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In this Supplemental Material, we provide some further technical details and supplementary information in support
of the results discussed in the main text. We also provide additional information concerning the population’s mean
fixation time (MFT), and the generalization of the model in a scenario where the slow strain is a public goods producer.

In what follows, unless stated otherwise, the notation is the same as in the main text and the equations and figures
refer to those therein. An e-print of the main text is available at https://arxiv.org/abs/2002.10372.

1 Model description, master equation and simulation methods

In this section, we describe in detail the model and discuss our modelling choices. We then give the master equation
(ME) of the birth-death process according to which the population evolves, and describe the methods used to simulate
the population dynamics in the case of random and periodic switching.

1.1 Model description

As explained in the main text, the population evolves according to a multivariate birth-death process where reproduc-
tion of S/F individuals, NS/F → NS/F + 1, occurs at a transition rate T+

S/F , and death NS/F → NS/F − 1, occurs
at a transition rate T−S/F , with [1, 2]

T+
S =

fS
f̄
NS , T+

F =
fF
f̄
NF and T−S =

N

K(t)
NS , T−F =

N

K(t)
NF . (S1)

In the main text we explicitly consider fS = 1 − s and fF = 1, with 0 < s � 1, yielding the population’s aver-
age (relative birth) fitness f̄ = (NSfS + NF fF )/N = 1 − sx, where x ≡ NS/N is the fraction of S individuals
(slow growers). In the transition rates (S1), the carrying capacity K(t) varies in time either randomly or periodi-
cally according to Eq. (1) of the main text, and switches with rates ν±, see also below. It is worth noting that our
choice of fi, i ∈ {S, F} sets the typical time scale of the dynamics. In a more general setting, the biological fac-
tors determining the per capita growth and death rates can be written as the product of a global and relative terms:
T+
i = g(x,N)fi(x)Ni/f̄ and T−i = d(x,N)wi(x)Ni/w̄, where w̄ = (NSwS + NFwF )/N . In this formulation,
g(x,N) and d(x,N) are respectively referred to as the global birth fitness and global weakness and are species in-
dependent (acting similarly on both strains), whereas fi(x) and wi(x) are the species-dependent relative birth fitness
and relative weakness, respectively [3, 4]. In this general setting, g and fi affect the strains’ birth rates, while d and
wi determine their survival or viability. Within this framework, various evolutionary scenarios can be investigated, see
below and Refs. [1, 2, 3, 4, 5, 6, 7].

In this work, as in many applications, see e.g. Refs. [3, 4, 5, 6], we have assumed that S and F (slow and fast
growers) have equal survival chances and are subject to a logistic growth, and hence we set wS = wF = 1, and
d(x,N) = N/K for the global weakness. For the sake of simplicity, we have assumed that the relative birth fitness
(referred to as “fitness” for brevity) is constant for each species, with fS = 1 − s and fF = 1, while the global
birth fitness is g = 1 in the main text, where we focus on the “pure resource competition scenario” of Refs. [1, 2].
In Sec. 7 of this Supplemental Material (SM), we also consider a “public good scenario” in which the slow growers
(strain S) are public good (PG) producers, and the global growth birth fitness (global growth rate) is g(x) = 1 +
bx (with b > 0), i.e., a global growth rate increasing linearly with the level of PG production represented by the
fraction x of S individuals in the population. This choice corresponds to the “balanced growth scenario” considered in
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Refs. [3, 4, 5, 6] with a constant carrying capacity. In such a scenario, birth and death events balance each other, and
the population size fluctuates about its carrying capacity after a short transient. Interestingly, the “balanced growth
scenario” (with PG production, b > 0) has been used in Ref. [5] to explain the Simpson’s paradox found in the
microbial experiments of Ref. [8]. This framework also allows us to model the effect of bacteriostatic (biostatic) and
bactericidal (biocidal) antimicrobials on the time evolution of sensible microorganisms in communities of sensible
and resistant cells: bacteriostatic suppresses sensible cells growth, and hence affects fi (but neither d nor wi), while
bactericidal induces sensible cells death and thus affects wi (but neither g nor fi), see, e.g., Refs. [9, 10].

While different other model formulations are of course possible, studying the birth-death process defined by
Eqs. (S1) and (1) of the main text, is arguably the simplest way to investigate analytically, in a biologically simple
and relevant setting, the effect of demographic noise (random birth/death events) coupled to environmental variability.
Namely, this coupling is achieved via the switching carrying capacity that drives the dynamics of the population size.
At this point, it is useful to summarize the main properties of the birth-death process defined by Eqs. (S1) and (1):

- As reported in the main text, at mean-field level (constant K = K0 � 1, large population), the population size
obeys the logistic equation dN/dt ≡ Ṅ =

∑
i(T

+
i −T

−
i ) = N [1− (N/K)], while the population composition

evolves according to the replicator-like equation [11] ẋ = (T+
S −T

−
S )/N−x(Ṅ/N) = −x(1−x)[fS− f̄ ]/f̄ =

−sx(1− x)/(1− sx) [1, 2]. This model, and its generalization (see Sec. 7 of this SM), therefore have a sound
eco-evolutionary dynamics.

- When the population size is constant (N = K0) and there is no environmental variability (only demographic
noise), the dynamics can be mapped onto that of the well-known fitness-dependent Moran model [11, 12, 13]
defined by the reactions SF → SS and SF → FF , respectively occurring at rates T̃+

S = T+
S T
−
F /N =

(1− s)x(1−x)N/(1− sx) and T̃−S = T−S T
+
F /N = x(1−x)N/(1− sx), see Ref. [2]. This allows us to obtain

Eq. (2) in the main text, used in Eq. (3) to compute the fixation probability when K varies in time.

- The model studied here is conceptual, but many of its features are biologically relevant. With modern bio-
engineering techniques, it is in fact possible to perform controlled microbial experiments in settings allowing
to test the theoretical predictions of models featuring switching environment, time-varying population size, PG
production, cooperation dilemma, see, e.g., Refs. [8, 14, 15, 16].

- The birth-death process underpinning this model can generalized in different ways. In addition to the scenario
with PG production, see above and Sec. 7 of this SM, a possible generalization is the “dormancy scenario” of
Ref. [4] where g(x,N) = 1+x− (N/K0), d(x,N) = 0 and same fi, wi as here. The above general framework
can also accommodate more realistic and complex processes in which g(x,N) and fi(x), and/or wi(x), depend
on ξα, with α ∈ {r, p} and hence, also vary with the environment along with d = N/K.

1.2 Master equation of the underlying birth-death process

Using ~N = (NS , NF ) and ± as a shorthand notation for ξr = ±1, the ME for the birth-death process defined by (S1),
where the carrying capacity K(t) varies randomly by switching according to K+ → K− with rate ν+ and K− → K+

with rate ν− [see Eq. (1) in the main text, with α = r], reads

dP
(r)
ν ( ~N,+, t)

dt
= (E−S − 1)[T+

S P
(r)
ν ( ~N,+, t)] + (E−F − 1)[T+

F P
(r)
ν ( ~N,+, t)] (S2a)

+ (E+
S − 1)[T−S P

(r)
ν ( ~N,+, t)] + (E+

F − 1)[T−F P
(r)
ν ( ~N,+, t)] + ν−P

(r)
ν ( ~N,−, t)− ν+P

(r)
ν ( ~N,+, t),

dP
(r)
ν ( ~N,−, t)
dt

= (E−S − 1)[T+
S P

(r)
ν ( ~N,−, t)] + (E−F − 1)[T+

F P
(r)
ν ( ~N,−, t)] (S2b)

+ (E+
S − 1)[T−S P

(r)
ν ( ~N,−, t)] + (E+

F − 1)[T−F P
(r)
ν ( ~N,−, t)] + ν+P

(r)
ν ( ~N,+, t)− ν−P (r)

ν ( ~N,−, t),

where E±S/F are shift operators such that E±S f(NS , NF , ξ, t) = f(NS ± 1, NF , ξ, t) and similarly for E±F . Clearly,
Eqs. (S2a) and (S2b) are coupled and the terms on the 2nd lines’ right-hand-side account for environmental switching.

