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What is this Workshop About? 

Philosophy of Science? 

 

 

 

Measurement/Analysis? 

 

 

 

 

Computational Theory?  

 

 

 

 

Science as Practice? 

Inspired by a need to synthesize a methodology of getting at “what we least know” 

 

* experimentation relies on observables. 

 

 

* good theory relies on experimental verification. 

What if we cannot define our problem 

scope or variables very well?  
 

What if they are highly context-

dependent? 

Cognitive Science? 



Hard-to-Define Events are actually two 

interrelated problems 

Measurement (how to quantify things,  

determine causality, interpret anomalous 

results) 

Defining complex variables (many  

dimensions, highly nonlinear, self- 

referential) 

Abstraction (how real-world  

phenomena get represented in a 

model) 

Discovery (how to incorporate new  

variables into an existing model) 
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Is formal analysis appropriate (do the  

appropriate tools exist)? 

Measurement (how to quantify things,  

determine causality, interpret anomalous 

results) 

Defining complex variables (many  

dimensions, highly nonlinear, self- 

referential) 

Abstraction (how real-world  

phenomena get represented in a 

model) 

Discovery (how to incorporate new  

variables into an existing model) 



Different Fields, Different Perspectives 

Mathematics: Modeling of distributions (long tails, failure rate). 

 

Philosophy: Fuzzy logic, causality. 

 

Computer Science: Novel representational schemes, computational complexity, 

hidden variables, anomaly/outlier detection (KDD). 

 

Biology/Medicine: Diagnosing disorders, Causation of disease (rare 

variants/disease states), high-throughput analysis, automated assays. 

 

Economics: Risk management. 

 

Social Sciences: Constructs (variables), Qualitative phenomena. 

 

Physics: Chaos, power laws, and uncertainty. 
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* unexpected results (unpredictability). 
 
The “UFO” category….. 
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Xevents model: 

Xevents 

Extreme Values 

(xn distribution) 

Phase transitions 

(far-from-equilibrium, 

fat tails model) 

Inverse Problem: 

Ill-posed Problem: 

DATA 

MODEL 

PARAMETERS 

1) No unique solution exists. 
 

* learning and memory. 
 

* collective behavior. 

 

2) Solution is not continuous w.r.t. data 

(does not map to a topological space). 
 

* high-dimensional fitness landscape? 

Infer model 

parameters from data.   

DATA DATA DATA 

MODEL 

PARAMETERS 

Multiscalar Case 
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Classic Empirical Example of a “Hard-to-Define” Event 

Concept of a Nest: 

 

Distributed representations: 

 

What makes this “hard-to-define”? 

* lack of appropriate measures, analytical techniques? 

 

* lack of context, understanding w.r.t. what results mean (synthesis)? 

Lin et.al Neural encoding of the 

concept of nest in the mouse brain. 

PNAS, 104(14), 6066-6071 (2007). 
 

Figure 1.A: transient “on” cells. 

Ishai et.al Distributed representation of 

objects in the human ventral visual 

pathway. PNAS, 96, 9379-9384 (1999). 
 

Figure 1. 



COURTESY: Figure 7, PLoS Biology, 10(4), 

E1001301 (2012). 

COURTESY: Figure 1, PLoS Computational 

Biology, 8(6), e1002559. 

LEFT: Merging multiple types, sources of 

data. 

 

ABOVE: Complementary information (gene-

gene interactions). 

Does more data get us closer to an 

objective set of variables (empirically-

speaking)? 



How “hard” is the problem? 



Newtonian Physics (not so hard?) 



Newtonian Physics (not so hard?) 

Physical Model 

g 

f * m 



Newtonian Physics (not so hard?) 

Mental Model 

Physical Model 

g 

f * m 

Figure 1: Consciousness and  

Cognition,19, 63-76 (2010). 

Experience of catching  
a ball 

 

= 
 

implicit knowledge +  
inference + prediction. 
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Quantum Physics (now that’s hard!) 

Physical Model 

Mental Models 

Schroedinger’s Cat (left) and Quantum  

Information (above) 

DeBroglie Model (left) and  

Quantum gate (above) 

“Mechanics” = implicit 
knowledge + inference + 

prediction (in different amounts) 
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How do they compare? 

What is “hard” about these two 

examples? 
 

* definition of “variables” and “states”. 

 

 

Now consider the problem of the 

origins of life…… 
 

* is this “harder” than quantum 

physics? Why? 

 

 

Can this approach be used to 

represent such domains 

computationally? 
 

* provides them with a common 

currency. “Identity of Science” metric space. 

? 
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* consider if there were an optimal search 

time for good measures, solutions, and 

theories. 

Research in various fields can be 

convergent, but also divergent as well: 

 

* consequence of people not talking 

between fields, or due to the “identity of 

science” space of hard scientific 

problems? 

Does lead us into discussions of thinking of 

a qualitative concept (“soft” vs. “hard” 

science) algorithmically. 

Where do scientific 

problems fit into this 

scheme? 



How do we “find” variables? 



Adapted from Figures 1 and 2, Yamanaka, Cell Stem Cell, 10, 679 (2012). 

CASE STUDY: Cell and Developmental Biology 
 

Convergence, divergence among research groups that study “pluripotency”. 
 

