
exascaleproject.org

Continuous Integration

David E. Bernholdt
Oak Ridge National Laboratory

Mark C. Miller
Lawrence Livermore National Laboratory

Better Scientific Software Tutorial, SC20, November 2020

See slide 2 for 
license details



2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Patricia A. Grubel, Rinku K. 

Gupta, Better Scientific Software tutorial, in SC ‘20: International Conference for High Performance Computing, 
Networking, Storage and Analysis, online, 2020. DOI: 10.6084/m9.figshare.12994376

• Individual modules may be cited as Speaker, Module Title, in Better Scientific Software tutorial…

Acknowledgements
• Additional contributors include: Mike Heroux, Alicia Klinvex, Mark Miller, Jared O’Neal, Katherine Riley, David Rogers, Deborah Stevens, 

James Willenbring
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR), 

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the 
National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department 
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of 
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National 
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S. 
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and 
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for 
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.12994376


3

What is Continuous Integration (CI) Testing
• Testing

– Focused, critical functionality (infrastructure), fast, independent, orthogonal, complete, … 
– Existing test suites often require re-design/refactoring for CI

• Integration
– Changes across key branches merged & tested to ensure the “whole” still works
– Develop, develop, develop, merge, merge, merge, test, test, test…NO!
– Develop, merge, test, develop, merge, test, develop, merge, test…YES!

• Continuous
– Changes tested every commit and/or pull-request (like auto-correct)

• CI generally implies a lot of automation



4

Automated Testing vs. Continuous Integration (CI) Testing

• Automated Testing: Software that automatically performs tests and reliably 
detects and reports anomalous behaviors/outcomes.
– Examples: Auto-test, CTest/CDash, nightly testing, `make check’
– Lives “next to” your development workflow
– Potential issues: change attribution, timeliness of results, multiple branches of development

• Continuous Integration (CI): automated testing performed at high frequency 
and fine granularity aimed at preventing code changes from breaking key 
branches of development (e.g. main)
– Example: Disabled/enabled “Merge Pull Request”

button on GitHub
– Lives “within” your development workflow
– Potential issues: extreme automation, test granularity,

coverage, 3rd-party services/resources 



7

What can make CI Difficult

Common situations

• Just getting started
– Many technologies/choices; often in the ”cloud”
– Solution: start small, simple, build up

• Developing suitable tests
– Many project’s existing tests not suitable for CI
– CI testing is a balance of thoroughness and responsiveness
– Solution: Simplify/refactor and/or sub-setting test suite

• Ensuring sufficient coverage
– Some changes to code never get tested – CI can provide a false 

sense of security
– Solution: tools to measure it, enforce always increasing

Advanced situations

• Defining failure for many configurations
– Bit-for-bit (exact) match vs. fuzzy match
– Solution: absolute/relative tolerances  AI/ML

• Numerous 3rd party libraries (TPLs)
– Compiling takes too long
– Solution: cache pre-built TPLs, containers

• Performance testing
– Avoid time-, space-, scaling-performance degradation
– Solution: Perf. instrumentation and scheduled testing 



8

CI Resources (Where do jobs run?)

• Free Cloud Resources (many free on GitHub,
BitBucket, GitLab, etc.)
– Travis-CI, Circle-CI, AppVeyor, Azure Pipelines,…
– All launch a VM (Linux variants, Windows and OSX)

• Constrained in time/size, hardware (e.g. GPU type/count)
• Not a complete solution for many HPC/scientific codes,

but a useful starting point. 

• Site-local Resources
– Group, department, institution, computing facility
– Examples: Bamboo @ LLNL, Jenkins @ ANL, Travis+CDash @ NERSC, etc.
– ECP Program: GitLab-CI @ ANL, LANL, LLNL, NERSC, ORNL, SNL

• Create your own by setting up resources/services



11

Getting started with CI

• What configuration is most important?
– Examples: gcc, icc, xlc? MPI-2 or MPI-3? Python 2, 3 or 2 & 3?

• What functionality is most important?
– Examples: vanilla numerical kernels? OpenMP kernels? GPU kernels? All of these?

• Good candidates…
– A “hello world” example for your project
– Once you’ve got the basics working, its easy to build up from there



12

Getting started with CI:

Setting up CI

Example .travis.yml file
(also doing coverage analysis)

Service Interface
Travis repo YAML file [& repo scripts] /.travis.yml in

root of repo

GitLab Web page configurator +
repo YAML file [& repo scripts]

/.gitlab-ci.yml 
in
root of repo

Bamboo Web page configurator +
repo scripts

.

.

.

Specify environment

Commands to run test 
Keywords defined by service
provider’s YAML docs



13

travis-ci.com codecov.io



14

Homework Assignment

• See tutorial web site for details
– https://betterscientificsoftware.github.io/bssw-tutorial-sc20/

1. Fork the repository

2. Configure Travis-CI to run ‘make check’ as a CI check

3. Add code coverage checking using Codecov.io

4. Expand the testing by using ‘make check_all’ instead of ‘make check’

5. Extra credit: make the CI check fail if the code coverage decreases

https://betterscientificsoftware.github.io/bssw-tutorial-sc20/


15

(Possible) Results of Homework*

Checking base 
branch and PR

Assessing code coverage changes 
due to PR and project overall

https://github.com/betterscientificsoftware/hello-numerical-world-sc20 
with testing via Travis CI and coverage analysis via Codecov.io

* Your development issues may vary!

https://github.com/betterscientificsoftware/hello-numerical-world-sc20


16

Summary
• The purpose of Continuous Integration Testing is to identify problems early

– Catch things that would “break the build” or adversely impact other developers
– Need to provide sufficient confidence, but run quickly – balance varies by project

• CI testing should complement (not replace) more extensive automated “nightly” testing
– Use scheduled testing for more and more detailed tests, more configurations and platforms, 

performance testing, etc.

• Many options for where to execute CI tests
– Free services are a good (easy) place to start
– But may not be sufficient in the long run (especially large HPC/scientific codes)

• Start simple to get automation working, then build out what you need
– Focus initially on key software configurations and aspects of the code
– Make sure your testing expands to cover new code


	Continuous Integration
	License, Citation and Acknowledgements
	What is Continuous Integration (CI) Testing
	Automated Testing vs. Continuous Integration (CI) Testing
	What can make CI Difficult
	CI Resources (Where do jobs run?)
	Getting started with CI
	Getting started with CI:�
	travis-ci.com
	Homework Assignment
	(Possible) Results of Homework*
	Summary