For periodic switching, the carrying capacity K(t) = K0[1 + γξp(t)], varies deterministically with ξp(t) ≡
ξp(t+ T ), where the shape of ξp(t) is taken to be a rectangular wave of period T = (1/ν+) + (1/ν−) ∗∗. In this case,
∗∗In Sec. 2.2, we first consider a general periodic function ξp(t) = ξp(t + T ). In all the other sections of the main text and this Supplemental

Material, we have specifically focused on the case of a rectangular wave of period T and duty cycle (1 + δ)/2, see Sec. 5.4.
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the ME of the birth-death processs (S1) with periodically switching K(t) reads

dP
(p)
ν ( ~N, t)

dt
= (E−S − 1)[T+

S P
(p)
ν ( ~N, t)] + (E−F − 1)[T+

F P
(p)
ν ( ~N, t)]

+ (E+
S − 1)[T−S (ξp)P

(p)
ν ( ~N, t)]] + (E+

F − 1)[T−F (ξp)P
(p)
ν ( ~N, t)], (S3)

where T−S/F (ξp) are now the time-dependent transition rates given by (S1) that vary periodically with ξp. Note, that in

both MEs (S2)-(S3), P (α)
ν ( ~N, t) = 0 whenever NS < 0 or NF < 0.

1.3 Simulation methods

While the MEs (S2) and (S3) fully describe the population dynamics in the case of random and periodic switching,
respectively, in general, they cannot be solved analytically. However, to gain insight into to the stochastic dynamics,
one can employ efficient numerical simulations. In the case of random switching, process (S2) defined by the birth-
death (S1) and switching ξr → −ξr reactions, can be exactly simulated using the standard Gillespie algorithm [17]. In
the case of periodic switching, it is convenient to simulate the birth-death process (S3) with time-dependent (periodic)
transition rates (S1) using the simulation method outlined below.

1.3.1 Simulation of the periodic switching case with the modified next reaction method

In the periodic case we used the modified next reaction method [18], which is a suitable algorithm for systems with
explicit time dependent rates. Unlike the classic Gillespie Algorithm, this version considers all possible birth/death
processes as independent reactions. We can calculate the time step ∆ti in which the next reaction occurs by generating
a random number from a uniform distribution ri ∈ U (0, 1) for the probability that reaction i did not occur after time
interval ∆ti. Here, we have four stochastic reactions i ∈ {1, . . . , 4} (birth/death of S and F ) each with a propensity
function ai ∈ {T+

S , T
−
S (ξp(t)), T

+
F , T

−
F (ξp(t))}, and thus we have ri = exp

[
−
∫ t+∆ti
t

ai (t′) dt′
]
.

We start the simulation at time t = 0, and for each reaction we set the “internal time” Ti = 0 and the quantity
Pi = ln (1/ri). We also set the initial number of each species, the environmental state (with probability determined
by the duty cycle), and the initial time to the next switch ∆tswitch. Here, the time step ∆ti is found by computing∫ t+∆ti
t

ai (t′) dt′ = Pi − Ti, which can be easily solved, since K is discrete and thus in each iteration it is constant.
At this point we find the reaction that has the minimal time step ∆tµ = min

i
{∆ti}, propagate time t → t + ∆tµ,

and update the population size, the internal times Ti → Ti +
∫ t+∆tµ
t

ai (t′) dt′, and Pi → Pi + δi,µ ln (1/ri). Then
we recalculate the rates ai, generate another random number ri ∈ U (0, 1), and repeat these steps iteratively until one
of the species has undergone extinction. We treat the deterministic switches ξ → −ξ, that occurred during a period of
1/ν±, as follows: if ∆tswitch < ∆tµ, we switch ξ → −ξ and propagate the time t→ t+ ∆tswitch.

2 Approximations of the quasi-stationary population density: periodic switching

In this section we compute the quasi-stationary population size distribution (PSD), PN , in the slow switching regime,
as well as under fast and intermediate periodic switching. This is done by first computing the PSD in the case of
constant carrying capacity, assuming a static environment ξα(t) = ξ and carrying capacity K(t) = K. To do so, we
start with the ME for P (N)|K – the probability that the total population size is N given a carrying capacity K

dP (N)|K
dt

= (N − 1)P (N − 1) |K +
(N + 1)

2

K
P (N + 1) |K −

(
N +

N2

K

)
P (N)|K . (S4)

The PSD can be found by putting Ṗ (N)|K = 0 and demanding a reflecting boundary condition at N = 1. The latter
assumes that the probability flux to the extinction state P (N = 0) is negligibly small, which is legitimate since the
mean time to extinction is assumed to be much larger than the time scales we are interested in here, see main text. The
normalized solution of the resulting recursion equation reads

P (N)|K =
1

Ei (K)− γ − ln (K)

KN

NN !
' K

N

KNe−K

N !
, (S5)

where Ei (x) = −
∫∞
−x dte

−t/t is the exponential integral function, γ = 0.577... is the Euler–Mascheroni constant,
and the last approximation holds when K � 1.
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2.1 Quasi-stationary PSD under slow switching

When ν → 0, on average there are no switches prior to fixation, and the population evolves in a static environment
ξα = ±1, with ξα that is distributed with a probability p(ξα) = (1 ± δ)/2. Namely, if ξα = ±1, the population is
subject to a constant carrying capacity K = K±. Hence, using Eq. (S5), the PSD under slow switching reads

P0(N) =
∑

ξα=±1

P (N |ξα) p(ξα) '
(

1 + δ

2

)
K+

N

KN
+ e
−K+

N !
+

(
1− δ

2

)
K−
N

KN
− e
−K−

N !
. (S6)

As explained in the main text, this result is valid both for periodic and random switching.

2.2 Quasi-stationary PSD under fast periodic switching: Kapitza method

In the opposite limit ν � 1, the carrying capacity K rapidly oscillates around K0. To find the PSD in the case of fast
periodic switching, we employ the Kapitza method [19], valid for a general periodic ξp(t), which involves separating
the dynamics into fast and slow variables, and averaging the fast variables over the period of variation.

Our starting point is ME (S4), but now with K = K0[1 + γξp(t)], i.e., explicitly time-dependent rates. To treat
Eq. (S4) semi-classically, we define the probability generating function G (p, t) =

∑∞
m=0 P (m, t) pm, where p is an

auxiliary variable. Conservation of probability yields G (1, t) = 1. The definition of G is useful since

P (N, t) =
1

N !

∂NG (p, t)

∂pN
|p=0. (S7)

Multiplying Eq. (S4) by pN and summing over all N ’s, we obtain a second-order partial differential equation for G

∂G

∂t
= (1− p)

(
−p∂G

∂p
+

1

K (t)

∂G

∂p
+

p

K (t)

∂2G

∂p2

)
. (S8)

This equation cannot be solved in general. An approximate solution can be found by using the fact that the typical car-
rying capacity is large,K0 � 1, and employing the WKB ansatzG = G0 exp [−K0S (p, t)] in Eq. (S8) [20]. Keeping
leading- and subleading-order terms with respect to O(K), we arrive at the following Hamilton-Jacobi equation

− ∂S

∂t
= q (1− p)

(
−p+

1

K (t)
+

K0

K (t)
pq

)
≡ H (p, q) , (S9)

where H is the Hamiltonian, S is the action associated with the Hamiltonian, and we have defined q = −∂S∂p as the
coordinate conjugate to the variable p, see [21].

Let us separate the fast and slow time scales by denoting q (t) = X (t) + ζ (t) and p (t) = Y (t) + η (t). Here X
and Y are slow variables, while ζ and η are small corrections (to be verified a-posteriori) that rapidly oscillate around
0 [19]. Expanding the Hamiltonian (S9) up to second order around q = X and p = Y we find

H (q, p, t) ' H (X,Y, t) + ζ
∂H

∂X
+ η

∂H

∂Y
+
ζ2

2

∂2H

∂X2
+
η2

2

∂2H

∂Y 2
+ ζη

∂2H

∂X∂Y
≡ H̃ (X,Y, t) .

Using the Hamilton equations q̇ = Ẋ + ζ̇ ' ∂Y H̃(X,Y, t) and ṗ = Ẏ + η̇ ' −∂XH̃(X,Y, t), and equat-
ing the rapidly oscillating terms yields in the leading order in K0 � 1: ζ '

(
X2 − 2X2Y

)
(B/ν) and η '

−
(
2XY − 2XY 2

)
(B/ν). Here B(t) = O(1) is defined in Eq. (S12), and in the calculation X and Y were consid-

ered as constants during the period of rapid oscillations. In addition, we have neglected terms of order ζ and η, but
kept their time derivatives (proportional to ν � 1).

