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Architecting scientific codes
Desirable Characteristics and Why They are Challenging

Extensibility Performance

Spatial and temporal
locality of data

Well defined structure and

modules Minimizing data

movement
Maximizing scalability

Encapsulation of
functionalities

Low arithmetic intensity
solvers with hard
dependencies. Proximity
and work distribution at
Cross purposes

Same data layout not
good for all solvers. Many
corner cases. Necessary

lateral interactions
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Architecting scientific codes
Desirable Characteristics and Why They are Challenging

Portability Verifiability and Maintainability

General solutions that

|
work without significant Clean code

Documentation

manual intervention Comprehensive testing

across platforms

Tremendous platform

heterogeneity Wrong incentives
A version for each class of Designing good tests is
device => combinatorial hard
explosion
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Taming the Complexity: Separation of Concerns
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Architecting scientific codes

Taming the Complexity: Separation of Concerns

Subiect of _ logically separable
) Client Code functional units of
TEECETET Mathematically computation
Model
: complex
Numerics

Encode into framework

Hide from one
another

Treat differently

Differentiate between
private and public
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More Stable Infrastructure
Discretization Data structures
/O and movement Define interfaces
Parameters
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A Design Model for Separation of Concerns

Infrastructure Capabilities

> Requirements Model

Implement Design

Develop :|
Validate
Maintain i
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The Running Example

Lets say you live in a house with exterior walls made of a single material of thickness, $$L_x$$. Inside the walls are some water
pipes as pictured below.

A Wall (o)

Outside Inside
Overnight Low Constant
-40°F 70°F
Water Pipe
(00)
| &% | R T .
| | | | | ” x
0 L,

You keep the inside temperature of the house always at 70 degrees F. But, there is an overnight storm coming. The outside
temperature is expected to drop to -40 degrees F for 15.5 hours. Will your pipes freeze before the storm is over?

19 productivity

—
\ ) EXASCALE
) I COMPUTING

PROJECT



Problem Specification - Design Considerations
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Infrastructure API

« process_args(int argc, char **argv)
« static void initialize(void)

» void copy(int n, double *dst, double
const *src)

« void write_array(int t, int n, double dx,
double const *a)

« void set_initial _condition(int n, double
*a, double dx, char const *ic)
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Numerics API

« double 12_norm(int n, double const *a, double const *b)
« static void r83 _np_fa(int n, double *a)
» static void r83 _np_sl ( int n, double const *a_lu, double const *b, double *x)

» bool update_solution_crankn(int n, double *curr, double const *last, double const
*cn_Amat, double bc 0, double bc 1)

 bool update_solution_upwind15(int n, double *curr, double const *last, double
alpha, double dx, double dt, double bc_ 0, double bc 1)

 void compute_exact_solution(int n, double *a, double dx, char const *ic, double
alpha, double t, double bc0, double bc1)

» bool update_solution_ftcs( int n, double *uk1, double const *ukO, double alpha,
double dx, double dt, double bc0, double bc1)
IDEAS = ’:\\”_) expsCAe
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Virtual view of functionalities
Decomposition into units and definition of

interfaces

Spatial
decomposition

I

Real view : A
whole domain
with many
operators

!

Functional

Virtual view :
domain sections

Parallelization

decomposition

v

» and scaling
as stand-alone L
. : optimization
computation unit
: : Memor
Virtual view y
. access and
collection of >
compute
components L
optimization
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A Design Model for Separation of Concerns

Infrastructure

>

Requirements

Implement

Maintain

Capabilities

Model

Design
Develop

!

Validate

This worked with
distributed memory
parallelization model

No longer sufficient
needs refinement
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Additional Considerations for Infrastructure

infrastructure model

—

Wrapper layer

* produ



Example: Architecting Multiphysics PDEs

Separation of Concerns, Tasks
Framework
Real view : A Spatial Virtual view :
w!*lole domain Y Decomposmon : domain sections| 1| Load Distribution
with many Blocks/tiles as stand-alone
operators computation unit
: Parallelization
Dynamic . :
: » and scaling
Scheduling P
optimization

» |oad balancing, work redistribution

* Meta-information about domain sections

Possible asynchronization at block and operator level
= No compute optimization here
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Example: Architecting Multiphysics PDEs

composition
Framework = Abstractions for
Real view : A performance
whole domain S .
with many portablllty
t .ps
e (lrs = Ability to express
Virtual v operations at a
Functional irtual view :
decomposition y el o hlgher Ievel
components
d
= Toolchain 2 fr(;nzformation Memory
. Abstraction at — accesstand
to Conflgure solver level compute.
. Fusing/inlining optimization
- Compllers Functions

to optimize

IDEAS
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Other Considerations

« Leverage existing software

— Libraries may have better solvers
» Off-load expertise and maintenance

— Examine the interoperability constraints
« Many times the cost is justified even if there is more data movement

* More available packages are attempting to achieve interoperability
— See if a combination meets your requirements

« May be worthwhile to let the library dictate data layout if the
corresponding operations dominate
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TAKEAWAYS

DIFFERENTIATE BETWEEN SLOW CHANGING AND FAST
CHANGING COMPONENTS OF YOUR CODE

TAKE YOUR TIME TO UNDERSTAND THE REQUIREMENTS OF
YOUR INFRASTRUCTURE

IMPLEMENT SEPARATION OF CONCERNS

DESIGN WITH PORTABILITY, EXTENSIBILITY, REPRODUCIBILITY
AND MAINTAINABILITY IN MIND

LEVERAGE EXISTING CAPABILITIES WHERE POSSIBLE
....... QUESTIONS ?
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