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APPENDIX A. SOME INTUITION ABOUT THE MAGNITUDE OF THE SEPARABLE

DIRECT EFFECTS.

Consider the following scenarios:

e Scenario 1: A has a null direct effect on the competing event (A - Dy),

and the separable direct effect is equal to the total effect.

Scenario 2: A has a null direct effect on the event of interest (A - Y}), and
the indirect effect is equal to the total effect.

Scenario 3: A has an average harmful (positive) total effect on both Y} and
Dy. The separable direct effects Pr(Y;¥; "7 = 1) vs. Pr(Y,ifl:O’aD =1)
are harmful (positive), and the separable indirect effects Pr(Ykajr“l’aD:1 =
1) vs. Pr(¥;2;*?=" = 1) are protective (negative).

Scenario 4: A has an average harmful (positive) total effect on Yj and a
protective (negative) total effect on Dy, and the separable direct effects
Pr(Y = = 1) vs. Pr(Y, """ = 1) are harmful (positive), and the sep-

arable indirect effects Pr(Y,}*" =l =1)vs. Pr(Y,2" =0 = 1) are harmful

(positive).

To provide some intuition about the magnitude of the separable effects across

these scenarios, we conducted simulations under the following data generating pro-

Cess:
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5

)
)
)
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)

1) Draw L; ~ Bernoulli[p = 0.25].
2) Draw Ay ~ Bernoulli[p = 0.5].
3) Draw Ap ~ Bernoulli[p = 0.5].

4) Define A=aif Ay = a and Ap = a.

6) For each k € {0, K},



OIka:YkIO,

draw Dyy1 ~ Bernoulli[p = ¢y (Ay, Ap, L1, Ls)], where

wk(AY, Ll) = expit(wo —+ kal{? + LOQAY + W3L1)

if Dy =0,

draw Yy ~ Bernoulli(p = Ay (Ap, L)), where

Me(Ap, L1) = expit(& + & pk + §2Ap + &3L4)

if Dy =1, set Y1 =0.
e else, define Dy 1 = Dg,Yii1 = Vs

Scenario 1 is illustrated in Figure 1a, which was generated using the coefficients
from the first row of Table 1.

Scenario 2 illustrated in Figure 1b, which was generated using the coefficients
from the second row of Table 1.

Scenario 3 is illustrated in Figure lc¢, which was generated using the coefficients
from the third row of Table 1.

Scenario 4 is illustrated in Figure 1d, where data were generated from the forth

row of Table 1.
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FicUurRE 1. Counterfactual outcomes under the data generating
mechanisms from Table 1. In the upper left panel, there is perfect
overlap between the black and green curves, and of the red and blue
curves. In the upper right panel, there is perfect overlap between the
red and green curves, and of the black and blue curves.



Scenario ay w; ws w3 Qp
1 001 0 10 5 0.03
2 001 0O O 5 0.03
3 001 0 10 5 0.03
4 001 0 10 5 003 0 -5 5
TABLE 1. Coefficients for the data generating mechanism of the ex-
amples in Appendix A.
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To provide additional intuition about the magnitude of the separable effects, it
may be helpful to consider two hypothetical sets of individuals (Table 2).

First, define the set () of individuals such that i € ), if ¢ would experience the
competing event at time ¢; < k under full treatment (that is, Ay =1, Ap = 1), and
would experience the event of interest at a time s;, where t; < s; < k, under the
hypothetical treatment Ay = 1, Ap = 0, see Table 2. Heuristically, this happens
if the hypothetical treatment delays the competing event such that the event of
interest is allowed to occur. If Q) comprises a large fraction of the population,
we would expect the total effect and the separable direct effect to be different at
k, because competing events would make it impossible for the event of interest to
occur under full treatment, but not under the hypothetical treatment.