Following this result, we define a canonical transformation from the old (q, p) to the new (X,Y ) variable

q ' X+X2 (1− 2Y )
B

ν
+2X3 (1− 2Y )

2 B
2

ν2
, p ' Y −2

(
Y − Y 2

)
X
B

ν
−2X2

(
Y − 3Y 2 + 2Y 3

) B2

ν2
, (S10)

which can be obtained using the generating function F2 (q, Y, t) = qY − q2
(
Y − Y 2

)
(B/ν). This transformation is

canonical up to second order in the small parameter 1/ν, as the Poisson brackets satisfy {q, p}(X,Y ) = 1 + O
(

1
ν3

)
.

Using Eqs. (S9) and (S10) and defining H ′ = H + ∂F2

∂t , by averaging over a period of a rapid oscillation, we find

H(X,Y ) = XY (1− Y )

[
AX − 1 +X2C

(
2− 4Y + 4Y 2 −XA

) 1

ν2

]
, (S11)
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where we have defined the following O (1) variables

A (γ, δ)=
K0

K(t)
=

1

T

∫ t0+T

t0

K0

K (t)
dt; C (γ, δ)=B2 =

1

T

∫ t0+T

t0

B2 (t) dt; B (t)=K0ν

∫
dt

[
1

K(t)
− 1

K(t)

]
,

(S12)
and used the fact that B (t) is periodic. It can be shown that the O(ν0) terms in Hamiltonian (S11) yield the PSD in
the constant environment case [Eq. (S5)].

Having found the time-independent Hamiltonian (S11), which effectively takes into account the rapid environ-
mental oscillations, we can compute the PSD by finding the nontrivial zero-energy trajectory of H (X,Y ). Up to
second order in 1

ν , this trajectory is given by X (Y ) = 1/A − C/(A3ν2) (2Y − 1)
2

+ O
(
ν−3

)
. Thus, recalling that

q = −∂S∂p , and using the fact that the transformation (q, p) → (X,Y ) is canonical, we find S(Y ) = −
∫
XdY =

−Y/A+ C/(6A3ν2)(2Y − 1)3. As a result, the generating function becomes

G(Y ) ' G0 exp [−K0S(Y )] = G0 exp

[
K0

Y

A
−K0

C

6A3ν2
(2Y − 1)

3

]
,

where G0 is a constant, see below. Therefore, the PSD can be found by employing the Cauchy theorem to Eq. (S7):

P (N) =
1

2πi

z G(Y )

Y N+1
dY =

G0

2πi

z 1

Y
exp [K0g (Y )] dY,

where the integration has to be performed over a closed contour in the complex Y plane around the singular point Y =
0, and we have defined g (Y ) = −S (Y )− N

K0
lnY . This integral can be calculated using the saddle point approxima-

tion [22]. The saddle point, up to second order in 1/ν, is found at Y ∗ = AN/K0+[CN/(AK0)] (2AN/K0 − 1)
2
ν−2.

Furthermore, since g′′ (Y ∗) > 0 the integration contour in the vicinity of the saddle point must be chosen perpendic-
ular to the real axis. As a result, the Gaussian integration yields P (N) ∼=

[
G0/

(
Y ∗
√

2πK0 |g′′ (Y ∗)|
)]
eK0g(Y

∗).
Note, however, that only the leading-order result can be taken into account here; accounting for the prefactor would
be an excess of accuracy since we have ignored the p-dependent prefactors in both G and in P . Putting it all together,
we finally obtain

P (N) ' C exp

[
N −N ln (AN/K0)−K0

C

6A3ν2
(2AN/K0 − 1)

3

]
, (S13)

where C is a normalization constant which can be found by demanding
∫
P (N)dN = 1.

2.2.1 Rectangular wave

Our derivation above has been carried out for a general periodic function ξp (t). We now compute the PSD in the
particular case of a rectangular wave. Using the expression of ξp(t) given in the main text, we find

B (t) =
γ

1− γ2
×

{
(δ − 1)νt− 1/2 − 1

ν+
≤ t ≤ 0

(δ + 1)νt− 1/2 0 ≤ t ≤ 1
ν−

, (S14)

where the constant of integration was determined by the demand that B = 0. Plugging this into Eq. (S12) yields
K(t)−1 = A/K0 = (1− γδ)/[K0

(
1− γ2

)
] and C = (1/12)γ2/

(
1− γ2

)2
. Using these results, Eq. (S13) becomes

PKap
ν ' P(N)exp

[
− K0

72ν2

(
γ

1−γ2

)2(
2N−K
K0

)3
]
, (S15)

which is the expression of PKap
ν used in the main text, with limν→∞ PKap

ν = P(N) ∝ exp[N(1−ln (N/K))], peaked
at K = K0(1− γ2)/(1− γδ). Hence, PKap

ν (N) is unimodal and peaked about N ≈ K when ν � 1, see Fig. 2(b).

2.3 Quasi-stationary PSD under intermediate periodic switching

We now consider the quasi-stationary PSD in the regime of intermediate periodic switching where ν = O(1). In this
regime, progress can be made upon neglecting demographic noise, and by considering only the environmental periodic
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modulation for N(t). This leads to an approximation of P (p)
ν , here referred to as “piecewise periodic process” and

denoted by PPPP
ν , that is the periodic counterpart of the PDMP approximation, see Eq. (S22) and below. This approach

is similar in nature to that of Refs. [23, 24] (whose focus was on symmetric switching).
Our starting point is the mean-field rate equation for the total population size, in the case of periodic switching,

upon ignoring demographic noise. Using the definition of ξp (t) from the main text, the equation reads

Ṅ = N

[
1− N

K (t)

]
= N

{
1− N

K0 [1 + γξp (t)]

}
, (S16)

At t→∞, after the transient has decayed, the periodic solution reads

N = f (t) =

K0

(
1− γ2

) [
1− γ + 2γe−t̃ 1−e−1/ν−

1−e−T

]−1

0 < t̃ < 1
ν+

(ξ = 1)

K0

(
1− γ2

) [
1 + γ − 2γe−t̃ e

1/ν+−1
1−e−T

]−1
1
ν+

< t̃ < T (ξ = −1)
, (S17)

where t̃ = t − 1/ν− − b t−1/ν−
T cT , such that 0 ≤ t̃ ≤ T = (1/ν+) + (1/ν−). As a result, for each segment of

the solution, one can express t̃ as function of N : t̃ = g± (N) = ln (B±) + ln (N) − ln (1−N/K±). Here, B± is
a cumbersome expression independent on N and hence irrelevant for our purposes, whereas the subscripts + and −
stand for the first and second segment in each period, respectively. Therefore, we can approximate the PSD, PPPP

ν , as

PPPP
ν (N) =

∫ T

0

dt̃′PPPP
ν

(
N, t̃′

)
, (S18)

where PPPP
ν

(
N, t̃′

)
∼ δ

[
N − f

(
t̃
)]

is the probability that the population size at time t̃ is N , and we have omitted
the normalization constant. Here we have neglected demographic noise by assuming that the instantaneous total
population size N is sharply peaked around its deterministic solution. Performing the integral in Eq. (S18) , we find

PPPP
ν (N) = C

[∣∣∣∣dg+

dN

∣∣∣∣+

∣∣∣∣dg−dN
∣∣∣∣] = C

[
1

K+ −N
+

1

N −K−

]
, (S19)

where C is a normalization constant. This expression is valid for Nmin ≤ N ≤ Nmax, where the boundaries Nmin =
N(t̃ = 0) and Nmax = N(t̃ = 1/ν+) satisfy

Nmin = K0

(
1−γ2

) [
1−γ+2γ

1−e−1/ν−

1−e−T

]−1

, Nmax = K0

(
1−γ2

) [
1−γ+2γ

e−1/ν+−e−T

1−e−T

]−1

, (S20)

while the normalization constant is given by

C−1 = ln

[
(K+ −Nmin) (Nmax −K−)

(K+ −Nmax) (Nmin −K−)

]
. (S21)

The PPP approximation PPPP
ν of the periodic PSD is shown in Fig. 2(c,d) of the main text, where it is found to agree

well with the simulation results and to reproduce the main features of P (p)
ν in the intermediate switching regime. It

also accurately captures the average population size, as shown in Fig. S3(b).

