AL)e =n, fort =1,cT
=6, fort =1.T (2)
j=1
& = &5 fort =1,T,

whereg(L) =1-gL—----—¢L”, & =0 for t <0, andz, ~ NID(O,a,f). L is the lag operator. We
verify the following lemmas and Theorem 1 so that identification procedure can be
established for the two-stage process of disagtjoegan the proofs, we carefully tregftands;
because the difference is subtle between the twations with regard to the lag operator:

Ol =(A-L)es =5 —¢€5, anddg’ =(A-L)e =& &, =€5 &5 .-



Lemma 1. & ~ I(d) if and only if £~ I(d).

Proof. The proof is straightforward from system (2).
Lemma 2. Suppose tha ande; are integrated processes. Thehjis stationary if and only i’
is stationary.

Proof. Suppose tha® is a zero mean stationary process. By Wold’s dgasition, &7 =

Y(L)E, wheray(L) =@, +@, L+ L7+, i(//1.2<00 with¢, =1,andé¢, is white noise. We have

i=0
&2 =@(L)é, : thus, E[&7] = EY(D &,] =0 and Varlsf] =Varly(L),] = Y yivaré,] = Y ¢t

Var[§] =V[&] <. Lety; =Cov(g &) and y] =Cov(’ & ). Then,y; = 3 . Thus,&is
stationary. Conversely, we assume #ias not stationary. There is an integdy,>1, such that
g ~1(d,)). We can assume thdt =1 without loss of generality. Thef]&? is stationary, and

it is trivial to prove thaflej is also stationary. By Wold’s decompositialg® = ¢ (L)«,, where

c-1
(1) #0 and «, is white noise. Becausée’ = » Oei  =(A+L+---+ L") ¢(L)k,, Ogfis

k=0
stationary. Thereforé]e® = 8(L)7, , wherer, is white noise with the same variancesasand
O(L) =@+L+---+L"(L). Thusglis an integrated process with order 1 bec&(e: 0.
Consequently; is not stationary.

Theorem 1. Suppose, is an integrated process. The following statemargsequivalent.

(i) &~ 1(d), (i) &~ 1(d), (i) &~ 1(d) ford=0.

Proof. (i) is equivalent to (ii) by Lemma 1. (ii) holdsand only if (iii) holds ford = O by

Lemma 2. Now, we consider the following equation:



D=2 0%, .y - 3)
Becauseg, is an integrated process; is an integrated process from the second equation
system (2), and equation (3) indicates #ids also an integrated process. Then, by using

equation (3) and Lemma 2, we can verify that® is stationary if any only ifl’£’is stationary

ford =1. Consequently, (ii) is equivalent to (iii) for ammegative integet.

APPENDIX C: THE INFORMATION LOSSFUNCTION FOR ARC(3, 3)

Figure 1 shows the level curves b (g, @, ) at some different values @,. As ¢, increases,
the aggregation effects on the ILF decrease dfexelit rate according t¢g,#). In particular,

the ILF values decrease at a relatively much slgaee ifg < 7/ 2 and R - 1; thus, this allow

the complex-type effects to gradually emerge irhezdhe level curves becaugeis close to 1.

Moreover, giverg,, each layer olLF(g, @, @) shares the same patternlbB(g, @) , which
indicates that the aggregation effects can explargeneral shape of the level curves in Figure 1
as inARC(2, 3).

Figure 1 shows the direction of changes in thedLARC(3, 3). The level curves shift right

to left as¢@, increases, which implies that the brunt of forceddcrease the information loss

occurs neag, =0along withg =K. This result corresponds to the additive propeftj.F.
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Figure 1. Monte Carlo simulation results for thé& laf ARC(3, 3). Each level curve has a similar grait
to the ILF of ARC(2, 3), which shows that the aggion effects (Type I-Ill) can be applied to ARC(3
3); the information loss function values are decreased along with the lipes k, as gincreases. This

confirms the additive property of the ILF.



APPENDIX D: INCONSISTENCY OF THE MLEsOF THE PARAMETERSIN ARC(1,2)

Consider a fraction of the time series, and &, fort=1,..., 4, and = 1,...,n, where

£,=€,+¢& ,ande’, =& ,+¢& ,. Then,
€ Yiid , 1
1IN {”} ac{ p} - 4)
&2 H p 1

2102 (1- p?

i=1

L(M,af:p){;)} exp{-mi[(ﬁrﬂi)“ ZO(afl-M)(&?z-M)+(£fz‘M)zﬂ ’

whereg? =Var (&°)) =Var(&’,) .
We assume thatl< p<1is known. Then,
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| 41 p?)



the weak law of large numbers. Thug, converges in probability to a constant number ithat

less thano?.
In ARC(1, 2):
E =@+, fort =1,cT
E = EytEL, for t =1,T,
oy . o: 20’
wheres, ~NID(0,0; ). g; =Var(g) = Var(e, +&,_,)= 2(I+ ¢)Varg, )= 2t ¢ )1—”(02 = 1 ’;0
2 2 2
00, - 29, ~>0 and aa‘; =2 50, where-1< @<1; thus,o; increases ipand g, . Let
0p (1—¢;) do, 1l-¢
o2 = f(g), wheref 0C”(-1,1) and f'>0. Then,p= f *(6?).
S eagan P oo Of -1 2 -1f 2
p=1700) ~ 17 5| =a,f (67)<tY(0)=n (6)

. . ~ p
for someO<a,<1. Similarly, 6; - a,0;

,0,, for some0<a, <1. Consequently, in this fraction of

the time series, the MLEs @ and a,f converge to some constants that are less tharughe

values. This result aligns with Neyman and Scétti®18) proposition that maximum likelihood
estimates of the structural parameters relatedotarizally consistent series of observations need
not be consistent. It is analytically intractaldeconsider the entire time series to show this

phenomenon. Table 4 in the article, however, cordithat the Monte Carlo simulations provide

the maximum likelihood estimates gfand aj that are less than the true values.
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APPENDIX E: TEST RESULTS

Table 1. Unit root and cointegration tests: Retdirand food services sales (RFS), personal copgamexpenditure (PCE), and unemployment
rate (UER) of the United States (1992.1-2004.12)

Unit Root Test

Cointegration Rank Test

Monthly  Quarterly Monthly Quarterly
Series  Dickey-Fuller 'C\I:E';f Trace Eigenvalue Cointegrating Vectors Trace mighkue  Cointegrating Vectors
RFS -2.579 -2.019 None 54.876 0.215 1.000 0.000 44066  0.412 1.000 0.000
PCE -0.579 -0.951 Atmostl  17.908 0.108 0.000 1.000 18.590  0.265 0.000 1.000
UER  -1.081 -2.180 At most 2 0.454 0.003 '(%'_1212‘;) Egzggi) 3.827 0.077 ('8 '23075) ('8 'gfg)
1 2 No. oflags 2 3

NOTE: The asterisk signifies rejection of the cepmnding null hypothesis at the 5% level of sigrifice’ The number of cointegrating equations.
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