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In Section 1, we provide the derivation of Q(τ), and the proofs of Theorems 1 and 2, Corollaries

1 and 2, as well as other technical lemmas. In Section 2, we describe an algorithm to compute τ∗c

using the bisection search method. In Section 3, we provide the complete table for the type I error

simulation results with all the sample sizes. In Section 4, we present additional simulation results

and the genomic landscapes of significant sliding windows in ARIC WGS data analysis.

1 Proof of main results

1.1 Derivation of Q(τ)

In the marginal model of S, we test H0 : S ∼ Np(0,Σ) against Ha : S ∼ Np(0,Σ + τΣ2). The

likelihood ratio test statistic is equivalent to STΣ−1S − ST [Σ + τΣ2]−1S. Using the eigenvalue

decomposition of Σ, we have Σ = U · diag{λi} ·UT , where diag{λi} is a diagonal matrix whose

elements are the eigenvalues and U is a matrix of eigenvectors. Hence,

STΣ−1S− ST [Σ + τΣ2]−1S

= STU · diag{ 1

λi
} ·UTS− STU · diag{ 1

λi(1 + λi)
} ·UTS

= STU · diag{ τ

1 + τλi
} ·UTS = τST (I + τΣ)−1 S = τQ(τ).

1.2 Proof of Theorem 1

(a) Let λ = (λ1, · · · , λp) be the eigenvalues of Σ and λ̂n = (λ̂1n, · · · , λ̂pn) be the eigenvalues of Σ̂n.

Because Σ̂n
p→ Σ, then λ̂n

p→ λ. Since τ is a fixed constant, it follows from the Slutsky’s theorem
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that Qn(τ)
d→
∑p

i=1
λi

1+λiτ
χ2
1,i. It is easy to see that the quantile qα(τ,λ) is continuous w.r.t. λ.

Hence qα(τ, λ̂n)
p→ qα(τ,λ). We complete the proof of Theorem 1(a).

(b) We first consider the case where Σ is not an identity matrix up to some constant, i.e., the

eigenvalues of Σ are not all the same. By Lemma 3 that will be introduced in Section 1.5, τ∗c (λ)

is continuous in Dλ(c1, c2, δ) for any 0 < c1 < c2 < +∞ and δ > 0, where Dλ(c1, c2, δ) is the

domain defined in (1). Since λ̂n
p→ λ, for sufficiently large n, we can find some c1, c2 and δ such

that P{λ̂n /∈ Dλ(c1, c2, δ)} is sufficiently small. This along with the continuity of τ∗c (·) gives that

τ∗c (λ̂n)
p→ τ∗c (λ). The rest of proof is similar to that for the part (a) of Theorem 1.

Next, we consider the case where Σ is an identity matrix. Since λ̂in = 1+op(1) for any 1 ≤ i ≤ p,

we have

λ̂in

1 + λ̂inτ∗c (λ̂n)
=

1

1/λ̂in + τ∗c (λ̂n)
=

1

1 + op(1) + τ∗c (λ̂n)
= (1 + op(1)) · 1

1 + τ∗c (λ̂n)
,

where op(1) denotes a random variable converges to 0 in probability. Let χ2
p denote the chi-squared

distribution with p degrees of freedom and qα(χ2
p) be its upper α-quantile. Because

p∑
i=1

λ̂in

1 + λ̂inτ∗c (λ̂n)
χ2
1,i =

1

1 + τ∗c (λ̂n)
χ2
p + op(

1

1 + τ∗c (λ̂n)
),

then the critical value

qα(τ∗c (λ̂n)) =
1

1 + τ∗c (λ̂n)
qα(χ2

p) + op(
1

1 + τ∗c (λ̂n)
).

Further, the test statistic

Qn(τ∗c (λ̂n)) =
1

1 + τ∗c (λ̂n)
[χ2
p + op(1)] + op(

χ2
p + op(1)

1 + τ∗c (λ̂n)
) =

1

1 + τ∗c (λ̂n)
χ2
p + op(

1

1 + τ∗c (λ̂n)
).

