ECP

st oo oraes e Scientific Software Design

I D Eﬂs Anshu Dubey

productivity

Argonne National Laboratory

I:ID be.tter. . Software Productivity Track, ATPESC 2020
scientific
D software

See slide 2 for
license details

S

exascaleproject.org i ENERGY SC.';?CZ "5‘3

License, Citation and Acknowledgements \® ®]

License and Citation
« This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

* The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, Mark C. Miller, Katherine M. Riley,
and James M. Willenbring, Software Productivity Track, in Argonne Training Program for Extreme Scale
Computing (ATPESC), August 2020, online. DOI: 10.6084/m9.figshare.12719834

 Individual modules may be cited as Speaker, Module Title, in Software Productivity Track...

Acknowledgements

« Additional contributors include: Patricia Grubel, Rinku Gupta, Mike Heroux, Alicia Klinvex, Jared O’Neal, David Rogers,
Deborah Stevens

» This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing

Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Administration.

« This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for
the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

« This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S.
Department of Energy under Contract No. DE-AC05-000R22725.

« This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence
Livermore National Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

» This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission
laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Securlty Admlnlstratlon

under contract DE-NA0003525. IDE A S (\\ — cxoschc
productivity I

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.12719834

Architecting scientific codes

Desirable Characteristics and Why They are Challenging
Extensibility

Well defined structure and
modules

Encapsulation of
functionalities

PPPPPPP

Architecting scientific codes

Desirable Characteristics and Why They are Challenging
Extensibility

Well defined structure and
modules

Encapsulation of
functionalities

Same data layout not
good for all solvers. Many
corner cases. Necessary

lateral interactions

f';\\
1D EA S —(CP =

PROJECT

Architecting scientific codes
Desirable Characteristics and Why They are Challenging

Extensibility Performance

Spatial and temporal
locality of data
Minimizing data
movement
Maximizing scalability

Well defined structure and
modules

Encapsulation of
functionalities

Same data layout not
good for all solvers. Many
corner cases. Necessary

lateral interactions

f';\\
|DEAS — \)) St

p "o d u Ct| AV} |ty \(\U PROJECT

Architecting scientific codes
Desirable Characteristics and Why They are Challenging

Extensibility Performance

Spatial and temporal
locality of data

Well defined structure and

modules Minimizing data

movement
Maximizing scalability

Encapsulation of
functionalities

Low arithmetic intensity
solvers with hard
dependencies. Proximity
and work distribution at
Cross purposes

Same data layout not
good for all solvers. Many
corner cases. Necessary

lateral interactions

f';\\
|DEAS — \)) Sxosee

p "o d u Ct| AV} |ty \(\U PROJECT

Architecting scientific codes

Desirable Characteristics and Why They are Challenging
Portability

General solutions that
work without significant

manual intervention
across platforms

PPPPPPP

Architecting scientific codes

Desirable Characteristics and Why They are Challenging
Portability

General solutions that
work without significant

manual intervention
across platforms

Tremendous platform
heterogeneity
A version for each class of
device => combinatorial
explosion

f';\\
1D EA S —(CP =

PROJECT

Architecting scientific codes

Desirable Characteristics and Why They are Challenging

Portability

General solutions that
work without significant

manual intervention
across platforms

Tremendous platform
heterogeneity
A version for each class of
device => combinatorial
explosion

Verifiability and Maintainability

Clean code

Documentation
Comprehensive testing

IDEAS

productivity

—
\\ EXASCAHLE

—, COMPUTING
PROJECT

Architecting scientific codes
Desirable Characteristics and Why They are Challenging

Portability Verifiability and Maintainability

General solutions that

|
work without significant Clean code

Documentation

manual intervention Comprehensive testing

across platforms

Tremendous platform

heterogeneity Wrong incentives
A version for each class of Designing good tests is
device => combinatorial hard
explosion

f';\\
|DEAS — \)) Sxosee

10 productivity \(\... e

11

Architecting scientific codes

Taming the Complexity: Separation of Concerns

Subject of
research
Model
Numerics

More Stable
Discretization

/O
Parameters

EEEEEEEE
CCCCCCCCC
PPPPPPP

Architecting scientific codes

Taming the Complexity: Separation of Concerns

Subject of
research
Model
Numerics

Treat differently

More Stable
Discretization
/0O
Parameters

o
\
|DE ﬂS — \)) Sxosee

12 productivity \(\._ A

Architecting scientific codes

Taming the Complexity: Separation of Concerns

Subject of Client Code
research Mathematicall
Model Y
_ complex
Numerics

Treat differently

More Stable
Discretization
/0O
Parameters

Infrastructure
Data structures

and movement

o
\
|DE ﬂS — \)) Sxosee

3 productivity \(\._ A

Architecting scientific codes

Taming the Complexity: Separation of Concerns

Subject of
research
Model
Numerics

Client Code
Mathematically
complex

Treat differently

More Stable
Discretization
/0O
Parameters

14

Hide from one
another

Infrastructure
Data structures
and movement

o

(&

\
EXASCAHLE
\) —) COMPUTING

PROJECT

Architecting scientific codes

Taming the Complexity: Separation of Concerns

Subiect of _ logically separable
) Client Code functional units of
TEECETET Mathematically computation
Model
: complex
Numerics

Encode into framework

Hide from one
another

Treat differently

Differentiate between
private and public

pupj yioq o) seljddy

More Stable Infrastructure
Discretization Data structures
/O and movement Define interfaces
Parameters

IDEAS

15 productivity

o

(&

)

) EXASCAHLE
COMPUTING
PROJECT

A Design Model for Separation of Concerns

Infrastructure Capabilities

> Requirements Model

Implement Design

Develop :|
Validate
Maintain i

PPPPPPP

Design Considerations

PPPPPPP

17 productivi

Design Considerations

The Running Example

Lets say you live in a house with exterior walls made of a single material of thickness, $$L_x$$. Inside the walls are some water
pipes as pictured below.

