Supplement to “A Minimax Optimal Ridge-Type Set Test for
Global Hypothesis with Applications in Whole Genome Sequencing
Association Studies”

Yaowu Liu, Zilin Li and Xihong Lin *

In Section 1, we provide the derivation of Q(7), and the proofs of Theorems 1 and 2, Corollaries
1 and 2, as well as other technical lemmas. In Section 2, we describe an algorithm to compute 7}
using the bisection search method. In Section 3, we provide the complete table for the type I error
simulation results with all the sample sizes. In Section 4, we present additional simulation results

and the genomic landscapes of significant sliding windows in ARIC WGS data analysis.

1 Proof of main results

1.1 Derivation of Q(7)

In the marginal model of S, we test Hy : S ~ N,(0,X) against H, : S ~ N,(0,3 + 73?). The
likelihood ratio test statistic is equivalent to STX7!S — ST[X + rX2]~1S. Using the eigenvalue
decomposition of ¥, we have & = U - diag{\;} - UT, where diag{)\;} is a diagonal matrix whose

elements are the eigenvalues and U is a matrix of eigenvectors. Hence,

STs~ls — s [z + r¥?7's
1 1
= 8TU-diag{—}-UTS - STU - diag{ —+—~
tagt /\i} tagt Ai(1+A)
}-UTS =787 I+ %) S =1Q(7).

}-UTs
-

= STU.di
lag{l—{—T)\Z'

1.2 Proof of Theorem 1

(a) Let A= (A1,---, Ap) be the eigenvalues of £ and X, = (A1, - , Apn) be the eigenvalues of 3,,.

Because 3, = X, then An 2 . Since 7 is a fixed constant, it follows from the Slutsky’s theorem
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that Q,(7) S P Hj\ﬁxii. It is easy to see that the quantile g, (7, A) is continuous w.r.t. A.
Hence ¢o (7, An) 2 ga(7,A). We complete the proof of Theorem 1(a).

(b) We first consider the case where X is not an identity matrix up to some constant, i.e., the
eigenvalues of 3 are not all the same. By Lemma 3 that will be introduced in Section 1.5, 7(\)
is continuous in Dy(c1,c2,0) for any 0 < ¢1 < ¢3 < 400 and § > 0, where Dx(cq,c2,9) is the
domain defined in (1). Since An D A, for sufficiently large n, we can find some ¢, co and § such
that P{X, ¢ Dx(c1,ca,0)} is sufficiently small. This along with the continuity of 77*(-) gives that
75(An) 2 72(X). The rest of proof is similar to that for the part (a) of Theorem 1.

Next, we consider the case where X is an identity matrix. Since Nin, = 1+0p(1) for any 1 < i < p,

we have

5\in 1 1 1
- — = — — = — = (140,(1))  —————,
L+ Ain7E (An) L/ Ain + 72(An) 1+ Op(l) + 75 (An) L+ 75(An)

where op,(1) denotes a random variable converges to 0 in probability. Let XZ denote the chi-squared
distribution with p degrees of freedom and qa(Xf,) be its upper a-quantile. Because

p
i 1
Z %Xiz = 7}(2 + Op(

14 AT (An) 1+ 75 (An) " m)’

) 1 1
« T: )\n = < « 2 +o =
o (75 (An)) o] (x;) p(1+7'§()\n)
Further, the test statistic
A 1 X2+ 0p(1) 1 ) 1
a(TE(An)) = ———[x2 + 0p(1)] + 0, (=2 ) = . +o -
Qn (72 (An)) 1_}_%*()\”)[)(;9 p( )] p(l—I-T(}"()\n) 1_{_76*()\”)9(]0 p(l_'_Tc*( )
Then, the size of the test is
P Qu(m () = a2 (A)]
= Pl 2o )2 a0 + op ————
L) P ) T 1+ () P T T )

= P} > qa(xp) +0p(1)] —

Therefore, the test has an asymptotic a-level.



1.3 Proof of Theorem 2

A ~

Note that H(0,) = 3, 4 N(B,€(0)). We first consider the case where £2(80) is not an identity
matrix up to some constant. Since Q(0) does not depend on B, in the limiting multivariate
normal model, the test that 7(A) corresponds to is minimax optimal w.r.t. the risk we defined
in the main text. Analogous to the proof of Theorem 1, we can show that for 7(X,) and any
>0, QW (r*(A\,)) and QY (r) converge in distribution to their corresponding test statistics in
the limiting model, respectively. Hence, QY (1 (S\n)) is asymptotically minimax optimal. When
Q(0) is an identity matrix, the risk for QY (7(X,)) goes to to 0 asymptotically and therefore
QW (r*(An)) is optimal. In fact, for any 7 > 0, the risk for QW (7) also goes to 0 and the tests

based on QW (7*(An)) and QY (7) are asymptotically equivalent.
1.4 Proof of Corollaries 1 and 2

Note that Bn and S, (@) converge to a multivariate normal distribution and the Fisher’s information
matrix is continuous w.r.t. 8 under regularity conditions. Corollaries 1 and 2 directly follow from

Theorem 1.