Second, define the set of individuals Ry, such that all individuals j € Ry experience
the competing event at time ¢; < & under full treatment, but would either experience
the competing event at s;, where s; < k, or not experience any event before k£ under
the hypothetical treatment. That is, the subjects in Ry will not experience the event
of interest before k£ under the hypothetical treatment, regardless of the time at which
the competing event occurs. If Ry comprises a large fraction of the population, the

total effect and the separable direct effect on the event of interest will be close at

k.
TABLE 2. Outcomes at time k in subgroups Q) and Ry.
Treatment Outcomes at k in @y Outcomes at k£ in Ry,
Ay =1,Ap =1 Yy =0,Dr =1) Yy =0,Dr =1)
Ayzl,ADZO (Ykzl,Dk:O) (Yk:O,Dkzl)Ol"(Yk:O,Dk:O)
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APPENDIX B. CONDITIONAL INDEPENDENCIES THAT IMPLY THE DISMISSIBLE

COMPONENT CONDITIONS.

We expressed the dismissible component conditions Al and A2 in terms of equal-
ities of hazard functions. We now show that these equalities are implied by certain
counterfactual independencies that can be read directly off of successive single world

transformation of a causal DAG.

Hypothetical trial. Suppose that each component of A is randomly assigned in a
hypothetical 4-arm trial G. To indicate that the random variables are defined with
respect to G, let Ay(G) and Ap(G) be the value of Ay and Ap observed under
G, respectively. We assume that Ay (G) and Ap(G) are randomized independently
of each other to values in {0, 1}, that is Ay (G) L Ap(G). Assume no losses to

follow-up. Define the independencies

(1) Yir1(G) L Ap(G) | Av(G), Yi(G) = 0, D11 (G) = 0, L(G),

(2) Di41(G) L Ay(G) | Ap(G), Dr(G) = 0,Yi(G) = 0, L(G).

B.1. Conditions that ensure Al and A2. Since Ay(G) and Ap(G) are ran-

domly assinged, conditional exchangeability is satisfied in the trial G, such that
Yt (G), DRYP(G) L Ay(G), Ap(G) | L(G),

where ay,ap € {0,1}. In the special case where ay = ap, this conditional ex-
changeability condition is the same as the conditional exchangeability condition in

the main text.



Furthermore, we assume consistency in G, that is, if Ay = ay and Ap = ap then

Yiim(G) = Yen(G)
D (@) = D (G),
where ay,ap € {0,1}. This consistency condition is identical to the consistency

condition in the main text when ay = ap.

We assume positivity in G, that is, for all [ € L,

Pr(L(G)=1) >0 =
(3) PI‘(Ay(G) = CLy,AD(G) = ap | L(G) = l) > O, for ay,ap € {07 1},
which holds by design in G.
Let ay =0, ap = 1 (an analogous argument holds when ay = 1, ap = 0). Using
exchangeability and consistency we find that, for all [ € L,
PI"(Y}H_l(G) =1 | Yk(G) = O,D]H_l(G) = O,Ay(G) == O,AD(G) = 1,L(G> = l)
= Pr(y 0T (@) = 1] YT @) = 0, D0 H@) = 0, Av(G) = 0, Ap = 1, L(G) = 1)
consistency, pos.
=Pr(Y, 2 P7HG) = 1| Y =T (@) = 0, DR TP THG) = 0,L(G) = 1) exchangeability

(4)



Similarly, using (1), exchangeability and consistency we find

Pr(Yen(G) =1 Yi(G) = 0, Dpa(G) = 0, Ay(G) = 0, Ap(G) = 1, L(G) = 1)
— Pr(Yi1(G) = 1| Ya(G) = 0, Dyy1(G) = 0, Ay (G) = 0, L(G) = 1) due to (1)
— Pr(Yi1(G) = 1| Ya(G) = 0, Diy1(G) = 0, Ay (G) = 0, Ap(G) = 0, L(G) = 1) due to (1)
=Pr(Y,2 0 PG) = 1| Y= =(@) = 0, DR TP T(G) = 0, Ay (G) = Ap(G) = 0, L(G) =)
consistency, pos.