3 Quasi-stationary PSD for random switching: the PDMP approximation

When demographic noise is neglected, by assuming that the fluctuating population size is always large, and the only
source of noise stems from the randomly switching carrying capacity, we have seen that the PSD, P (r)

ν (N), can be
described in terms of the marginal stationary probability density of the underlying piecewise-deterministic Markov
process (PDMP). Upon omitting the normalization constant, this PSD reads [2, 25]

PPDMP
ν (N) ∝ 1

N2

[(
K+

N
− 1

)ν+−1(
1− K−

N

)ν−−1
]
, (S22)

where the dependence on γ, δ and ν is given by K± = (1 ± γ)K0 and ν± = (1 ∓ δ)ν. Clearly, PPDMP
ν has support

[K−,K+] and accounts for environmental noise, but ignores all demographic fluctuations. The expression of PPDMP
ν

gives a suitable description of P (r)
ν in the intermediate switching regime where interesting phenomena arise (see

Sec. 4.3 below for a detailed discussion of the validity of the PDMP-like approximations).
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Figure S1: Phase diagram for the PSD, P (r)
ν (N), and its approximations PPDMP

ν and PLNA
ν (insets), see Eq. (S26).

We distinguish four regions described in the text: In addition to a peak aboutK+, the PSD has always a local maximum
K− < N∗ < K+ in the intermediate switching regime in I; in regime II and III, the PSD and PPDMP

ν have a peak
about K+ and, depending on ν, possibly another peak at some values K− < N∗ < K+, see insets; the PSD and
PPDMP
ν have one single peak about K+ in IV. Insets illustrate the form of P (r)

ν (N), PPDMP
ν and PLNA

ν in regions I-
III. In the insets, solid lines are from the PPDMP

ν , given by Eq. (S22), dashed lines are from PLNA
ν , given by Eq. (S26),

solid areas are from computer simulations, and the vertical dashed lines are eyeguides showing N = K±. Parameters
are: (K0, γ, s, x0) = (250, 0.8, 0.05, 0.5) and (inset I) δ = 0.7, ν = (0.05, 1.4, 17.5) (pink, orange, blue); (inset II)
δ = 0.85, ν = (1, 3, 6.5) (purple, blue, green); (inset III) δ = 0.92, ν = (1, 3, 12) (purple, blue, green). In inset I, N∗

is in the intermediate regime for ν = 1.4 (orange). In inset II, N∗ is in the intermediate regime for ν = 1 (purple) and
ν = 6.5 (green). In inset III, N∗ is in the intermediate regime for ν = 1 (purple). We notice that the LNA excellently
agrees with simulation results for the PSD: P (r)

ν (N) and PLNA
ν are almost indistinguishable in each inset.

3.1 PSD dependence on γ and δ in the intermediate switching regime

The PSD, P (r)
ν (N), and its PDMP approximation, PPDMP

ν , are bimodal, with peaks about K±, when ν < 1, and
unimodal when ν > 1 with a peak N∗ that is the smaller solution to

N2 − (ν(1− γδ) + 1)K0N + (1− γ2)K2
0ν = 0, (S23)

withN∗ → K as ν →∞ [1, 2, 7]. In addition, two other regimes can arise under asymmetric switching at intermediate
rate when 1/(1 + |δ|) < ν < 1/(1− |δ|). Here, the PSD has a different form not found when δ = 0: When δ < 0 and
1/(1− δ) < ν < 1/(1 + δ), PPDMP

ν and P (r)
ν have a peak at N ' K−. When δ > 0 and 1/(1 + δ) < ν < 1/(1− δ),

PPDMP
ν and P (r)

ν have a peak at N ' K+ and, depending on δ, γ and ν, also a peak at N∗. The condition for the
existence of such a peak at K− < N∗ < K+ can be inferred from the PDMP approximation (S22) by noting that
(S23) has real roots when

(1− γδ)2ν2 − 2(1 + γ(δ − 2γ))ν + 1 > 0. (S24)

We thus distinguish four regions, I-IV, in the (δ, γ) - space, see Fig. S1:

I: δ < γ, where N∗ exists for all intermediate ν.

II: γ < δ < 2γ
1+γ , where N∗ exists for all intermediate ν that lie outside the interval between the two solutions of

(S24), here denoted by ν1,2 (with ν2 ≥ ν1).
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III: 2γ
1+γ < δ < 2γ

1−γ , where N∗ only exists if 1
1+δ < ν < ν1 .

IV: δ > 2γ
1−γ , where N∗ does not exist.

Simulation results of Figs. 2 and S1 confirm that the above analysis correctly reflects the properties of P (r)
ν .

As shown by Fig. 2 of the main text, the PSD under intermediate periodic switching is qualitatively characterized
by the same features as P (r)

ν , with some generic quantitative differences: P (p)
ν P

(p)
ν is generally narrower and has

sharper peak than P
(r)
ν . All these features are well captured by the PPP approximation (S19)-(S21) of P (p)

ν . In
particular, PPPP

ν has a narrower support [Nmin, Nmax] than the support [K−,K+] of PPDMP
ν , since Nmin > K− and

Nmax < K+, see Fig. 2 (c,d).

3.2 Linear noise approximation about the PDMP solution

While PPDMP
ν (S22) captures well the position of the peaks of the PSD and some of its main features, the PDMP

approximation fails to capture the width of P (r)
ν (N). In order to account for the demographic noise responsible for

the shape of P (r)
ν (N) near its peaks, we can perform a linear noise approximation (LNA) about the PDMP [2]

d

dt
N = N

[
1− N

K

(
1− γξr
1− γδ

)]
, (S25)

whose probability density PPDMP
ν (N, ξr) in the environmental state ξr = ±1, is given by [25]

PPDMP
ν (N, ξr) ∝


1+δ
N2

[
K+

N − 1
]ν+−1 [

1− K−
N

]ν−
, (ξr = +1)

1−δ
N2

[
K+

N − 1
]ν+ [

1− K−
N

]ν−−1

, (ξr = −1),

where K± = (1 ± γ)K0 and ν± = (1 ∓ δ)ν. As in Refs. [2, 26], we also make the simplifying assumption
that demographic noise is approximately the same in each environmental state, yielding the Gaussian distribution
∝ exp

(
−(N − Ñ)2/(2Ñ)

)
/
√
Ñ for the demographic fluctuations N − Ñ about the PDMP (S25). Proceeding as in

the case of symmetric switching (δ = 0), see Ref. [2] where full details are provided, and omitting the normalization
constant, we obtain the LNA of the marginal stationary probability density about the PDMP (S25)

PLNA
ν (N) ∝

∫ K+

K−

e
−(N−Ñ)2

2Ñ

Ñ5/2

{
(1+δ)

[
K+

Ñ
−1

]ν+−1[
1−K−

Ñ

]ν−
+(1−δ)

[
K+

Ñ
−1

]ν+[
1−K−

Ñ

]ν−−1
}
dÑ. (S26)

The results shown in the insets of Fig. S1 illustrate that PLNA
ν (N) is an excellent approximation of the PSD: it

accurately predicts all the details of the PSD P
(r)
ν (N) obtained from stochastic simulations. However, while PLNA

ν

significantly improves over PPDMP
ν to describe the PSD, we have verified that computing φr in the realm of the

PDMP-based approximation [i.e. with Eq. (S38)] or by averaging φ(x0)|N over PLNA
ν , as an approximation of P (r)

ν ,
according to Eq. (3), yields essentially the same results: As shown in Fig. S2(c), the fixation probability calculated
using PLNA

ν gives only a minute improvement over the results obtained with PPDMP
ν . The LNA approximation (S26)

is thus useful to describe the PSD, but the PDMP approximation is sufficient to compute the fixation probability.
Note, that while we have not carried it out explicitly, a similar LNA treatment can be done in the periodic case.

This would allow us to accurately reproduce the PSD in the low and intermediate periodic switching regime.

4 Fixation probability under fast switching: saddle-point calculations

In this section we perform a saddle-point approximation to find the fixation probability, φα, in the fast switching
regime ν/s� 1, and then discuss the validity of the PDMP-like (PDMP and PPP) approximations.

To perform a saddle-point calculation of φα under fast switching, we rewrite Eq. (3) of the main text in terms of
the total population density y = N/K0. Accounting for the normalization of the probability distribution, the fixation
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probability can be written as

φα(ν) =

∫∞
0
P

(α)
ν/s (y) exp [K0 (1− x0) ln (1− s) y] dy∫∞

0
P

(α)
ν/s (y) dy

≡

∫∞
0

exp
[
f

(α)
num(y)

]
dy∫∞

0
exp

[
f

(α)
den (y)

]
dy
, (S27)

where we have defined f (α)
den (y) = lnP

(α)
ν/s(y), and f (α)

num(y) = f
(α)
den (y)+K0 (1− x0) ln (1− s) y, and α denotes either

r (random) or p (periodic). Evaluating both integrals separately via the saddle point approximation, we obtain

φα(ν) '
√
κ

(α)
1 /κ

(α)
2 e

f(α)
num

(
y
(α)
2

)
−f(α)

den

(
y
(α)
1

)
. (S28)

Here y(α)
1 and y(α)

2 are the positions of the saddle points of the denominator and numerator, respectively, and sat-

isfy (d/dy)f
(α)
den

(
y

(α)
1

)
= 0 and (d/dy)f

(α)
num

(
y

(α)
2

)
= 0. In addition, κ(α)

1 = (d2/dy2)f
(α)
den

(
y

(α)
1

)
and κ(α)

2 =

(d2/dy2)f
(α)
num

(
y

(α)
2

)
represent the curvatures at the saddle point of the denominator and numerator, respectively.