1.5 Technical Lemmas

The goal of this section is to show that 7, as a function of the eigenvalues, is continuous for any
fixed 0 < o < 1. Since 7 involves max and argmin, we first introduce two lemmas about the

continuity of functions that involve max and argmin, respectively.

Lemma 1. Let f(x,z) be a uniformly continuous function w.r.t. (x,z) € Dy X Dy, where x € Dy C

R,z € D, C RF for some k > 1. For any zg € Dy, there exists at least one x{'* € Dy, such that

max

maxgzep, f(x,2z0) = f(x{*,20). Then maxgzep, f(x,2) is uniformly continuous w.r.t. z € Dy.

Proof. It suffices to show that Ve > 0,35 > 0,V||z1—22|| < 9, |max,ep, f(2,21)—maxgep, f(x,22)] <

max )

€. Let ™ (or z5'®*) denote a point in D, that achieves the maximum of f(x,z;) (or f(z,2z2)).

We write

I = _ _ max _ max )
gé%}if(xazl) gé%ff(%zﬂ f(@™,21) — f(a5"™, 22)

First, we have



If follows from the uniform continuity of f(x,z) that I < e. Since zJ*** is the maximum point,

Is < 0. Hence, we obtain I < e. Similarly,

I=[f(@"™ 21) = f(2™, 20)] + [ (25", 21) — (2™, 22)] > —€.
O

Lemma 2. Let h(y,z) be a uniformly continuous function w.r.t. (y,z) € Dy x D,, where y € Dy C
R,z € D, C R* for some k > 1. For any zg € Dy, there exists a point yi'™ € Dy, such that h(y,zo)

min min

is strictly increasing for y > yg™" and strictly decreasing for y < yg*". Then argmingcp, h(y,=z) is

continuous w.r.t. z € D,.

Proof. 1f argmin, cp, h(y,z) is not continuous for any z € D,, there exist a zg € D,, some € > 0

min __

and a sequence of z, — zg, for any n, |yn yin| > ¢, where yin = argmingep h(y,z,) and

min

Yo" = argmin cp, h(y,zo). Let

I = h(ygnn’ n) h(y6n1n7 )

= [Ayn™ 20) — h(yn™ 20)] + [h(yn™ 20) — h(ys™ 20)] = L1 + L.

It follows from Lemma 1 that I — 0 as n — 4+00. By the uniform continuity, we have also I; — 0.

min and decreasing

This implies that Io — 0. However, since h(y, zo) is strictly increasing for y > y;
for y < 20 then I > max{h(yF™ + €, 2z0), Ly — €,20)} — h(yo,20) > 0 for any n. This is in

contradiction to Iy — 0. ]

Let X = (A1, A2, -+, A\p) be the vector of eigenvalues. Our goal is to show that 7}(\) is continu-
ous for any fixed 0 < o < 1. To investigate the continuity, we first need to define the domain of A.
It can be seen that our proposed test does not depend on the scale of A,s. Hence, the domain could
be > | \; = ¢ for any constant ¢ > 0. However, for some technical reasons, we would like the do-
main to be a bounded and closed set in RP. Hence, we expand the domain to be ¢; < Zle N < cs.
In addition, if A\; = Ap = -+ = A, the risk function R, (7, 7.) = 0 for any 7,,7. > 0 and therefor
7/ is not unique. To avoid this situation, we also need to set the domain away from the hyperplane

A1 = A2 = - = ),. Formally, we define the domain of X as

Da(c1,c2,0) ={AM >Xa>---> X, >0 i < ca, | Jax 1()\7; —Ai—1) >0}, (1)
1Sp—

i M@

where constants 0 < ¢ < ¢ < +00 and § > 0.



Lemma 3. For any 0 < o < 1, 75(X) is continuous in Dx(c1,c2,0) for any 0 < ¢1 < ca < 400

and 6 > 0.