=Pr(Y2,0P=0(G) = 1| v, =2=(@) = 0, DY T P=(G) = 0, L(G) = 1) exchangeability

k+1 k+1

(5)

The derivations in (4) and (5) show that Al is satisfied if condition (1) holds, as-
suming conditional exchangeability, positivity and consistency. We can use exactly
the same argument to show that condition A2 holds under conditional exchange-
ability, positivity, consistency and condition (2). Conditions (1) and (2) are helpful
in practice because these independences can be evaluated in causal graphs. In par-
ticular, these conditions hold in Figure 2, where we have described a trial in which
Ay and Ap are randomly assigned such that Pr(Ay = ay, Ap = ap) > 0 for all
ap,ay € {0,1}.

Note that conditions (3) and (4) in the main text, which are part of the decom-

position assumption, are required for the independencies (1) and (2) to hold.

APPENDIX C. PROOF OF IDENTIFIABILITY

We assume a Finest Fully Randomized Causally Interpretable Structured Tree
Graph (FFRCISTG) model [1]. The aim is to identify P (Y;Y’“D’Ezo =1) as a

function of the factual data, in which A is randomized. To do this, we will initially
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FIGURE 2. Directed acyclic graph describing a trial (G) in which Ay
and Ap are randomized. Here, Al and A2 hold.

consider a scenario in which both Ay and Ap are randomized, that is, we consider
a 4 arm trial G, as described in Appendix B. Hereafter we omit the string '(G)’
after the random variables, e.g. Ay (G) = Ay, to avoid clutter. We will provide a
proof for the scenario with a measured pretreatment covariate L and censoring Cj.

The results will immediately hold in simpler scenarios, e.g. by defining L or C} to

be empty.

C.1. Identifiabilty conditions in the presence of censoring. First, we gen-
eralize the identifiability conditions to allow for censoring. Assume that subjects
may be lost to follow-up, and that the losses to follow-up can depend on Ay, Ap
and L, as suggested in Figure 6. Further, assume that the losses to follow-up are
independent of future counterfactual events ("independent censoring’). To be more
precise, we consider a setting in which we intervened such that no subject was lost to
follow-up. Let Cy € {0,1} be an indicator of loss to follow-up by k. Let DY “>="
and Y “=0 he the counterfactual values of Y;. and D;, when Ay is set to a*, Ap
is set to a, and follow-up is ensured at all times.

In a continuous time setting, it is usually assumed that two events cannot occur

at the same point in time. In our discrete time setting with pretreatment covariates
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L and censoring C},, we define a temporal order
(LaADaAY7Cl7D17}/17027D27Y727"'aCK-i-laDK-f—laYK-i-l)'

For all £ € {0, K} we consider the following conditions. First, we extend the

exchangeability conditions from Section 5.1,

EL: Vi, Dy LA L

E2: Y DY L Cryr | Vi = D= G = 0, L, A,

Here, as in Section 5.1, E1 holds when A = Ay = Ap are randomized. E2 requires
that losses to follow-up are independent of future counterfactual events, given the
measured past. This condition is similar to the 'independent censoring’ condition

that is assumed to hold in classical randomized trials [2].

Furthermore, we require a consistency condition such that if Ay = ay, Ap = ap
and Cj, = 0, then Yy = V" and D;, = D and still we only observe
scenarios where ay = ap. The consistency condition ensures that if an individual
has a data history consistent with the intervention under a counterfactual scenario,
then the observed outcome is equal to the counterfactual outcome.

Similar to Section 5.1, the exchangeability and consistency conditions are con-
ventional in the causal inference literature. We also require an extra positivity

condition in the presence of censoring, that is,

Pr(A=a,Y,=0,D,=0,C, =0,L=1) >0 =

PI‘(Ck+1:O’YkZO,Dk:O,C’k:O,L:l,A:a)>O,
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for a = {0, 1}, which ensures that for any possible history of treatment assignments
and covariates among those who are event-free and uncensored at k, some subjects
will remain uncensored at k + 1.