A Wall (o)

Outside Inside
Overnight Low Constant
-40°F 70°F
Water Pipe
(00)
| &% | R T .
| | | | | ” x
0 L,

You keep the inside temperature of the house always at 70 degrees F. But, there is an overnight storm coming. The outside
temperature is expected to drop to -40 degrees F for 15.5 hours. Will your pipes freeze before the storm is over?

19 productivity

—
\) EXASCALE
) I COMPUTING

PROJECT

Problem Specification - Design Considerations

IDEAS g0p

productivity

21

Infrastructure API

« process_args(int argc, char **argv)
« static void initialize(void)

» void copy(int n, double *dst, double
const *src)

« void write_array(int t, int n, double dx,
double const *a)

« void set_initial _condition(int n, double
*a, double dx, char const *ic)

EEEEEEEE
CCCCCCCCC
EEEEEEE

22

Numerics API

« double 12_norm(int n, double const *a, double const *b)
« static void r83 _np_fa(int n, double *a)
» static void r83 _np_sl (int n, double const *a_lu, double const *b, double *x)

» bool update_solution_crankn(int n, double *curr, double const *last, double const
*cn_Amat, double bc 0, double bc 1)

 bool update_solution_upwind15(int n, double *curr, double const *last, double
alpha, double dx, double dt, double bc_ 0, double bc 1)

 void compute_exact_solution(int n, double *a, double dx, char const *ic, double
alpha, double t, double bc0, double bc1)

» bool update_solution_ftcs(int n, double *uk1, double const *ukO, double alpha,
double dx, double dt, double bc0, double bc1)
IDEAS = ’:\\”_) expsCAe

productivity \(EEEEEEE

23

Virtual view of functionalities
Decomposition into units and definition of

interfaces

Spatial
decomposition

I

Real view : A
whole domain
with many
operators

!

Functional

Virtual view :
domain sections

Parallelization

decomposition

v

» and scaling
as stand-alone L
. : optimization
computation unit
: : Memor
Virtual view y
. access and
collection of >
compute
components L
optimization

IDEAS

productivity

Example: Architecting Multiphysics PDEs

o

)

) EXASCALE
COMPUTING
PROJECT

24

A Design Model for Separation of Concerns

Infrastructure

>

Requirements

Implement

Maintain

Capabilities

Model

Design
Develop

!

Validate

This worked with
distributed memory
parallelization model

No longer sufficient
needs refinement

T
\\ EXASCALE

IDEAS =P 2=

pPro du Gt|v|ty \(\-‘ / PROJECT

Additional Considerations for Infrastructure

infrastructure model

—

Wrapper layer

* produ

Example: Architecting Multiphysics PDEs

Separation of Concerns, Tasks
Framework
Real view : A Spatial Virtual view :
w!*lole domain Y Decomposmon : domain sections| 1| Load Distribution
with many Blocks/tiles as stand-alone
operators computation unit
: Parallelization
Dynamic . :
: » and scaling
Scheduling P
optimization

» |oad balancing, work redistribution

* Meta-information about domain sections

Possible asynchronization at block and operator level
= No compute optimization here

A S =\
|DE — \)) st

productivity \(== Al

Example: Architecting Multiphysics PDEs

composition
Framework = Abstractions for
Real view : A performance
whole domain S .
with many portablllty
t .ps
e (lrs = Ability to express
Virtual v operations at a
Functional irtual view :
decomposition y el o hlgher Ievel
components
d
= Toolchain 2 fr(;nzformation Memory
. Abstraction at — accesstand
to Conflgure solver level compute.
. Fusing/inlining optimization
- Compllers Functions

to optimize

IDEAS

27 productivity

——

)

) EXASCAHLE
COMPUTING
PROJECT

Other Considerations

« Leverage existing software

— Libraries may have better solvers
» Off-load expertise and maintenance

— Examine the interoperability constraints
« Many times the cost is justified even if there is more data movement

* More available packages are attempting to achieve interoperability
— See if a combination meets your requirements

« May be worthwhile to let the library dictate data layout if the
corresponding operations dominate

f';\\
|DEAS — \)|_: ExASCALE.

PPPPPPP

28 productivity \(\-

TAKEAWAYS

DIFFERENTIATE BETWEEN SLOW CHANGING AND FAST
CHANGING COMPONENTS OF YOUR CODE

TAKE YOUR TIME TO UNDERSTAND THE REQUIREMENTS OF
YOUR INFRASTRUCTURE

IMPLEMENT SEPARATION OF CONCERNS

DESIGN WITH PORTABILITY, EXTENSIBILITY, REPRODUCIBILITY
AND MAINTAINABILITY IN MIND

LEVERAGE EXISTING CAPABILITIES WHERE POSSIBLE
....... QUESTIONS ?

IDEAS E\@\)p

productivity

	Scientific Software Design
	License, Citation and Acknowledgements
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	A Design Model for Separation of Concerns
	Design Considerations
	Design Considerations
	�The Running Example
	Problem Specification - Design Considerations
	Infrastructure API
	Numerics API
	Example: Architecting Multiphysics PDEs
	A Design Model for Separation of Concerns
	Additional Considerations for Infrastructure
	Separation of Concerns, Tasks
	composition
	Other Considerations
	Slide Number 29