Then, the size of the test is

P
[
Qn(τ∗c (λ̂n)) ≥ qα(τ∗c (λ̂n))

]
= P

[
1

1 + τ∗c (λ̂n)
χ2
p + op(

1

1 + τ∗c (λ̂n)
) ≥ 1

1 + τ∗c (λ̂n)
qα(χ2

p) + op(
1

1 + τ∗c (λ̂n)
)

]
= P

[
χ2
p ≥ qα(χ2

p) + op(1)
]
→ α.

Therefore, the test has an asymptotic α-level.
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1.3 Proof of Theorem 2

Note that H(θ̂n) = β̂n
d→ N(β,Ω(θ)). We first consider the case where Ω(θ) is not an identity

matrix up to some constant. Since Ω(θ) does not depend on β, in the limiting multivariate

normal model, the test that τ∗c (λ) corresponds to is minimax optimal w.r.t. the risk we defined

in the main text. Analogous to the proof of Theorem 1, we can show that for τ∗c (λ̂n) and any

τ ≥ 0, QWn (τ∗c (λ̂n)) and QWn (τ) converge in distribution to their corresponding test statistics in

the limiting model, respectively. Hence, QWn (τ∗c (λ̂n)) is asymptotically minimax optimal. When

Ω(θ) is an identity matrix, the risk for QWn (τ∗c (λ̂n)) goes to to 0 asymptotically and therefore

QWn (τ∗c (λ̂n)) is optimal. In fact, for any τ > 0, the risk for QWn (τ) also goes to 0 and the tests

based on QWn (τ∗c (λ̂n)) and QWn (τ) are asymptotically equivalent.

1.4 Proof of Corollaries 1 and 2

Note that β̂n and Sn(θ) converge to a multivariate normal distribution and the Fisher’s information

matrix is continuous w.r.t. θ under regularity conditions. Corollaries 1 and 2 directly follow from

Theorem 1.

1.5 Technical Lemmas

The goal of this section is to show that τ∗c , as a function of the eigenvalues, is continuous for any

fixed 0 < α < 1. Since τ∗c involves max and argmin, we first introduce two lemmas about the

continuity of functions that involve max and argmin, respectively.

Lemma 1. Let f(x, z) be a uniformly continuous function w.r.t. (x, z) ∈ Dx×Dz, where x ∈ Dx ⊆

R, z ∈ Dz ⊆ Rk for some k ≥ 1. For any z0 ∈ Dz, there exists at least one xmax
0 ∈ Dx, such that

maxx∈Dx f(x, z0) = f(xmax
0 , z0). Then maxx∈Dx f(x, z) is uniformly continuous w.r.t. z ∈ Dz.

Proof. It suffices to show that ∀ε > 0, ∃δ > 0,∀||z1−z2|| < δ, |maxx∈Dx f(x, z1)−maxx∈Dx f(x, z2)| <

ε. Let xmax
1 (or xmax

2 ) denote a point in Dx that achieves the maximum of f(x, z1) (or f(x, z2)).

We write

I = max
x∈Dx

f(x, z1)− max
x∈Dx

f(x, z2) = f(xmax
1 , z1)− f(xmax

2 , z2).

First, we have

I = [f(xmax
1 , z1)− f(xmax

1 , z2)] + [f(xmax
1 , z2)− f(xmax

2 , z2)] = I1 + I2.
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If follows from the uniform continuity of f(x, z) that I1 < ε. Since xmax
2 is the maximum point,

I2 ≤ 0. Hence, we obtain I < ε. Similarly,

I = [f(xmax
1 , z1)− f(xmax

2 , z1)] + [f(xmax
2 , z1)− f(xmax

2 , z2)] > −ε.

Lemma 2. Let h(y, z) be a uniformly continuous function w.r.t. (y, z) ∈ Dy×Dz, where y ∈ Dy ⊆

R, z ∈ Dz ⊆ Rk for some k ≥ 1. For any z0 ∈ Dz, there exists a point ymin
0 ∈ Dy, such that h(y, z0)

is strictly increasing for y ≥ ymin
0 and strictly decreasing for y ≤ ymin

0 . Then argminy∈Dy
h(y, z) is

continuous w.r.t. z ∈ Dz.