Finally, we rely on two dismissible component conditions which generalize the
conditions in Section 5, by allowing for a hypothetical intervention to eliminate
censoring at all times.

Dismissible component conditions: For all [ € L,

A]_C :Pr(Y;:i/]jaD:LEZO — 1 | )/tlly,aD:LE:O — 07 DZ_T_’{ID:LE:O — O’ L — l)

o ay,ap=0,c=0 ay,ap=0,c=0 ay,ap=0,c=0 __ o
= Pr(Y =11Y; =0,D.% =0,L=1)

A2, Pr(DpyThere=0 = 1 |y =hen=0 = g, ppr=haene=t = o [ = )

_ ay=0,ap,c=0 __ ay=0,ap,c=0 __ ay=0,ap,c=0 __ o
= Pr(D{"; — 1Y —0,D¢ —0,L=1).

Under these conditions, Pr(Y2 >~ = 1) is identified from (10).

C.2. Proof of identifiability. We consider the counterfactual outcomes in a set-
ting where ay = 0 and ap = 1 (analogous arguments holds for the setting where

ay = 1 and ap = 0), and we use laws of probability as well as Al. and A2, to
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express

ay=0,ap=1,c=0
Pr(v =0 — )

=3 [Pt =1 L= 1) Pr(L =)
l

K
_ ay=0,ap=1,c=0 __ ay=0,ap=1,c=0 __ ay=0,ap=1,6=0 __ _
—§ [5 Pr(Y =1| D¢y =Y =0,L=1)
l s=0
S

ay=0,ap=1,c=0 __ ay=0,ap=1,c=0 __ ay=0,ap=1,c=0 __ o
[T [Pr(D3; =0| D; =Y =0,L=1)
J=0

% Pr(}/jay:O,aD:LE:O — 0 | D?YZO,(ZD:LE:O — Y}a_ylz(),aD:I,E:O — 07 L — l)]] PT(L — l)

K
2 : 2 : =0,ap=0,c=0 =0,ap=0,c=0 = =0,6=
_ |: PI‘(YS% ap c -1 ’ DZL ap c — Y;ay 0,a p=0,c=0 — O,L — l)
l s=0
s
ay=1l,ap=1c=0 __ ay=1l,ap=1c=0 __ ay=1l,ap=1c=0 __ -
[T [Pr(Ds; =0| D =] =0,L=1)

J=0

% Pr(}/jayzo,aDZO,EZO -0 | D?yZO,aDZO,EZO — }/;‘(Z_YIZO,CLDZO,EZO — 0’ L = l):|:| Pr(L — l),

K
_ Z [Z Pr(Y.jr:lO’E:D —1| ng?,azo = V=00 — [ =)
l s=0

H [PT(D;LIIIE:O =0 | D;}ZIEZO — }/j&ZIEZO — 07 I = l)
7=0

x Pr(Ye=0e=0 — | pe0e=0 — yes0e=0 g [, — z)]] Pr(L = 1),

(6)

e=0 e=0
where Y77 and Y77 are empty.
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For s > 0 and all [ such that Pr(D%7° = Y**=0 = 0,L =) > 0, let us consider

S

the term

Pr(V7 =1 Dy =Y =0 =0,L=1)

:Pr(yﬁﬁzo =1]| Dgffo =Y =Yy =Dy =Co=0,L=1)

S

:Pr(Y;ﬁ:O: 1,D5 T =Y =0|Yy=Dy=Cy=0,A=a,L =1

where we use the fact that all subjects are event-free and uncensored at £ = 0 in
the 2nd line, and laws of probability and E1 in the 3rd line. Then, we use positivity

and E2 to find

PrYoT =1 | D¢ =YV =Yy =Dy=Co=0,A=0a,L =1)

:Pr(xf;ﬁ:(’ =1,D0 =Y =0|Yy=Dy=C,=0,A=0a,L=1)
PO =Y =0|Yy=Dy=C,=0,A=a,L=1)

:Pr(Y;ﬂEl:O =1 Dgflzo = Y;a’E:O =Yo=Dy=C=0,A=a,L= ).
(7)