4.1 Fast random switching

Here we compute Eq. (S28) in the case of randomly switching environment in the realm of the PDMP approximation,
with P (r)

ν/s ' P
PDMP
ν/s . To compute the denominator of Eq. (S27), with Eq. (S22), we define

f
(r)
den (y) = lnPPDMP

ν/s (y) = −2
ν

s
ln y +

[
(1− δ) ν

s
− 1
]

ln (1 + γ − y) +
[
(1 + δ)

ν

s
− 1
]

ln (y − 1 + γ) . (S29)

Thus, the saddle point is found at

y
(r)
1 '

(
1− γ2

)
(1− δγ)

[
1 +

γ (δ − γ)

(1− δγ)
2
ν/s

(
1 +

(
1− 2γ2 + δγ

)
(1− δγ)

2
ν/s

)]
.

As a result, we find

f
(r)
den

(
y

(r)
1

)
' (ν/s)

{
(1 + δ) ln

[
γ (1 + δ) (1− γ)

(1− δγ)

]
+ (1− δ) ln

[
γ (1− δ) (1 + γ)

(1− δγ)

]
− 2 ln

[
1− γ2

1− δγ

]}
+ ln

[
(1− δγ)

2

γ2 (1− δ2) (1− γ2)

]
+

(δ − γ)
2

(1− δ2) (1− δγ)
2
ν/s

,

κ
(r)
1 =

d2

dy2
f

(r)
den

(
y

(r)
1

)
' −2 (1−δγ)

4
ν/s

(1−δ2) γ2 (1−γ2)
2 +

2 (1−δγ)
2 (

1+6δγ−2δ3γ−5γ2−3δ2(1−γ2)
)

(1− δ2)
2

(1− γ2)
2
γ2

.(S30)

To compute the numerator of (S28) we define f (r)
num(y) = f

(r)
den (y) +K0 ln(1−s) (1−x0) y, and find the saddle point at

y
(r)
2 '

(
1− γ2

)
(1− δγ)

{
1 +

γ
[
2 (1− δγ) (δ − γ) + bγ

(
1− γ2

) (
1− δ2

)]
2 (1− δγ)

3
ν/s

[
1 +

2− 2γ2
(
2 + δ2 − 2δγ

)
− bγ (1− γ)

2 (
2δ − 3γ + δ2γ

)
2 (1− δγ)

3
ν/s

]}
,
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where b = K0 (1− x0) ln (1− s). As a result, we find

f (r)
num

(
y

(r)
2

)
' (ν/s)

{
(1 + δ) ln

[
γ (1 + δ) (1− γ)

(1− δγ)

]
+ (1− δ) ln

[
γ (1− δ) (1 + γ)

(1− δγ)

]
− 2 ln

[
1− γ2

1− δγ

]}
+ ln

[
(1− δγ)

2

γ2 (1− δ2) (1− γ2)

]
+
b
(
1− γ2

)
1− δγ

+

[
2 (δ − γ) (1− δγ) + bγ

(
1− γ2

) (
1− δ2

)]2
4 (1− δ2) (1− δγ)

4
ν/s

,

κ
(r)
2 =

d2

dy2
f (r)

num

(
y

(r)
2

)
' − −2 (1− δγ)

4
ν/s

(1− δ2) γ2 (1− γ2)
2 −

2 (1− δγ)

(1− δ2)
2

(1− γ2)
2
γ2

[
(5− 3b) γ2 + 3bγ4 +

δ2
(
3 + (3 + 4b) γ2 − 4bγ4

)
− δ4γ2

(
2 + b

(
1− γ2

))
+

δ3γ
(
−1 + 3γ2 − 2b

(
1− γ2

))
+ δγ

(
2b
(
1− γ2

)
− 5

(
1 + γ2

))
− 1

]
. (S31)

4.2 Fast periodic switching

Here we compute Eq. (S28) in the case of periodically switching environment using P (p)
ν/s ' P

Kap
ν/s with Eq. (S15). To

compute the denominator of Eq. (S28) we define

f
(p)
den (y) = lnPKap

ν/s (y) = K0

[
y − y ln

(
K0

K
y

)
− 1

72ν2/s2

(
γ

1− γ2

)2(
2y − K

K0

)3
]
. (S32)

Thus, using Eq. (S12) the saddle point is found at y(p)
1 ' A−1

[
1− C/(A2ν2)

]
, whereA andC are given in Sec. 2.2.1.

As a result, we find

f
(p)
den

(
y

(p)
1

)
' 1

A

(
1− C

6A2ν2

)
, κ

(p)
1 =

d2

dy2
f

(p)
den

(
y

(p)
1

)
' −A− 5

C

Aν2
. (S33)

To compute the numerator of (S28) we define f (p)
num(y) = f

(p)
den (y) +K0 ln(1−s) (1−x0) y, and find the saddle point at

y
(p)
2 ' A−1 (1− s)1−x0

{
1− C/(A2ν2)

[
2 (1− s)1−x0 − 1

]2}
.

As a result, we find

f (p)
num(y

(p)
2 ) ' (1− s)1−x0

A
− C

6A3ν2

(
2 (1− s)1−x0 − 1

)3

,

κ
(p)
2 =

d2

dy2
f (p)

num

(
y

(p)
2

)
' − A

(1− s)1−x0

{
1 +

C

A2ν2

[
2 (1− s)1−x0 − 1

] [
6 (1− s)1−x0 − 1

]}
. (S34)

Thus, for both random and periodic switching (S28) predicts the same fixation probability φr = φp ' φ(∞) =
φ(x0)|K, for ν →∞. Yet, the asymptotic convergence to φ(∞) is markedly different [see Eq. (4) in the main text]:

ln

(
φα
φ(∞)

)
=

{
Ar(ν/s)−1 for randomly switching environment
Ap(ν/s)−2 for periodically switching environment, with

Ar = (1− x0) ln (1− s)K
(
1− δ2

)
γ2

2(1− δγ)2

(
1 +

(1− x0) ln (1− s)K
2

)
,

Ap =
K
72

{
1− [1 + 2 (1− x0) ln (1− s)]3

}( γ

1− γδ

)2

. (S35)

These show that φp(ν) approaches φ(∞) much faster than φr(ν) as ν increases: the convergence towards the fast
switching limit is attained much quicker with periodic than random switching, see Figs. 3(a) and S2(c).
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4.3 Validity of the PPP and PDMP approximations in the intermediate/fast switching regime

Simulation results show that PPPP
ν and PPDMP

ν are generally good approximations of P (p)
ν and P (r)

ν for a broad
range of ν, from slow to fast switching. We now combine the results of Sections 2.3, 3.2 and 4.1 of this SM to
assess the theoretical validity of the PPP and PDMP approximations, PPPP

ν (N) and PPDMP
ν (N), given by Eqs. (S19)

and (S22), under intermediate/fast switching. This can be done by computing the variance of PPPP
ν and PPDMP

ν ,
i.e., σ2

PPP and σ2
PDMP, and by comparing these results with K, which is the variance of the PSD when, in the limit

ν →∞, it is solely governed by demographic noise. Indeed, when ν →∞, the PSD [both the Kapitza approximation
given by Eq. (S15) as well as the LNA given by Eq. (S26)] reduces to a Gaussian of mean and variance K, i.e.,
Pν→∞(N) ∝ e−(N−K)2/(2K)/

√
K. To compute the variances in the limit of ν � 1, we perform a saddle-point

calculation as in the previous section, and find to leading order in 1/ν that

σ2
PPP =

∫ Nmax

Nmin

(N − 〈N〉PPP)
2
PPPP
ν (N)dN =

1

12

(
γ

1− γδ

)2 K2

ν2
,

σ2
PDMP =

∫ K+

K−

(N − 〈N〉PDMP)2PPDMP
ν (N)dN =

1

2

(
γ

1− γδ

)2 (
1− δ2

) K2

ν
. (S36)

Here we have used Eqs. (S19) and (S22), while

〈N〉PPP =

∫ Nmax

Nmin

NPPPP
ν (N)dN = K

[
1 +

γ2

12(1− γδ)2 ν2

]
,

〈N〉PDMP =

∫ K+

K−

N PPDMP
ν (N)dN = K

[
1 +

γ2(1− δ2)

2(1− δγ)2 ν

]
, (S37)

to leading order in 1/ν. Notably, from Eqs. (S36) one can see that when ν � 1, σ2
PPP ∼ ν−2 while σ2

PDMP ∼ ν−1.
This indicates that the PSD’s width under random switching is significantly larger than in the periodic case, which
allows the total population size to probe smaller values of N in the random than periodic case. This ultimately leads
to a larger fixation probability φr than φp (when s > sc, see Sec. 5.2). Importantly, since it is the PSD’s mean that
determines the fixation probability at high switching rates, the fact the PSD’s mean here converges at a different rate
to K for periodic and random switching gives rise to the different asymptotic behavior of φr and φp when ν → ∞,
yielding Eq. (4) in the main text, see also Eq. (S35). Notably, the convergence details φα

ν→∞−−−−→ φ(∞) are expected to
generally depend on the underlying periodic/random processes ξα(t).