Proof. We rewrite Dx(c1, c2,9) as Dy to simplify the exposition, and rewrite ¥, (74, 7c) as Uy (T4, Tey A)
to make the dependency on A explicit. It is easy to see that W, (74, 7., A) is continuous. Note that
the domain of 7, or 7, is [0, +00). If 7, and 7, is defined on [0, Cy| for any Cy > 0, then the uniform
continuity of W (7,4, 7, A) follows from the fact that a function that is continuous in a bounded and
closed set is also uniformly continuous. Because Dy is bounded from above and below and 0 < o < 1

is fixed, we can find a Cy > 0, for any 7,,7. > Cp and A € Dy, such that 1 — U, (74,7, A) > € for
some sufficiently small € > 0. Statistically speaking, when the signal strength 7, is sufficiently large,
any test in the class {Q(7.)} would have a power close to 1. Therefore, W, (7,4, 7¢, A) is uniformly
continuous in [0, +00) X [0, +00) X Dy.

Since the risk function Ry (74, 7¢, A) is the difference between two power functions, it is also
uniformly continuous. Then it follows from Lemma 1 that max,,>¢ Ra(7a, e, A) is uniformly con-
tinuous. In the rest of the proof, we write 7, as x to make the notation more clear. Since A € Dy is
bounded away from the hyperplane \; = A = --- = A, for any Ag € Dy and z¢ > 0, Ry (0, T¢, Ao)
is strictly increasing when 7. > x¢ and strictly decreasing when 7. < xp. This implies that the
maximum risk on the left-hand side maxo<gz<r, Ra(2, 7¢, Ao) is strictly increasing w.r.t. 7. and the
maximum risk on the right-hand side max,>,, Rq(x, ¢, Ag) is strictly decreasing w.r.t. 7.. Hence,
the maximum risk maxg>o Ra(x, 7¢, Ao) is strictly decreasing when 7. < 77 (Ao, o) and strictly

increasing when 7. > 7 (Ao, ap). By Lemma 2, 77(\) is continuous in Dy,. O

2 Algorithm

In this section, we describe an algorithm to compute 7 using the bisection search method.

The bisection search method in Algorithm 1 is computationally more efficient than the grid
search method. Suppose that K (e.g., K = 200) points are selected for 7, and 7., respectively.
To find the minimax solution, grid search needs to evaluate the risk function at K x K points,
which is computationally intensive. In contrast, due to the monotonicity of the risk function w.r.t.
7. described in Section 2.6, we do not need K points for 7.. Instead, we use the bisection search
(w.r.t. 7.) that typically takes several iterations to converge within a given error tolerance, say the
number of iterations s = 5. Then Algorithm 1 only requires to evaluate the risk function at K x s

points.



Algorithm 1 Bisection search to compute 7

input: eigenvalues A1, - -+, \p; significance level o; error bound A
initialize: choose a grid 0 < 71 < 7 < --- < Tg, calculate Wy (7%, 7%) for k=1, -+ | K.
To 4 argming <<k | Vo (T, Tie) — 0.5]; T} = 71 ; T < TK;
Ry < maxp ~rx R(my,7}); Rp + maXe, <rx R(7y, 7);
while |Ry — Rz| > A do
if Ry > Ry, then
T T T (T ) /2
else
T T Te < (T8 T /2
end if
Ry« max;, > R(1y, 7)); Rp < maxy, <7+ R(7, 7));
end while

The next question is how to choose K equally spaced points since the range of 7, and 7. is
[0,00]. We need to set a finite maximum value for 7,. Let 7,4, denote the maximum value. We
choose Tyaz such that when 7, > 74z, the power of SKAT is greater than 1 — A, where A is the
error bound in Algorithm 1. Finding such a 7,4, is easy and fast. Due to the monotonicity of the
risk function w.r.t. 7. again and the fact that SKAT is Q(0), the power of any test in {Q(7) : 7 > 0}
is also greater than 1 — A when 7, > Ty,42. This means that when the signal strength 7, is greater
than 7,4, the risk of any test in {Q(7) : 7 > 0} is less than the error bound A. Therefore we do

not need to consider the values of 7, beyond 7,,q,. Then we can choose K points in [0, Taz)-

3 Supplementary Tables



Table 1: Type I error of MORST computed over 108 replications. Here n is the sample size and p is
the number of predictors. The columns corresponds to exchangeable correlation, AR(1) correlation
and the correlation of sequenced genotypes, respectively.

