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What is Continuous Integration (CI) Testing
• Testing

– Focused, critical functionality (infrastructure), fast, independent, orthogonal, complete, … 
– Existing test suites often require re-design/refactoring for CI

• Integration
– Changes across key branches merged & tested to ensure the “whole” still works
– Develop, develop, develop, merge, merge, merge, test, test, test…NO!
– Develop, merge, test, develop, merge, test, develop, merge, test…YES!

• Continuous
– Changes tested every commit and/or pull-request (like auto-correct)

• CI generally implies a lot of automation
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Automated Testing vs. Continuous Integration (CI) Testing

• Automated Testing: Software that automatically performs tests and reliably 
detects and reports anomalous behaviors/outcomes.
– Examples: Auto-test, CTest/CDash, nightly testing, `make check’
– Lives “next to” your development workflow
– Potential issues: change attribution, timeliness of results, multiple branches of development

• Continuous Integration (CI): automated testing performed at high frequency 
and fine granularity aimed at preventing code changes from breaking key 
branches of development (e.g. main)
– Example: Disabled/enabled “Merge Pull Request”

button on GitHub
– Lives “within” your development workflow
– Potential issues: extreme automation, test granularity,

coverage, 3rd-party services/resources 
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What can make CI Difficult

Common situations

• Just getting started
– Many technologies/choices; often in the ”cloud”
– Solution: start small, simple, build up

• Developing suitable tests
– Many project’s existing tests not suitable for CI
– CI testing is a balance of thoroughness and responsiveness
– Solution: Simplify/refactor and/or sub-setting test suite

• Ensuring sufficient coverage
– Some changes to code never get tested – CI can provide a false 

sense of security
– Solution: tools to measure it, enforce always increasing

Advanced situations

• Defining failure for many configurations
– Bit-for-bit (exact) match vs. fuzzy match
– Solution: absolute/relative tolerances  AI/ML

• Numerous 3rd party libraries (TPLs)
– Compiling takes too long
– Solution: cache pre-built TPLs, containers

• Performance testing
– Avoid time-, space-, scaling-performance degradation
– Solution: Perf. instrumentation and scheduled testing 
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CI Resources (Where do jobs run?)

• Free Cloud Resources (many free on GitHub,
BitBucket, GitLab, etc.)
– Travis-CI, Circle-CI, AppVeyor, Azure Pipelines,…
– All launch a VM (Linux variants, Windows and OSX)

• Constrained in time/size, hardware (e.g. GPU type/count)
• Not a complete solution for many HPC/scientific codes,

but a useful starting point. 

• Site-local Resources
– Group, department, institution, computing facility
– Examples: Bamboo @ LLNL, Jenkins @ ANL, Travis+CDash @ NERSC, etc.
– ECP Program: GitLab-CI @ ANL, LANL, LLNL, NERSC, ORNL, SNL

• Create your own by setting up resources/services
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Getting started with CI

• What configuration is most important?
– Examples: gcc, icc, xlc? MPI-2 or MPI-3? Python 2, 3 or 2 & 3?

• What functionality is most important?
– Examples: vanilla numerical kernels? OpenMP kernels? GPU kernels? All of these?

• Good candidates…
– A “hello world” example for your project
– Once you’ve got the basics working, its easy to build up from there
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Getting started with CI:

Setting up CI

Example .travis.yml file
(also doing coverage analysis)

Service Interface
Travis repo YAML file [& repo scripts] /.travis.yml in

root of repo

GitLab Web page configurator +
repo YAML file [& repo scripts]

/.gitlab-ci.yml 
in
root of repo

Bamboo Web page configurator +
repo scripts

.

.

.

Specify environment

Commands to run test 
Keywords defined by service
provider’s YAML docs
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travis-ci.com codecov.io
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Homework Assignment

• See tutorial web site for details
– https://betterscientificsoftware.github.io/bssw-tutorial-sc20/

1. Fork the repository

2. Configure Travis-CI to run ‘make check’ as a CI check

3. Add code coverage checking using Codecov.io

4. Expand the testing by using ‘make check_all’ instead of ‘make check’

5. Extra credit: make the CI check fail if the code coverage decreases

https://betterscientificsoftware.github.io/bssw-tutorial-sc20/
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(Possible) Results of Homework*

Checking base 
branch and PR

Assessing code coverage changes 
due to PR and project overall

https://github.com/betterscientificsoftware/hello-numerical-world-sc20 
with testing via Travis CI and coverage analysis via Codecov.io

* Your development issues may vary!

https://github.com/betterscientificsoftware/hello-numerical-world-sc20
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Summary
• The purpose of Continuous Integration Testing is to identify problems early

– Catch things that would “break the build” or adversely impact other developers
– Need to provide sufficient confidence, but run quickly – balance varies by project

• CI testing should complement (not replace) more extensive automated “nightly” testing
– Use scheduled testing for more and more detailed tests, more configurations and platforms, 

performance testing, etc.

• Many options for where to execute CI tests
– Free services are a good (easy) place to start
– But may not be sufficient in the long run (especially large HPC/scientific codes)

• Start simple to get automation working, then build out what you need
– Focus initially on key software configurations and aspects of the code
– Make sure your testing expands to cover new code
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