What is the regime of applicability of these PDMP-like approximations? According to Eqs. (S36), σ2
PPP �

K for 1 � ν �
√
K0, while σ2

PDMP � K for 1 � ν � K0; in these regimes the variance stemming from
periodic/random switching is much larger than the variance caused by demographic fluctuations. Hence, PPPP

ν and
PPDMP
ν are accurate approximations of P (p)

ν and P (r)
ν in the fast switching regime respectively when ν �

√
K0

and ν � K0. Remarkably, environmental noise also dominates over demographic fluctuations for slow/intermediate
switching regime when ν . 1, see Fig. 2. Therefore, these PDMP-like approximations neglecting demographic noise
accurately describe of Pν(N) over a broad range of ν. It is worth noting that for ν � 1, the variance of PKap

ν to
leading order in 1/ν satisfies σ2

Kap = K
[
1 +O

(
K/ν2

)]
. Thus, as we have checked, the variances of PPPP

ν and
PKap
ν coincide in the leading order, for 1 � ν �

√
K0. However, σ2

Kap � σ2
PPP when ν &

√
K0, which indicates

that the Kapitza-based approximation is superior to that of the PPP in this regime. This also reiterates that, at very
high switching rates, one must take demographic noise into account as is done using the Kapitza method (see previous
section). Since the Kapitza-based approximation works well for any arbitrary switching rate ν � 1, the calculation of
Sec. 4.2 leading to the fast switching asymptotic behavior of φp(ν) has been carried out using PKap

ν/s instead of PPPP
ν/s .

However, while the PPP and PDMP approximations characterize well the PSD in the random and periodic cases,
respectively when ν � K0 and ν � K

1/2
0 , they can still be aptly used for the purpose of calculating the fixation

probability, φα, at arbitrary high switching rates according to (S39) and (S38), see Figs. 3(a,d) and S2 (d). This is
because only the vicinity of the PSD’s maximum contributes to the leading-order calculation of φα at high ν, which is
well captured, for any high switching rate, by these PDMP-like approximations.
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5 Further details about Figure 3(d,e) in the main text

Here we elaborate on our findings, see main text, that under certain conditions the fixation probability of the S species,
φα, at given s, γ, δ,K0, x0 is optimal for a nontrivial switching rate ν∗α, see Fig. 3(d,e). We also discuss the critical
selection intensity below/above which φα(ν) is an increasing/decreasing function under weak switching asymmetry.

5.1 Region of the parameter space in which the fixation probability is nonmonotonic

Our starting point is Eq. (3) of the main text which, when substituting P (r)
ν/s by its PDMP approximation, reads

φr(ν) '
∫ K+

K−

PPDMP
ν/s (N) φ(x0)|N dN. (S38)

We now give further details on how to determine from this equation the region of the parameter space of Fig. 3(e) in

Figure S2: (a) Triangular-like region in the parameter space in which φr(ν) has a nontrivial maximum at ν = ν∗r
for s = 0.04, 0.05, 0.06, 0.07, 0.08, 0.09 (red to blue, left to right) obtained from Eq. (S38). This region, defined
by γ > γc, δ > δc(γ, s) is delimited by the solid and dashed lines, see text and compare with Fig. 3(e) in the
main text. (b) Critical selection intensity sc as a function of δ for γ = 0.6, 0.7, 0.8, 0.9 (red to blue, bottom to top) for
K0 = 250 and x0 = 0.6, see text. (c) φr (circles) and φp (squares) versus ν with (s,K0, γ, x0) = (0.05, 250, 0.9, 0.6),
δ = 0.7 (purple) and δ = 0.8 (blue); symbols are from simulations; colored solid lines are from Eq. (S38) and dashed
lines are based on Eq. (3) by averaging over Eq. (S26), showing the minute improvement over the PDMP-based
approximation (S38) achieved by using the PLNA

ν to approximate the PSD in Eq. (3), see text. (d) Colored symbols
show φr versus ν for (s,K0, x0) = (0.05, 250, 0.6) and (γ, δ) = (0.9,−0.5) (orange), (γ, δ) = (0.9, 0.5) (purple),
(γ, δ) = (0.8, 0.6) (blue). Solid colored lines are from (S38) and dashed lines show φ(0,∞) for ν → 0,∞. Results
for φp and same values of (γ, δ) are shown as black squares, with solid black lines from Eq. (S39). (e) Heatmap of
ν∗p : ν∗p → 0,∞ in the black and white areas, respectively; φp(ν) is non-monotonic in the red-yellow area, with the
values of ν∗p given in the vertical bar; parameters are (s,K0, x0) = (0.05, 250, 0.6). Symbols indicate ν∗p for γ = 0.9,
δ = 0.7 (purple) and δ = 0.8 (blue), for φp shown in (c). To be compared with Fig. 3(e) of the main text showing the
heatmap of ν∗r , see text.

which φα(ν) is non-monotonic, and how this region changes when s is increased. Using the diffusion approximation
φ(x0)|N ' (e−Ns(1−x0) − e−Ns)/(1− e−Ns), and Eq. (S22), we compare the PDMP-based approximation of φr(ν)
[Eq. (S38)] for different switching rates (slow, intermediate and fast switching) for a given set (K0, s, γ, δ, x0), and
determine for which of these values φr is maximal.
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If φr(ν � s) > φr(ν � s), φr(ν ∼ s), we say that the optimal fixation probability is φr(0) = φ(0) at slow
switching, i.e., ν∗r = 0. Similarly, if φr(ν � s) > φr(ν � s), φr(ν ∼ s), the optimal fixation probability is
φr(∞) = φ(∞), i.e., ν∗r = ∞, see Fig. 3(a). Otherwise, the S fixation probability is maximal at a non-trivial
switching rate ν∗r ∼ s that Eq. (S38) captures reasonably well. In this case, φr varies non-monotonically with ν, see
Fig. 3(d,e). We have performed extensive stochastic simulations of the model’s dynamics and found that this behavior
arises in a triangular-like region in the subset of the parameter space where γ and δ exceed some critical values γc(s)
and δc(γ, s), see Fig. 3(e). In order to determine the boundary (γc(s), δc(γ, s)) of this triangular-like region at fixed
s and K0, we have systematically calculated the fixation probability as ν varies from 10−3 (proxy for ν � s) to 1
(proxy for ν � s) for fixed (γ, δ), with γ & 0.7, and δ & 0.2. For each pair (γ, δ) we have then found the value
of ν for which it attains its maximum and store it in a matrix. In practice, the diagonal part of the boundary is then
found by keeping γ fixed and increasing δ until we find the first entry of the matrix for which 10−3 < ν∗r < 1. This
determines δc (γ, s). The left hand side of the boundary, γc(s) is found by finding the largest value of γ such that
ν∗r = 1 or ν∗r = 10−3 for all δ. Predictions of Eq. (S38) are in good agreement with simulation results which confirm
that φα(ν) has a nontrivial maximum at ν∗α when γ > γc(s) and δ > δc(γ, s), see Figs. 3(d) and S2(c). As shown in
Fig. S2 (a), γc(s) is an increasing function of s while δc(γ, s) changes little when γ and s are increased. As a result,
when the selection intensity s is increased (at K0 fixed), the triangular-like region of the parameter space in which
φα(ν) has a nontrivial maximum is “squeezed out”, as shown in Fig. S2(a), whereas we have verified that the optimal
fixation probability remains unaltered when s changes but K0s is kept fixed.