Continuous outcomes

Binary outcomes

" p @ Exchangeable ~ AR(1)  Sequencing Exchangeable  AR(1)  Sequencing
0.05 4.57-1072 4.88-1072  4.95-1072 4.68-1072 4971072 5.01-1072

100 1-1072 8.41-1073 9.58-1073  9.75.1073 8.81-1073 9.86-107%  1.00-1072
1.1073 7.97-10~% 8.91-107% 9.61-10°¢ 8.64-104 9.61-107* 9.58.10¢

5000 1.10~* 7.90-107° 8.50-107°  9.10-107° 8.60-107° 1.02-107*  1.03-1074
0.05 4.30-102 4.83-1072  4.94-1072 4.40-102 4.86-1072  4.99-102

500 1-1072 7.68-1073 9.27-1073  9.75.1073 7.91.1073 9.36-107%  9.91.1073
1-1073 6.79-10~* 8.63-107*  9.56-10~* 6.89-10~% 8.68-107*  9.35.10~*

1-10~* 6.60-107° 8.50-107°  9.80-107° 4.80-107° 9.50-107°  1.02-10~*

0.05 4.84-1072 4931072 4.99-1072 4.89-1072 4.99-1072  4.99-1072

100 1-1072 9.37-1073 9.78-107%  1.02-1072 9.48-1073 9.92.1073  1.01-1072
1-1073 9.43-1074 9.62-107*  9.63-10~¢ 8.71-1074 9.79-107*  9.43.10~*

5000 1.1074 9.60-10° 9.20-107®  8.80-107° 9.20-107° 1.06-107*  7.80-107°
0.05 4.73-1072 4931072  4.96-1072 4.80-1072 4921072  4.98.1072

500 1.1072 9.02-1073 9.71-1073%  9.96-1073 9.21-1073 9.80-1073  9.94.103
1-1073 8.40-1074 9.00-107%  1.02:1073 8.77-1074 8.91-107%  9.89-10~*

1-1074 8.20-10~° 7.60-107°  9.20-107° 8.10-107° 8.60-10°  9.30-107°

0.05 4.90-102 5.02:107%2  4.94-1072 4.94-102 4981072  5.02-102

100 1-1072 9.65-1073 9.99-1073  9.89-1073 9.75-1073 1.00-1072  9.96-1073
1.1073 9.60-104 9.81-10~* 1.01-107°3 9.96.10~4 9.85-107% 9.28.104

10000 1-1074 1.01-107* 1.07-107*  9.20-107° 1.02-1074 1.06-107*  1.00-10~4
0.05 4.87-102 4971072  5.01-1072 4.89-102 4.96-1072  5.00-102

500 1-1072 9.46-1073 9.87-1073  1.01-1072 9.60-1073 9.65-1073  1.01-102
1-1073 9.56-10~4 9.96-10~* 9.84.10°¢ 9.17-107* 9.56-107*  9.59-10~*

1-10~4 9.60-107° 1.02:107*  9.50-107° 1.07-1074 9.60-107°  1.05-10~*

0.05 4.95-1072 5.00-1072  5.00-10~2 5.00-1072 5.00-1072  5.00-1072

100 1-1072 9.75-1073 9.90-107%  1.00-102 9.95-1073 9.97-1073  1.01-1072
1-1073 9.87-1074 9.86-107* 9.94.107¢ 1.03-1073 9.65-107*  9.58.10~*

50000 1-1074 9.90-107° 1.01-10~*  1.00-10~* 8.90-107° 9.80-107°  9.90-107°
0.05 4.94-1072 4.99-1072  5.00-1072 4.95-1072 5.01-1072  5.01-1072

500 1.1072 9.73-1073 9.84-107%  1.01-102 9.84-1073 1.01-1072  1.00-102
1.1073 9.37-10~* 9.77-10~* 9.87-107¢ 1.04-1073 1.01-107%  1.02-1073