Proof. If argminy∈Dy
h(y, z) is not continuous for any z ∈ Dz, there exist a z0 ∈ Dz, some ε > 0

and a sequence of zn → z0, for any n, |ymin
n − ymin

0 | > ε, where ymin
n = argminy∈Dy

h(y, zn) and

ymin
0 = argminy∈Dy

h(y, z0). Let

I = h(ymin
n , zn)− h(ymin

0 , z0)

= [h(ymin
n , zn)− h(ymin

n , z0)] + [h(ymin
n , z0)− h(ymin

0 , z0)] = I1 + I2.

It follows from Lemma 1 that I → 0 as n→ +∞. By the uniform continuity, we have also I1 → 0.

This implies that I2 → 0. However, since h(y, z0) is strictly increasing for y ≥ ymin
0 and decreasing

for y ≤ ymin
0 , then I2 ≥ max{h(ymin

0 + ε, z0), h(ymin
0 − ε, z0)} − h(y0, z0) > 0 for any n. This is in

contradiction to I2 → 0.

Let λ = (λ1, λ2, · · · , λp) be the vector of eigenvalues. Our goal is to show that τ∗c (λ) is continu-

ous for any fixed 0 < α < 1. To investigate the continuity, we first need to define the domain of λ.

It can be seen that our proposed test does not depend on the scale of λ′is. Hence, the domain could

be
∑p

i=1 λi = c for any constant c > 0. However, for some technical reasons, we would like the do-

main to be a bounded and closed set in Rp. Hence, we expand the domain to be c1 ≤
∑p

i=1 λi ≤ c2.

In addition, if λ1 = λ2 = · · · = λp, the risk function Rα(τa, τc) = 0 for any τa, τc ≥ 0 and therefor

τ∗c is not unique. To avoid this situation, we also need to set the domain away from the hyperplane

λ1 = λ2 = · · · = λp. Formally, we define the domain of λ as

Dλ(c1, c2, δ) = {λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 : c1 ≤
p∑
i=1

λi ≤ c2, max
1≤i≤p−1

(λi − λi−1) ≥ δ}, (1)

where constants 0 < c1 < c2 < +∞ and δ > 0.
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Lemma 3. For any 0 < α < 1, τ∗c (λ) is continuous in Dλ(c1, c2, δ) for any 0 < c1 < c2 < +∞

and δ > 0.

Proof. We rewriteDλ(c1, c2, δ) asDλ to simplify the exposition, and rewrite Ψα(τa, τc) as Ψα(τa, τc,λ)

to make the dependency on λ explicit. It is easy to see that Ψα(τa, τc,λ) is continuous. Note that

the domain of τc or τa is [0,+∞). If τc and τa is defined on [0, C0] for any C0 > 0, then the uniform

continuity of Ψα(τa, τc,λ) follows from the fact that a function that is continuous in a bounded and

closed set is also uniformly continuous. Because Dλ is bounded from above and below and 0 < α < 1

is fixed, we can find a C0 > 0, for any τa, τc > C0 and λ ∈ Dλ, such that 1 −Ψα(τa, τc,λ) > ε for

some sufficiently small ε > 0. Statistically speaking, when the signal strength τa is sufficiently large,

any test in the class {Q(τc)} would have a power close to 1. Therefore, Ψα(τa, τc,λ) is uniformly

continuous in [0,+∞)× [0,+∞)×Dλ.

Since the risk function Rα(τa, τc,λ) is the difference between two power functions, it is also

uniformly continuous. Then it follows from Lemma 1 that maxτa≥0Rα(τa, τc,λ) is uniformly con-

tinuous. In the rest of the proof, we write τa as x to make the notation more clear. Since λ ∈ Dλ is

bounded away from the hyperplane λ1 = λ2 = · · · = λp, for any λ0 ∈ Dλ and x0 > 0, Rα(x0, τc,λ0)

is strictly increasing when τc > x0 and strictly decreasing when τc < x0. This implies that the

maximum risk on the left-hand side max0≤x≤τc Rα(x, τc,λ0) is strictly increasing w.r.t. τc and the

maximum risk on the right-hand side maxx≥τc Rα(x, τc,λ0) is strictly decreasing w.r.t. τc. Hence,

the maximum risk maxx≥0Rα(x, τc,λ0) is strictly decreasing when τc ≤ τ∗c (λ0, α0) and strictly

increasing when τc ≥ τ∗c (λ0, α0). By Lemma 2, τ∗c (λ) is continuous in Dλ.