A similar analysis can be carried out for the periodic switching. In this case, the fixation probability is approxi-
mated by substituting the PPP approximation (S19) with rescaled switching rate into the PSD in Eq. (3), yielding

φp(ν) '
∫ Nmax

Nmin

PPPP
ν/s (N) φ(x0)|N dN. (S39)

This expression gives a sound approximation of φp, and correctly predicts the same qualitative behavior as under
random switching, as shown in Figs. 3(d) and S2(d,e). We have used Eq. (S39) to obtain the heatmap of ν∗p of
Fig. S2 (e) giving the switching rate ν∗p for which φp(ν) is maximal. The comparison with the heatmap of ν∗r of
Fig. 3(e) in the main text for the same parameters s,K0, x0, shows that both φp(ν) and φr(ν) are non-monotonic
in qualitatively similar triangular-like regions of the γ − δ parameter space (triangular-like region of Fig. S2 (e) and
Fig. 3(e) are of similar size). We notice that ν∗p . ν∗r for given γ and δ, which translates in the triangular-like region
of Fig. S2 (e) to be overall more “reddish” than the corresponding region of Fig. 3(e).

5.2 Critical selection intensity

As explained in the main text, it is useful to determine the critical selection intensity sc such that φ(0) = φ(∞). Here,
using the diffusion approximation we have φ(0) = [(1 − δ)φ(x0)|K− + (1 + δ)φ(x0)|K+

]/2 and φ(∞) = φ(x0)|K.
By introducing z = exp(−sK−), a1 = (1 + γ)/(1− γ) and a2 = (1 + γ)/(1− δγ), which yields K+ = a1K− and
K = a2K−, sc is obtained by solving φ(0) = φ(∞), i.e., it is the solution of the transcendental equation

(1− δ)
(
z−x0 − 1

1− z

)
+ (1 + δ)za1−1

(
z−a1x0 − 1

1− za1

)
− 2za2−1

(
z−a2x0 − 1

1− za2

)
= 0.

The numerical solutions of this equation, for sc = sc(γ, δ), are reported in Fig. S2(b), where we find that sc decreases
with δ, and increases with γ. When s < sc, φ(0) < φ(∞) and φ(0) > φ(∞) if s > sc. This allows us to determine the
monotonic behavior of φα(ν) under weak switching asymmetry (|δ| < δc): When s < sc, φα is an increasing function
of ν, while it decreases with ν if s > sc (at given s, γ, δ). In the examples of Fig. S2(d) we find that sc ≈ 0.06 for
(γ, δ) = (0.9, 0.5), sc ≈ 0.03 for (γ, δ) = (0.8, 0.6), and sc ≈ 0.095 for (γ, δ) = (0.9,−0.5). When s = 0.05,
this corresponds to φα(ν) being an increasing function of ν for (γ, δ) = (0.9, 0.5) and (γ, δ) = (0.9,−0.5), and
decreasing with ν in the case (γ, δ) = (0.8, 0.6), which is in accord with simulation results of Fig. S2(d). It is worth
noting that when 0 < s� 1 (weak selection) and K0 � 1, as considered in this work, the generic case is s > sc and
φα(ν) therefore generally decreases with ν as in Fig. 3(a).

In the regime γ > γc(s) and δ > δc(γ, s) where φα(ν) is non-monotonic, we can determine that φα(ν) increases
steeper at slow/intermediate switching if s < sc while it is the opposite when s > sc. As confirmed by the results
reported in Fig. S2(d), where φr and φp exhibit the same ν-dependence, these results hold for both random and periodic
switching, since in both cases φα(ν) essentially coincides with φ(0) and φ(∞) for slow/fast switching, respectively.
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Figure S3: (a) Unconditional MFT under random (circles) and periodic (squares) switching versus ν for (K0, s, x0) =
(250, 0.05, 0.6), and (γ, δ) = (0.9, 0.5) (purple), (0.9,−0.2) (orange), (0.9, 0.7) (green) and (0.9, 0.8) (teal). The
MFT scales as 1/s; the effect of random/periodic switching is to reduce the subleading corrections due to the decreas-
ing average population size 〈N〉, see text. (b) 〈N〉 versus ν for random (circles) and periodic (squares) switching,
for the same parameters as in (a). Solid colored lines are given by 〈N〉PDMP and solid black lines show 〈N〉PPP,
see Eq. (S37). (c) Average number of switches divided by ν prior to fixation versus s, for δ = 0.5,−0.5 (blue/top,
red/bottom) and ν = 0.1, 1, 10 (squares, circles, triangles) are shown to be O(1/s) with data for different values of
ν collapsing together. Other parameters are: (K0, γ, x0) = (250, 0.8, 0.6). Here colored/black symbols are from
simulations with random/periodic switching.

5.3 Effective selection intensity under fast switching

As discussed in the main text, see also Sec. 4, under fast random and periodic switching φα(ν) ' φ(∞) = φ(∞)|K,
with φ(∞) = em/2 and m ≡ 2K(1 − x0) ln (1− s) = 2

[
(1− γ2)/(1− γδ)

]
K0(1 − x0) ln (1− s), to leading or-

der in 1/ν. When 1/K0 � s � 1/
√
K0 and γ = O(1), the above expression simplifies: φ(∞) ' e−Ks(1−x0) =

e−s[(1−γ
2)/(1−γδ)]K0(1−x0). Hence, in this regime, under fast random and periodic switching, the S fixation proba-

bility is the same as in a population subject to a constant carrying capacity K0 under a rescaled selection intensity
s→ s′ = s(1− γ2)/(1− γδ). This result yields the following remarkably simple and enlightening interpretation: in
the above regime, the effect of environmental variability, when δ < γ, is to effectively reduce the selection intensity
with respect to the static environment, yielding φα > φ(x0)|K0

under a selection intensity s. Similarly, there is an
effective increase of selection intensity (s′ > s) when δ > γ resulting in φα < φ(x0)|K0 .

5.4 Duty cycle and general effect of δ on φα

The parameter δ measures the asymmetry in the switching rate, and can be used to define the “duty cycle” as (1+δ)/2
in the case of periodic switching between K+ and K− with period T = (1/ν−) + (1/ν+). The duty cycle gives the
fraction (1/ν+)/T of one period spent in the environmental state ξ = 1. Clearly, when δ > 0, the population spends
more time in the environmental state ξ = +1 (with K = K+) than in the state ξ = −1 (with K = K−). Since s > 0,
species S has a selective disadvantage with respect to strain F and φα is therefore a decreasing function of δ when all
the other parameters are fixed, see Fig. S2(c,d).

6 Mean fixation time and average number of switches

In addition to the fixation probability, we have also computed the MFT, T (α)(x0) – the unconditional mean time
until the fixation of either species S or F , starting from a initial fraction x0 of individuals of type S. As in the case
δ = 0, T (α)(x0) is obtained by averaging the unconditional MFT, T (x0)|N , obtained in a population of constant size
N over P (α)

ν/s(N) with a rescaled switching rate ν → ν/s [1, 2]. In the limits of slow and fast switching, we have
T (α)(x0) = [(1 + δ)T (x0)|K+ + (1− δ)T (x0)|K− ]/2 when ν/s� 1 and T (α)(x0) = T (x0)|K when ν/s� 1, see
Fig. S3(a). When 1/K0 � s � 1, T (x0)|N ∼ O(1/s) [12, 13], and the MFT under random switching also scales
as 1/s, i.e., T (α)(x0) = O(1/s); this result is evident since x deterministically relaxes on a time scale O(1/s). As
the average population size 〈N〉 decreases with ν, see Fig. S3(b), environmental variability reduces the subleading
prefactor of T (α)(x0) [2]. As a consequence, on average the population experiencesO(ν/s) switches prior to fixation
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Figure S4: (a) Effective parameter q versus s for δ = −0.5, 0.5 (black, red) and s = 0.02, 0.05 (squares, circles).
Dependence of q on b is approximately linear while q depends weakly on δ and s (solid lines are eyeguides). (b,c,d,e)
φα versus ν for (K0, γ, s, δ, x0) = (250, 0.9, 0.04, 0.6, 0.6) in (b,d) and (250, 0.9, 0.05, 0.7, 0.6) in (c,e). Here (b,c)
and (d,e) show results for random (α = r) and periodic (α = p) switching, respectively, with the same parameters.
In (b,c,d,e) b = (0, 0.1, 0.3, 0.5, 1) from red to blue (top to bottom), open circles/squares are simulation results under
random/periodic switching. Solid lines are φPG

r (ν) from Eq. (S42) in (b,c) and φPG
p (ν) from Eq. (S43) in (d,e). In

(b,d), φPG
α (ν) is an increasing function of ν at low values of b, and varies nonmonotonically with ν for intermediate

b’s. In (c,e), φPG
α (ν) is a nonmonotonic function of ν at low b’s and becomes a decreasing function of ν as b increases.

when 1/K0 � s � 1. Fig. S3(c) confirms that in this regime the average number of switches prior to fixation scales
as 1/s and increases linearly with ν to leading order. Since the PSD greatly varies when ν and δ change, see Figs. (2)
and (S1), the fact that the average number of switches increases linearly with ν shows that it is essentially independent
of the population size and supports the rescaling ν → ν/s in the approximations of Eqs. (3) and (S38).