1-10~* 9.50-107° 9.00-107®  9.60-107° 8.89-107° 1.17-107*  1.07-107*
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Figure 1: An example of the power curves (i.e., ¥, (74, 7)) of the oracle, MORST, SKAT and F
tests under a = 0.05,10~*. Here, p = 100 and X = (oy;) with oy = 0.8/~ for any 1 < k,1 < p.
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Figure 2: An example of the power curves (i.e., ¥, (74, 7c)) of the oracle, MORST, SKAT and
F tests under o = 0.05,10~%. Here, p = 50 and ¥ = (0ij) with o5 = 1 and o5 = 0.4 for any
1<i<y <p.
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Figure 3: An example of the power curves (i.e., ¥, (74, 7)) of the oracle, MORST, SKAT and F
tests under o = 0.05,107%. Here, p = 100 and ¥ = (0i5) with 053 = 1 and o0;; = 0.3 for any
1<i<j<p.
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Figure 4: An example of the power curves (i.e., ¥, (74, 7)) of the oracle, MORST, SKAT and F
tests under a = 0.05,10™%. Here, X is the correlation matrix of 50 genetic variants of a continuous
region randomly selected from the simulated sequencing data described in Section 4.1 in the main
text.
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Figure 5: An example of the power curves (i.e., ¥, (74, 7)) of the oracle, MORST, SKAT and F
tests under o = 0.05,10~%. Here, X is the correlation matrix of 100 genetic variants of a continuous
region randomly selected from the simulated sequencing data described in Section 4.1 in the main
text.
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Exchangeable AR(1) Sequencing
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Figure 6: The power of MORST, SKAT and the F test in linear regression with p = 200 and
20% non-zero B;’s. The columns from left to right correspond to exchangeable correlation, AR(1)
correlation and the correlation of sequenced genotypes, respectively. The rows correspond to o =
0.05,0.0001. The x-axis [y is the signal strength (i.e., the common magnitude of non-zero f;’s).
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Figure 7: The power of MORST, SKAT and the F test in linear regression with p = 100 and
40% non-zero (3;’s. The columns from left to right correspond to exchangeable correlation, AR(1)
correlation and the correlation of sequenced genotypes, respectively. The rows correspond to o =
0.05,0.0001. The x-axis [y is the signal strength (i.e., the common magnitude of non-zero f;’s).
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Figure 8: The power of MORST, SKAT and the F test in linear regression with p = 200 and
40% non-zero (3;’s. The columns from left to right correspond to exchangeable correlation, AR(1)
correlation and the correlation of sequenced genotypes, respectively. The rows correspond to o =
0.05,0.0001. The x-axis [y is the signal strength (i.e., the common magnitude of non-zero f;’s).
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Figure 9: The power of MORST, SKAT and LRT in logistic regression with p = 100 and 20% non-
zero 3;’s. The columns from left to right correspond to exchangeable correlation, AR(1) correlation
and the correlation of sequenced genotypes, respectively. The rows correspond to a = 0.05,0.0001.
The x-axis [y is the signal strength (i.e., the common magnitude of non-zero f;’s). The LRT is not
included in the panels on the right because the MLE does not exist for some genetic variants such
as singletons.
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Figure 10: The power of MORST, SKAT and the LRT in logistic regression with p = 200 and
20% non-zero B;’s. The columns from left to right correspond to exchangeable correlation, AR(1)
correlation and the correlation of sequenced genotypes, respectively. The rows correspond to a =
0.05,0.0001. The x-axis fy is the signal strength (i.e., the common magnitude of non-zero f;’s).
The LRT is not included in the panels on the right because the MLE does not exist for some genetic
variants such as singletons.
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Figure 11: The power of MORST, SKAT and the LRT in logistic regression with p = 100 and
40% non-zero B;’s. The columns from left to right correspond to exchangeable correlation, AR(1)
correlation and the correlation of sequenced genotypes, respectively. The rows correspond to a =
0.05,0.0001. The x-axis fy is the signal strength (i.e., the common magnitude of non-zero f;’s).
The LRT is not included in the panels on the right because the MLE does not exist for some genetic
variants such as singletons.
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Figure 12: The power of MORST, SKAT and the LRT in logistic regression with p = 200 and
40% non-zero B;’s. The columns from left to right correspond to exchangeable correlation, AR(1)
correlation and the correlation of sequenced genotypes, respectively. The rows correspond to a =
0.05,0.0001. The x-axis fy is the signal strength (i.e., the common magnitude of non-zero f;’s).
The LRT is not included in the panels on the right because the MLE does not exist for some genetic
variants such as singletons.
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Figure 13: The genomic landscape of significant 4kb sliding windows on chromosome 6 identified
by MORST, SKAT and the F test in the analysis of Lipoprotein(a) among AAs. A dot means that
the sliding window at this location is significant by the method that the color of the dot represents.
The numbers on the left of the plot show the number of significant windows identified by each

method.
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Figure 14: The genomic landscape of significant 4kb sliding windows on chromosome 6 identified
by MORST, SKAT and the F test in the analysis of Lipoprotein(a) among EAs. A dot means that
the sliding window at this location is significant by the method that the color of the dot represents.
The numbers on the left of the plot show the number of significant windows identified by each

method.
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Figure 15: The genomic landscape of significant 4kb sliding windows on chromosome 1 identified by
MORST, SKAT and the F test in the analysis of Neutrophil count among AAs. A dot means that
the sliding window at this location is significant by the method that the color of the dot represents.

The numbers on the left of the plot show the number of significant windows identified by each
method.
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