2 Algorithm

In this section, we describe an algorithm to compute τ∗c using the bisection search method.

The bisection search method in Algorithm 1 is computationally more efficient than the grid

search method. Suppose that K (e.g., K = 200) points are selected for τa and τc, respectively.

To find the minimax solution, grid search needs to evaluate the risk function at K × K points,

which is computationally intensive. In contrast, due to the monotonicity of the risk function w.r.t.

τc described in Section 2.6, we do not need K points for τc. Instead, we use the bisection search

(w.r.t. τc) that typically takes several iterations to converge within a given error tolerance, say the

number of iterations s = 5. Then Algorithm 1 only requires to evaluate the risk function at K × s

points.
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Algorithm 1 Bisection search to compute τ∗c
input: eigenvalues λ1, · · · , λp; significance level α; error bound ∆
initialize: choose a grid 0 < τ1 < τ2 < · · · < τK , calculate Ψα(τk, τk) for k = 1, · · · ,K.
τ∗c ← argmin{τk;1≤k≤K} |Ψα(τk, τk)− 0.5|; τ∗L ← τ1 ; τ∗U ← τK ;
RU ← maxτk>τ∗c R(τk, τ

∗
c ); RL ← maxτk<τ∗c R(τk, τ

∗
c );

while |RU −RL| > ∆ do
if RU > RL then
τ∗L ← τ∗c ; τ∗c ← (τ∗c + τ∗U )/2;

else
τ∗U ← τ∗c ; τ∗c ← (τ∗c + τ∗L)/2;

end if
RU ← maxτk>τ∗c R(τk, τ

∗
c ); RL ← maxτk<τ∗c R(τk, τ

∗
c );

end while

The next question is how to choose K equally spaced points since the range of τa and τc is

[0,∞]. We need to set a finite maximum value for τa. Let τmax denote the maximum value. We

choose τmax such that when τa > τmax, the power of SKAT is greater than 1−∆, where ∆ is the

error bound in Algorithm 1. Finding such a τmax is easy and fast. Due to the monotonicity of the

risk function w.r.t. τc again and the fact that SKAT is Q(0), the power of any test in {Q(τ) : τ ≥ 0}

is also greater than 1−∆ when τa > τmax. This means that when the signal strength τa is greater

than τmax, the risk of any test in {Q(τ) : τ ≥ 0} is less than the error bound ∆. Therefore we do

not need to consider the values of τa beyond τmax. Then we can choose K points in [0, τmax].

3 Supplementary Tables
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Table 1: Type I error of MORST computed over 106 replications. Here n is the sample size and p is
the number of predictors. The columns corresponds to exchangeable correlation, AR(1) correlation
and the correlation of sequenced genotypes, respectively.