Similarly, if s = 1 we use consistency, a new step like (7), and consistency to find

that

Pr(Yy " =1| Dy =Y =Yy =Dy =C, =0,A=a,L =1
=PV =1 | Dy =Y, =D, =C, =0,A=a,L =1)
=PV, =1|Ds =Y, =D, =Cy,=0,A=0a,L =1)

—Pr(Ya=1|Yi=Dy=Cy=0,A=a,L=1).
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If s > 1, we use consistency to find
Pr(Yo =1 | D& =Y =Yy =Dy =C, =0,A=a,L=1)
=Pr(Vy T =1 De =Y =i =Dy =Ci =0,A=a,L=1).

(8)
Then, we repeat the steps in (7) and (8) to find that for all s € (1,2,..., K + 1),

PrY2 =1 D =Y =Y, =Dy =Cy=0,A=a,L =1
:Pr(}/js+1 - 1 | DS+1 :YSICYS+1 :O,A:a,L:l>.

(9)
Similarly, for D% we could follow the same steps as for Y47 to express

Pr(DY =1 | D0 =y =V, =Dy =Cr =0,A=a,L =1)
=Pr(Dyy1=1|Dy=Y,=Cyyy =0,A=0a,L=1).

(10)
Using the results in (6), (9) and (10), we find that
P} = 1)

K
=3 [PtV = 1] Doy = Yo = Co = 0, A = ay, L= 1)
l s=0
H[PI’(Dj+1 =0 | Dj:ij:C_(j—i-l :O,A:CLD,L:Z)

J=0

xPr(Yj:o|Dj:YH:C*j:o,A:ay,L:z)]]Pr(L:z).
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In words, we have derived that Pr(Y’ ™" =0 = 1) is identified from a trial in
which only subjects with (Ay = Ap = A) are observed, i.e. in a trial in which A

is randomized. Hence, in practice we only need data from the treatment arms in

which A = Ay = Ap € {0,1}.



APPENDIX D. PROOF OF WEIGHTED REPRESENTATIONS
For the ease of exposition, define

1

Wé,k(aY> =
Consider the expression

E[Wek(ay)Wpr(ay,ap)Yei1(1 — Yi)(1 — Diyq) | A = ay]
=E[W¢ . (ay )Wpk(ay, ap)Yis1(1 = Yi)(1 = Diy1)(1 — Crqa) | A = ay]

=D Y IPr(Ghen disr nin L] A = ay) Wi (@)W lay, ap)

l Yk+1 d_kJrl

X Yes1(1 = ) (1 = diy1) (1 = ciya)]

= [Pr(Yips = 1, Yy = Disy = Crar = 0,1 | A = ay) Wi (ay )W i(ay, ap)]
l

:Z[Pf(YkH =1|Yy=Djy1 =Cr1 =0,L=1A=ay)
!

XPr(DkJrl:0‘C_Yk-Jrl:Dk:Yk:O?L:l,A:aY)
XPI(Ck+1:O|Dk:Yk:CkZO,L:l,A:ay)
XPI‘(Y/k:Dk:C'k:O,L:l|ay)

x Wi (ay)Wpi(ay, ap)]

H?ZOPI'<CJ'+1:0|C’j:Dj:Y}:O,L:l,A:aD>'
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where we use the definition of expected value, the fact that Y, and D, are binary,

and laws of probability.
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We use laws of probability to express Pr(Yy = D, =C, =0,L =1| A=ay) as

Pr(Yk:O|C_’k:Dk:Yk_lz(),L:l,A:ay)
XPr(Dy=0|Cr=D_1 =Y, 1=0,L=1A=ay)
X Pr(C’k =0 ’ Dk—l :Yk—l :Ck—l :O,LIZ,A:CLy)

X PI‘(Y/]{,1 = Dk,1 = O,C_’k,1 = O,L =1 | A= ay),

where any variable indexed with a number m < 0 are defined to be empty.

