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What is this Workshop About?

Philosophy of Science? Computational Theory?

Cognitive Science?

Measurement/Analysis? Science as Practice?

Inspired by a need to synthesize a methodology of getting at “what we least know”

* experimentation relies on observables. What if we cannot define our problem
scope or variables very well?

* good theory relies on experimental verification. | What if they are highly context-
dependent?




Hard-to-Define Events are actually two
interrelated problems

Measurement (how to quantify things,
determine causality, interpret anomalous
results)

Defining complex variables (many
dimensions, highly nonlinear, self-
referential)

Abstraction (how real-world
phenomena get represented in a
model)

Discovery (how to incorporate new
variables into an existing model)




Hard-to-Define Events are actually two
interrelated problems

Analysis (how to characterize
non-uniform distributions and rare
events)

Rare events (things that occur at an
extremely low frequency, hard to
observe)

No parameterization possible
(summary statistics result in more
questions than answers)

s formal analysis appropriate (do the
appropriate tools exist)?




Different Fields, Different Perspectives

Mathematics: Modeling of distributions (long tails, failure rate).
Philosophy: Fuzzy logic, causality.

Computer Science: Novel representational schemes, computational complexity,
hidden variables, anomaly/outlier detection (KDD).

Biology/Medicine: Diagnosing  disorders, Causation of disease (rare
variants/disease states), high-throughput analysis, automated assays.

Economics: Risk management.
Social Sciences: Constructs (variables), Qualitative phenomena.

Physics: Chaos, power laws, and uncertainty.



Is that a fly in my science????

* unexpected results (unpredictability).
The “UFO” category.....

* everything is generic until understood.
It was a one-in-a-million shot (or luck):

* low-frequency, large-scale events.




Xevents

Xevents model:

Extreme Values
(x" distribution)

Phase transitions
(far-from-equilibrium,
fat tails model)

Albeverio, S., Jentsch, V., and Kantz, H. (2007). Extreme Events in Nature and Society.

Springer, Berlin.




Inverse Problem: |or model

parameters from data.
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lll-posed Problem:

1) No unique solution exists.
* learning and memory.

* collective behavior.

2) Solution is not continuous w.r.t. data
(does not map to a topological space).

* high-dimensional fitness landscape?




Classic Empirical Example of a “Hard-to-Define” Event

STIMULI
ieN

CORRELATES
Y




Classic Empirical Example of a “Hard-to-Define” Event

Concept of a Nest:
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Lin etal Neural encoding of the
concept of nest in the mouse brain.
PNAS, 104(14), 6066-6071 (2007).

Figure 1.A: transient “on” cells.

Distributed representations:
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Ishai et.al Distributed representation of
objects in the human ventral visual
pathway. PNAS, 96, 9379-9384 (1999).

Figure 1.

What makes this “hard-to-define”?
* lack of appropriate measures, analytical techniques?

* lack of context, understanding w.r.t. what results mean (synthesis)?




Does more data get us closer to an

objective set of variables (empirically-

speaking)?
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COURTESY: Figure 7, PLoS Biology, 10(4),
E1001301 (2012).
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COURTESY: Figure 1, PLoS Computational
Biology, 8(6), €1002559.

LEFT: Merging multiple types, sources of
data.

ABOVE: Complementary information (gene-
gene interactions).



How “hard” is the problem?



Newtonian Physics (not so hard?)




Newtonian Physics (not so hard?)
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Newtonian Physics (not so hard?)

Physical Model
f*m

Mental Model

a ball

implicit knowledge +
. . . Figure 1: Consciousness and
inference + predlCtIOh. Cognition, 19, 63-76 (2010).




Quantum Physics (now that’s hard!)
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“Mechanics” = implicit
knowledge + inference +
prediction (in different amounts)



Quantum Physics (now that’s hard!)

Interference
Light and Dark Fringes

Screen

Physical Model

nght Source Slit Partition

Path of \

\ Singel Photon
' .

|
\ .
. |

Fpe Al DeBroglie Model (left) and
Ll Quantum gate (above)

“Mechanics” = implicit
knowledge + inference +
prediction (in different amounts)



Quantum Physics (now that’s hard!)
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How do they compare?
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What is “hard” about these two
examples?

* definition of “variables” and “states”.



How do they compare?
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Now consider the problem of the
origins of life......

* is this “harder” than quantum
physics? Why?

Can this approach be used to
represent such domains
computationally?

* provides them with a common
currency.




A Perspective from Problem Hardness (Math and CS)....

When we claim that a problem is computationally “hard’, it is generally not solvable in polynomial
time on a computer processor.

* claim related to problem structure, algorithm design, information about possible solutions.

Limit for conventional
computational
approaches?




A Perspective from Problem Hardness (Math and CS)....

Not a typical way to think about problem
hardness in science

* consider if there were an optimal search
time for good measures, solutions, and
theories.

Where do scientific
problems fit into this
scheme?




A Perspective from Problem Hardness (Math and CS)....