n p α
Continuous outcomes Binary outcomes

Exchangeable AR(1) Sequencing Exchangeable AR(1) Sequencing

2000

100

0.05 4.57·10−2 4.88·10−2 4.95·10−2 4.68·10−2 4.97·10−2 5.01·10−2

1·10−2 8.41·10−3 9.58·10−3 9.75·10−3 8.81·10−3 9.86·10−3 1.00·10−2

1·10−3 7.97·10−4 8.91·10−4 9.61·10−4 8.64·10−4 9.61·10−4 9.58·10−4

1·10−4 7.90·10−5 8.50·10−5 9.10·10−5 8.60·10−5 1.02·10−4 1.03·10−4

200

0.05 4.30·10−2 4.83·10−2 4.94·10−2 4.40·10−2 4.86·10−2 4.99·10−2

1·10−2 7.68·10−3 9.27·10−3 9.75·10−3 7.91·10−3 9.36·10−3 9.91·10−3

1·10−3 6.79·10−4 8.63·10−4 9.56·10−4 6.89·10−4 8.68·10−4 9.35·10−4

1·10−4 6.60·10−5 8.50·10−5 9.80·10−5 4.80·10−5 9.50·10−5 1.02·10−4

5000

100

0.05 4.84·10−2 4.93·10−2 4.99·10−2 4.89·10−2 4.99·10−2 4.99·10−2

1·10−2 9.37·10−3 9.78·10−3 1.02·10−2 9.48·10−3 9.92·10−3 1.01·10−2

1·10−3 9.43·10−4 9.62·10−4 9.63·10−4 8.71·10−4 9.79·10−4 9.43·10−4

1·10−4 9.60·10−5 9.20·10−5 8.80·10−5 9.20·10−5 1.06·10−4 7.80·10−5

200

0.05 4.73·10−2 4.93·10−2 4.96·10−2 4.80·10−2 4.92·10−2 4.98·10−2

1·10−2 9.02·10−3 9.71·10−3 9.96·10−3 9.21·10−3 9.80·10−3 9.94·10−3

1·10−3 8.40·10−4 9.00·10−4 1.02·10−3 8.77·10−4 8.91·10−4 9.89·10−4

1·10−4 8.20·10−5 7.60·10−5 9.20·10−5 8.10·10−5 8.60·10−5 9.30·10−5

10000

100

0.05 4.90·10−2 5.02·10−2 4.94·10−2 4.94·10−2 4.98·10−2 5.02·10−2

1·10−2 9.65·10−3 9.99·10−3 9.89·10−3 9.75·10−3 1.00·10−2 9.96·10−3

1·10−3 9.60·10−4 9.81·10−4 1.01·10−3 9.96·10−4 9.85·10−4 9.28·10−4

1·10−4 1.01·10−4 1.07·10−4 9.20·10−5 1.02·10−4 1.06·10−4 1.00·10−4

200

0.05 4.87·10−2 4.97·10−2 5.01·10−2 4.89·10−2 4.96·10−2 5.00·10−2

1·10−2 9.46·10−3 9.87·10−3 1.01·10−2 9.60·10−3 9.65·10−3 1.01·10−2

1·10−3 9.56·10−4 9.96·10−4 9.84·10−4 9.17·10−4 9.56·10−4 9.59·10−4

1·10−4 9.60·10−5 1.02·10−4 9.50·10−5 1.07·10−4 9.60·10−5 1.05·10−4

20000

100

0.05 4.95·10−2 5.00·10−2 5.00·10−2 5.00·10−2 5.00·10−2 5.00·10−2

1·10−2 9.75·10−3 9.90·10−3 1.00·10−2 9.95·10−3 9.97·10−3 1.01·10−2

1·10−3 9.87·10−4 9.86·10−4 9.94·10−4 1.03·10−3 9.65·10−4 9.58·10−4

1·10−4 9.90·10−5 1.01·10−4 1.00·10−4 8.90·10−5 9.80·10−5 9.90·10−5

200

0.05 4.94·10−2 4.99·10−2 5.00·10−2 4.95·10−2 5.01·10−2 5.01·10−2

1·10−2 9.73·10−3 9.84·10−3 1.01·10−2 9.84·10−3 1.01·10−2 1.00·10−2

1·10−3 9.37·10−4 9.77·10−4 9.87·10−4 1.04·10−3 1.01·10−3 1.02·10−3

1·10−4 9.50·10−5 9.00·10−5 9.60·10−5 8.89·10−5 1.17·10−4 1.07·10−4
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4 Supplementary Figures
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Figure 1: An example of the power curves (i.e., Ψα(τa, τc)) of the oracle, MORST, SKAT and F
tests under α = 0.05, 10−4. Here, p = 100 and Σ = (σkl) with σkl = 0.8|k−l| for any 1 ≤ k, l ≤ p.
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Figure 2: An example of the power curves (i.e., Ψα(τa, τc)) of the oracle, MORST, SKAT and
F tests under α = 0.05, 10−4. Here, p = 50 and Σ = (σij) with σii = 1 and σij = 0.4 for any
1 ≤ i < j ≤ p.
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Figure 3: An example of the power curves (i.e., Ψα(τa, τc)) of the oracle, MORST, SKAT and F
tests under α = 0.05, 10−4. Here, p = 100 and Σ = (σij) with σii = 1 and σij = 0.3 for any
1 ≤ i < j ≤ p.
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Figure 4: An example of the power curves (i.e., Ψα(τa, τc)) of the oracle, MORST, SKAT and F
tests under α = 0.05, 10−4. Here, Σ is the correlation matrix of 50 genetic variants of a continuous
region randomly selected from the simulated sequencing data described in Section 4.1 in the main
text.
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Figure 5: An example of the power curves (i.e., Ψα(τa, τc)) of the oracle, MORST, SKAT and F
tests under α = 0.05, 10−4. Here, Σ is the correlation matrix of 100 genetic variants of a continuous
region randomly selected from the simulated sequencing data described in Section 4.1 in the main
text.
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Figure 6: The power of MORST, SKAT and the F test in linear regression with p = 200 and
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correlation and the correlation of sequenced genotypes, respectively. The rows correspond to α =
0.05, 0.0001. The x-axis β0 is the signal strength (i.e., the common magnitude of non-zero βi’s).
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Figure 7: The power of MORST, SKAT and the F test in linear regression with p = 100 and