Arguing iteratively for k — 1,k — 2, ...,0 we find that

E[W¢ . (ay)Wp(ay, ap)Yie1 (1 = Yi)(1 = Dpg1)(1 = Cryr) | A = ay]

= Z[Pr(Yk+1 =1 ‘ Yk = Dk+1 = ék+1 = O,L: Z,A: CLy)
l

H{PI'(DJ‘_H:O|éj+1:Dj:}G:O,L:l,A:ay)

XPI‘(Cj+1:0|Dj:Yj:Oj:0,L:l,ay)}

x Pr(L = [)W¢ i (ay)Wpk(ay,ap)|,
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We plug in the expression for W¢,, (ay) to get

:Z[Pr(Yk—H =1|Y,=Dpy1=Crs1=0,L=1,A=ay)

l
k
XH{PI'(Dj.,.l:O‘Cj+1:Dj:}/}:O,L:l,A:ay)

J=0

XxPr(Y;=0|Cj=D; =Y; 1 =0,L=1,A=ay)}

x Pr(L = l)Wp(ay,ap)].

We plug in the expression for the weights Wp x(ay,ap) to get

:Z[Pr(Yk—i—l =1|Ye=Djy1 =Cri1 =0,L=1A=ay)

l
k
XH{PT(DjJrl:O‘C_’jJrl:D]':Y}':O,LZZ,A:CLD)

J=0

XxPr(Y;=0|C;=D; =Y; 1 =0,L=1,A=ay)},

x Pr(L =1)],

and the final expression is equal to (10).
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FIGURE 3. Single world intervention template (SWIT) that describes

a scenario with interventions on Ay, Ap and Cj. Even if Uy and Up
are unmeasured, Al and A2 hold.

APPENDIX E. EXPLORING THE DISMISSIBLE COMPONENT CONDITIONS

By considering causal graphs, we provide some insight into the interpretation of

assumptions Al and A2.

E.1. Scenario in which the dismissible component conditions are satis-
fied. Consider the study from Appendix B in which Ay and Ap were random-
ized without loss to follow-up, which ensures positivity and exchangeability. Fur-
thermore, we assume that the usual assumptions about consistency is satisfied; if

Ay = CLy,AD =ap, then Y, = Ykay’aD.

Assume that the causal structure in the single world intervention template (SWIT)
of Figure 5 holds. Here, Ay is d-separated from both Y, **? and D;***” for k € 1,2.
Similarly Ap is d-separated from both Y;“? and D;"“”. Hence, under the as-

sumptions about positivity and consistency, we can identify the following joint law
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from the g-formula,

Pr(Y{Y ™ =1,y = 0, DIYP =, D" = | L)
=Pr(D;=0| Ay =ay,Ap =ap,L)Pr(Y1 =0| D; =0,Ay =ay,Ap = ap, L)
xPr(Dy=0|D; =0,y =0,Ay = ay,Ap = ap, L)

xPr(Yo=1|Dy=0,D;=0,Y, =0,Ay =ay,Ap = ap, L)
=Pr(D;=0|Ap=a,L)Pr(Y1 =0| D, =0,Ay =ay, L)

X Pr(Dy=0| Dy =0,Yi =0,Ap = ap, L) Pr(Ya = 1| Dy = 0,D, = 0,Y; = 0, Ay = ay, L),

(11)

where the last equality follows due to conditional independences that we read off

the causal graph. Similarly, we can identify

Pr(Yy" 7 =0, D37 = 0,D{""" =0 | L)
:PI‘(Dl =0 | AD = CLD,L)PI‘(Yl =0 ‘ D1 = O,AY = CLY7L)
XPI‘(DQ =0 ’ D1 IO,Yl IO,AD :CLD,L).

(12)
Using laws of total probability,

Pr(Y,™ " = 1| Y7 = 0, D§¥ " = 0, D{*"™? = 0, L)

_ Pr(Y;tr =1, =0, D57 = 0,D7""" =0 | L)
N Pr(Y{""? =0, Dy = 0, D" =0 | L)

IPI‘(Yézl ’ D2:O,D1:O,Y1:O,Ay:ay,L).