7 Eco-evolutionary dynamics & fixation probability in a public good scenario

The model studied in the main text describes the competition for resources of the slow and fast growing strains S and
F without assuming any explicit interactions between them. Yet, as discussed in Sec. 1.1 of this SM, the model can
be generalized to describe the situation where strain S is a public good (PG) producer. Here, we consider the situation
where S produces a PG that benefits the entire population that is subject to a time-varying carrying capacity.

A simple way to describe a PG scenario in the general framework outlined in Section 1.1 is to multiply the per
capita birth rate by the global term g(x) = 1 + bx, where b ≥ 0 [1, 2, 3, 4, 6, 16]. This PG generalization of the

model is thus defined by the continuous-time birth-death process NS/F
T−
S/F−−−→ NS/F −1, and NS/F

T+
S/F−−−→ NS/F + 1,

with the modified transition rates T+
S = g(x) 1−s

f̄
NS , T

+
F = g(x)

f̄
NF , and T−S = N

K(t)NS , T
−
F = N

K(t)NF , where
b = O(1) while K(t) is given by Eq. (1) of the main text. To discuss how the properties of this model can be studied
by extending the analysis carried out in the main text, it is convenient to first consider specifically the case of random
switching (α = r). When demographic noise is neglected and the only source of randomness stems from the randomly
switching K(t), the population’s mean-field dynamics obeys [1, 2] (see also Sec. 1.2)

dx

dt
= −sg(x)x(1− x)

1− sx
and

dN

dt
= N

[
g(x)− N

K

(
1− γξr(t)

1− γδ

)]
, (S40)

with K ≡ K0(1− γ2)/(1− γδ). N and x are thus explicitly coupled, which breaks the time separation and yields an
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explicit form of eco-evolutionary dynamics. Analytical progress can be made by using the effective theory devised in
Refs. [1, 2]. Since the model’s dynamics under a constant carrying capacity is well described in terms of a population
of an effective size, as in the case δ = 0 [1, 2], we introduce a suitable parameter q (with 0 ≤ q ≤ b) and replace g(x)
by 1 + q in (S40). This decouples N and x, and one can thus perform a similar PDMP-based approximation as before,
yielding

PPDMP
ν,q (N) ∝ 1

N2

[(
(1 + q)K+

N
− 1

) ν+
(1+q)

−1(
1− (1 + q)K−

N

) ν−
(1+q)

−1
]
, (S41)

where we have omitted the normalization constant. As in Refs. [1, 2], the parameter q is obtained by matching the
simulation results for the S fixation probability in the fast switching limit (i.e., when ν/s � 1) with φ(x0)|(1+q)K.
Results reported in Fig. S4(a), obtained using the diffusion approximation [see below and Eq. (S38)], show that q =
q(b) increases almost linearly with b, and depends only weakly on s and δ, with q(0) = 0 when b = 0. From PPDMP

ν,q

it is clear that the effect of increasing b, and therefore the effective parameter q(b), results in effectively increasing the
carrying capacity K± → (1 + q(b))K± and reducing the switching rates ν± → ν±/(1 + q) = ν(1 ∓ δ)/(1 + q).
Proceeding as in the case b = q = 0 and δ = 0 [1, 2], the fixation probability is obtained by averaging φ(s, x0)|N over
the PSD in Eq. (S41) with ν → ν/s ∗. Furthermore, by changing the variable of integration to N ′ = N/(1 + q) we
find that this is equivalent to rescaling the selection strength to seff = (1 + q) s in the model without a PG

φPG
r (ν, q) =

∫ (1+q)K+

(1+q)K−

φ(s, x0)|N PPDMP
ν/s,q (N) dN =

∫ K+

K−

φ(seff, x0)|N ′ PPDMP
ν/seff,0

(N ′) dN ′, (S42)

where N ′ = N/(1 + q) and we have used φ(s, x0)|N ' (e−Ns(1−x0) − e−Ns)/(1− e−Ns). According to Eq. (S42),
the effect of increasing b results in raising the value of the corresponding value of q, see Fig. S4(a), which in turn results
in a carrying capacity switching between (1 + q(b))K±. Thus, as in the case δ = 0, one can transform the expression
of the S fixation probability, φPG

r (ν, q), to the (approximate) fixation probability in the absence of PG but under an
effective (increased) selection intensity seff = [1 + q(b)] s. This results in φPG

r decaying approximately exponentially
with b [2].

Equation (S42) is an approximation of the actual fixation probability φr that is valid over a broad range of fre-
quencies ν and gives an accurate description of φr when δ = 0 [1, 2] and |δ| � 1 (small switching asymmetry); its
accuracy deteriorates as |δ| and b increase. Here, we are chiefly interested in the qualitative dependence of the fixation
probability on ν when b changes and γ = O(1), δ = O(1) (see Figs. 3(e) and S2(e)). With Fig. S2(a) in mind, we can
understand how raising b changes the diagram of Fig. S2(a): As b is increased, the triangular-like region is squashed
since γc increases under the effect of s→ seff = (1 + q(b))s. This allows us to qualitatively explain how the fixation
probability φPG

r varies with ν under intermediate switching at γ, δ, s fixed. In the case of Fig. S4(b), δ < δc at low b and
therefore φPG

r (ν) increases monotonically; then as γc increases together with b, (γ, δ) enter the triangular-shaped re-
gion (i.e., γ > γc, δ > δc) of Fig. S2(a) where φPG

r (ν) varies non-monotonically with ν. In the example of Fig. S4 (c),
γ > γc and δ > δc at low b implying that φPG

r (ν) is a nonmonotonic function of ν; then γc increases along with b and
attains a value such that γ < γc with δ > δc, and in this case φPG

r (ν) decreases monotonically with ν. Hence, while
Eq. (S42) cannot accurately predict the full ν dependence of φr, it qualitatively captures the emergence of a peak in
S4(b) at some nontrivial intermediate switching rate, and the disappearance of the peak in S4(c), when b is increased.
These are examples of the rich and complex behavior that eco-evolutionary loops can generate.

The results of this section have so far focused on the case of random switching, but we have again obtained a
similar qualitative behavior with periodic switching, as shown in Fig. S4(d,e). This can be explained in terms of a
PPP-based approximation in the realm of an effective theory as in the random switching case. In fact, we have verified
that the effective parameter q(b) allows us to obtain a suitable approximation of the fixation probability under fast
periodic switching, i.e. φp ' φ|(1+q)K. This suggests to use the PPP-based approximation PPPP

ν,q as an effective
approximate PSD in the PG scenario with periodic switching, where PPPP

ν/s,q is obtained from Eqs. (S19)-(S21) by
rescaling ν± → ν±/[(1 + q)s] and K± → (1 + q)K±. This rescaling of ν± and K± results in a support of PPPP

ν/s,q that
is now denoted by [Nmin(q), Nmax(q)]. In the same vein as in the random switching case, we thus write

φPG
p (ν, q) =

∫ Nmax(q)

Nmin(q)

φ(s, x0)|N PPPP
ν/s,q(N) dN, (S43)

∗When b > 0, the average number of switches prior to fixation isO(ν/s) as in the cases δ = 0 [2] and b = q = 0, see Sec. 6 and Fig. S3(c).
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which is expected to be a suitable approximation of φp when |δ| � 1, and to qualitatively capture the ν dependence
of φp when δ = O(1). The results of Fig. S4(d,e) indeed show that φPG

p provides the same qualitative description of
the fixation probability as Eq. (S42) in the random switching case. In particular, Eq. (S43) qualitatively reproduces the
emergence of a peak at a nontrivial frequency in S4(d), and the disappearance of the peak in S4(e), as b is increased.
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