Research in various fields can be
convergent, but also divergent as well:

* consequence of people not talking
between fields, or due to the “identity of
science” space of hard scientific
problems?

Does lead us into discussions of thinking of
a qualitative concept (‘soft” vs. “hard”
science) algorithmically.



How do we “find” variables?



CASE STUDY: Cell and Developmental Biology

Convergence, divergence among research groups that study “pluripotency”.

* scientific problems converge on a particular milestone, technology.

* fields coalesce and change, but major challenges do not.

Variables: applied from one context to another (e.g. cloning, cell culture -
reprogramming).

* do variables need to change as questions, methods change?
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Adapted from Figures 1 and 2, Yamanaka, Cell Stem Cell, 10, 679 (2012).




Finding Hidden Variables

* stable optima that exist in phase

space.

* local optima (black circles) are
larger than smaller global optimum
(red circles).
GLOBAL OPTIMUM * harder to find using a
(different orientation) search algorithm)
* hard-to-define variables are related

to the non-convexity of this space.

Two-dimensional non-convex surface



Two approaches to variable construction, problem definition
(objectivity vs. enculturation)

How do you “create” a set of complex variables? Example using phenomenon G.

Variables as set of all “objective” observables: How complete is our fundamental
knowledge?

G < | < >I Knowledge




Two approaches to variable construction, problem definition
(objectivity vs. enculturation)

Variables as set of all things we learn are important: \What have we learned to be valuable?
What can be learn from "hidden

information, structure?

G < | < >I Knowledge




Potential Solutions



Josef Zurada (University of Louisville):

KDD approach
B = )

CASE STUDY: Rare Event

Detection

JZ) unsupervised learning (clustering,
anomaly/outlier detection).

Data Knowledge JZ) association rules (rule

confidence/support).



CASE STUDY: Rare Event
Detection

Arindam Banerjee (University of
, Minnesota): ROC Curve approach

AB) can be objects, or unexpected bursts of
activity.

AB) analogous to a “needle in a haystack”.



Nicholas Nassim Taleb: “Black
Swan” approach

THE

BLACK SWAN

*

he Impact of the
HIGHLY IMPROBABLE

CASE STUDY: Rare Event
Detection

NNT) black swan = improbable, rare events
that cannot be predicted.

NNT) “anti-fragility” — systems that benefit
from random events, errors, and volatility.



CASE STUDY: Extreme Value Theory

How do you characterize long-tail (extreme) data, including those that have not been directly
observed yet? For example, earthquakes, floods, a .500 batting average

* assume a probability distribution for the observed data, then model tail for subsequent data
points. Extreme values will occur at some infinitesimal rate.

* what if data do not conform well to a known probability distribution? What if extreme events
has different effects on your system (robustness)?

Are extreme values predictable? What about processes?
EVOLUTION: hopeful monsters, rare variants, complex traits?

EVOLUTIONARY PROCESSES: adaptive radiations, speciation events, survival
of the fittest?




CASE STUDY: Emergence: an elusive phenomenon?

Emergence: whole is greater than the sum of its parts, out of this we can get highly-ordered
systems.
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What is it that we need to define?

* reductionist viewpoint: determine causality among pairwise relationships, establish
“simplest” unit of action.

* complexity viewpoint: characterize interactions, higher-level patterns in phase space.
Key components: 1) multiplicative interactions between agents, 2) no exact solution.

* not deterministic but not spontaneous, either. What we lose in control, we gain in “life-like”
behavior.



Evolutionary Solution for Solving “Hard” Problems?

Using an algorithmic approach to “hard-to-define” problems:

* what would a GA look like that deals effectively with the following
problems? What would fitness function look like?

1) rare events, low-frequency occurences (for practical purposes, unpredictable).

2) searching for variables that provides more explanatory power (vs. relying on tradition,

intuition).

3) nonlinear, non-deterministic problem spaces (where multiplicative interactions are

common, no exact solution exists).

MUTATION
(distribution of rare events)

ENCODING SCHEME
(variation, complex search space)

N
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REPLICATORS, AGENTS
(robust to rare events)

\ MULTI-OBJECTIVE SEARCH

(variable discovery)




PARTICIPANTS (in no particular order):

Laura Grabowski (University of Texas-Pan American):
Toward Robotic Intelligence: Evolution of Memory Use in Digital Organisms

Bill Punch (Institute for Cyber-enabled Research, Michigan State):
Parallel Processing and Why it Matters to Everyone

Nicholas Keeney (Oceanography and Coastal Sciences, Louisiana State):
Drawing Conclusions from Drunk Fish in Dynamic Environments

Bradly Alicea (Cellular Reprogramming Laboratory, Michigan State):
Multiscale and Rare Events in Physiology

OTHER CONTRIBUTORS (in no particular order):

Michael Levin (Center for Developmental and Regenerative Medicine, Tufts):
Identifying Hard-to-Define Problems in Regenerative Biology

Anne Buchanan (Department of Anthropology, Penn State):
Rare and Hard-to-predict Events in Human Genetics and Disease