 * scientific problems converge on a particular milestone, technology. 

 

 * fields coalesce and change, but major challenges do not. 

 
Variables: applied from one context to another (e.g. cloning, cell culture      

reprogramming). 
 

 * do variables need to change as questions, methods change? 



Finding Hidden Variables 

in a Dynamic System 

 

 
* stable optima that exist in phase 

space. 

 
* local optima (black circles) are 

larger than smaller global optimum 

(red circles). 

 

 * harder to find using a 

 search algorithm). 

 
* hard-to-define variables are related 

to the non-convexity of this space. 

Two-dimensional non-convex surface 

GLOBAL OPTIMUM 

(different orientation) 

X 



Two approaches to variable construction, problem definition 

(objectivity vs. enculturation) 
 

How do you “create” a set of complex variables? Example using phenomenon G. 

Variables as set of all “objective” observables: 
 
 

G Knowledge 

MECHANISM 

+  

CONSENSUS 

How complete is our fundamental 

knowledge?  



Two approaches to variable construction, problem definition 

(objectivity vs. enculturation) 
 

How do you “create” a set of complex variables? Example using phenomenon G. 

Variables as set of all “objective” observables: 
 
 

Variables as set of all things we learn are important: 
 
 

G 

G 

Knowledge 

Knowledge 

MECHANISM 

+  

CONSENSUS 

CONSENSUS 

ONLY 

What have we learned to be valuable? 

What can be learn from "hidden" 

information, structure? 

How complete is our fundamental 

knowledge?  



Potential Solutions  
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Josef Zurada (University of Louisville): 

KDD approach CASE STUDY: Rare Event 
Detection 

JZ) unsupervised learning (clustering, 
anomaly/outlier detection). 
 
JZ) association rules (rule 
confidence/support). 
 
 
AB) can be objects, or unexpected bursts of 
activity. 
 
AB) analogous to a “needle in a haystack”. 
 
 
NNT) black swan = improbable, rare events 
that cannot be predicted. 
 
NNT) “anti-fragility” – systems that benefit 
from random events, errors, and volatility. 

Arindam Banerjee (University of  

Minnesota): ROC Curve approach 

Nicholas Nassim Taleb: “Black  

Swan” approach 



CASE STUDY: Extreme Value Theory 
 

How do you characterize long-tail (extreme) data, including those that have not been directly 

observed yet? For example, earthquakes, floods, a .500 batting average……….. 

 

* assume a probability distribution for the observed data, then model tail for subsequent data  

points. Extreme values will occur at some infinitesimal rate. 

 

* what if data do not conform well to a known probability distribution? What if extreme events 

has different effects on your system (robustness)? 

Are extreme values predictable? What about processes? 

 

EVOLUTION: hopeful monsters, rare variants, complex traits? 

 

EVOLUTIONARY PROCESSES: adaptive radiations, speciation events, survival 

of the fittest? 



CASE STUDY: Emergence: an elusive phenomenon? 
 

Emergence: whole is greater than the sum of its parts, out of this we can get highly-ordered 

systems. 

 

 

 

 

 

 

What is it that we need to define?  

 

* reductionist viewpoint: determine causality among pairwise relationships, establish 

“simplest” unit of action. 

 

* complexity viewpoint: characterize interactions, higher-level patterns in phase space. 

 

Key components: 1) multiplicative interactions between agents, 2) no exact solution. 

 

* not deterministic but not spontaneous, either. What we lose in control, we gain in “life-like” 
behavior. 

 



Evolutionary Solution for Solving “Hard” Problems? 

 Using an algorithmic approach to “hard-to-define” problems: 

 

 * what would a GA look like that deals effectively with the following 

 problems? What would fitness function look like? 

 

1) rare events, low-frequency occurences (for practical purposes, unpredictable). 

 

2) searching for variables that provides more explanatory power (vs. relying on tradition, 

intuition). 

 

3) nonlinear, non-deterministic problem spaces (where multiplicative interactions are 

common, no exact solution exists). 

? 
ENCODING SCHEME 

(variation, complex search space) 

MUTATION 

(distribution of rare events) 
REPLICATORS, AGENTS 

(robust to rare events) 

MULTI-OBJECTIVE SEARCH 

(variable discovery) 



PARTICIPANTS (in no particular order): 
 

Laura Grabowski (University of Texas-Pan American): 

Toward Robotic Intelligence: Evolution of Memory Use in Digital Organisms 

 

Bill Punch (Institute for Cyber-enabled Research, Michigan State): 

Parallel Processing and Why it Matters to Everyone 

 

Nicholas Keeney (Oceanography and Coastal Sciences, Louisiana State): 

Drawing Conclusions from Drunk Fish in Dynamic Environments 

 

Bradly Alicea (Cellular Reprogramming Laboratory, Michigan State): 

Multiscale and Rare Events in Physiology 

 
OTHER CONTRIBUTORS (in no particular order): 

 

Michael Levin (Center for Developmental and Regenerative Medicine, Tufts): 

Identifying Hard-to-Define Problems in Regenerative Biology 

 

Anne Buchanan (Department of Anthropology, Penn State): 

Rare and Hard-to-predict Events in Human Genetics and Disease 

 

 