40% non-zero βi’s. The columns from left to right correspond to exchangeable correlation, AR(1)
correlation and the correlation of sequenced genotypes, respectively. The rows correspond to α =
0.05, 0.0001. The x-axis β0 is the signal strength (i.e., the common magnitude of non-zero βi’s).
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Figure 8: The power of MORST, SKAT and the F test in linear regression with p = 200 and
40% non-zero βi’s. The columns from left to right correspond to exchangeable correlation, AR(1)
correlation and the correlation of sequenced genotypes, respectively. The rows correspond to α =
0.05, 0.0001. The x-axis β0 is the signal strength (i.e., the common magnitude of non-zero βi’s).
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Figure 9: The power of MORST, SKAT and LRT in logistic regression with p = 100 and 20% non-
zero βi’s. The columns from left to right correspond to exchangeable correlation, AR(1) correlation
and the correlation of sequenced genotypes, respectively. The rows correspond to α = 0.05, 0.0001.
The x-axis β0 is the signal strength (i.e., the common magnitude of non-zero βi’s). The LRT is not
included in the panels on the right because the MLE does not exist for some genetic variants such
as singletons.
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Figure 10: The power of MORST, SKAT and the LRT in logistic regression with p = 200 and
20% non-zero βi’s. The columns from left to right correspond to exchangeable correlation, AR(1)
correlation and the correlation of sequenced genotypes, respectively. The rows correspond to α =
0.05, 0.0001. The x-axis β0 is the signal strength (i.e., the common magnitude of non-zero βi’s).
The LRT is not included in the panels on the right because the MLE does not exist for some genetic
variants such as singletons.
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Figure 11: The power of MORST, SKAT and the LRT in logistic regression with p = 100 and
40% non-zero βi’s. The columns from left to right correspond to exchangeable correlation, AR(1)
correlation and the correlation of sequenced genotypes, respectively. The rows correspond to α =
0.05, 0.0001. The x-axis β0 is the signal strength (i.e., the common magnitude of non-zero βi’s).
The LRT is not included in the panels on the right because the MLE does not exist for some genetic
variants such as singletons.
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Figure 12: The power of MORST, SKAT and the LRT in logistic regression with p = 200 and
40% non-zero βi’s. The columns from left to right correspond to exchangeable correlation, AR(1)
correlation and the correlation of sequenced genotypes, respectively. The rows correspond to α =
0.05, 0.0001. The x-axis β0 is the signal strength (i.e., the common magnitude of non-zero βi’s).
The LRT is not included in the panels on the right because the MLE does not exist for some genetic
variants such as singletons.
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Figure 13: The genomic landscape of significant 4kb sliding windows on chromosome 6 identified
by MORST, SKAT and the F test in the analysis of Lipoprotein(a) among AAs. A dot means that
the sliding window at this location is significant by the method that the color of the dot represents.
The numbers on the left of the plot show the number of significant windows identified by each
method.
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Figure 14: The genomic landscape of significant 4kb sliding windows on chromosome 6 identified
by MORST, SKAT and the F test in the analysis of Lipoprotein(a) among EAs. A dot means that
the sliding window at this location is significant by the method that the color of the dot represents.
The numbers on the left of the plot show the number of significant windows identified by each
method.
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Figure 15: The genomic landscape of significant 4kb sliding windows on chromosome 1 identified by
MORST, SKAT and the F test in the analysis of Neutrophil count among AAs. A dot means that
the sliding window at this location is significant by the method that the color of the dot represents.
The numbers on the left of the plot show the number of significant windows identified by each
method.
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