(13)
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Hence,

:Pr(}/Qay,(IDil — 1 | leay,aDzl — O’Dgy,aDil — O7 Dily,aDil — O’L)

:Pr(nay,aD:(] — 1 | Ylay,aD:() — 07 Dgy,aDZO — O7D(11y,aD:0 — 07 L),

that is Al is satisfied at £k = 2. Using the same argument, we can derive that
A2 is satisfied for £ = 2, and both Al and A2 will be satisfied for £ = 1. That
is, Figure 5 implies that Al and A2 hold. Furthermore, we could use exactly the
same derivations to find that Al and A2 hold in Figure 3, even if Uy and Up are

unmeasured.
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E.2. Scenario in which the dismissible component conditions are not nec-
essarily satisfied. Consider the SWIT in Figure 4, which only differs from Figure
5 in the variable Uy that is an unmeasured common cause of Y; and D;. Here we

read off Figure 4 to find that

Pr(Y[¥ 0 =1 | D% — ), L)
:PI'(}/l =1 | -Dl = 07AY - (IY,AD - (ID,L),

(14)

However, we cannot conclude from the graph that

PI‘(Yi =1 ‘ Dl = O,Ay = CLy,AD = 1,L)
:PI'(Yi =1 ‘ Dl = O,Ay = ay,A: O,L)
(15)
because there is an open collider path ap — D; < Uyp — Y;. Hence, we cannot
conclude that the graph in Figure 4 implies A1, and our results do not allow us to

identify Pr(Y;"*? = 1) in this scenario. The unmeasured common cause Uy p of

V) and Dy, for k, k" € (0,1,..., K + 1) leads to violation of Al and A2.
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AY | ay Y,av-ap

' N\

AD ’ ap Dldnfln —_— Dzllv,fl/)

UYD

FIGURE 4. Single world intervention template (SWIT) of a scenario
in which A1l and A2 are not implied by the graph.
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APPENDIX F. SIMULATIONS

Here we present simulations from 5 scenarios to illustrate the finite sample perfor-
mance of the separable effects. We consider settings where the dismissible compo-
nent conditions are satisfied, but also settings where these conditions are violated.
Furthermore, we consider coverage under violation of the parametric model assump-
tions.

In each scenario, we simulated two randomized experiments in which 400 and
2000 subjects were randomly assigned to treatment A € {0, 1}, respectively. To
assess finite sample behavior, we calculated confidence intervals for 3 time points
by simulating each experiment 500 times, and for each of these experiments we
created non-parametric percentile bootstrap confidence intervals from 500 bootstrap
samples.

The true cumulative incidences from the simulation scenarios are shown in Fig-
ure 5. Generally, our simulations confirm that the g-formula and IPW estimators

perform satisfactory when the identifiability conditions are satisfied.

F.1. Data generating mechanism. For each individual, the data were gener-
ated from the following algorithm, where we have omitted ¢ subscripts to indicate

inidivuals:

1) Draw L, ~ Bernoulli[p = 0.25].

2) Draw Ly ~ Bernoulli[p = 0.2L; + 0.8(1 — Ly)].

(1)
(2)
(3) Draw A ~ Bernoulli[p = 0.5], and define Ay = Ap = A.
(4)
(5)

5) For each k € {0, K'},
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OIka:YkIO,

draw D1 ~ Bernoulli[p = apip(Ay, Ap, Ly, Ls)], where

wk(AY, AD, Ll, Lg) = expit(wo -+ kak + WQAY + W3AD + w4L1 + w5L2

(16) + weAy Ly + wrApLy)

if Dyy1 =0,

draw Yj41 ~ Bernoulli(p = ay A(Ay, Ap, L1, Lo)), where

Me(Ay, Ap, L1, Lo) = expit(§ + & ik + Ay + EAp + Ealy + &5 Lo

(17) + & Ay Ly 4+ §7ApLy).

if Dk+1 = 17 set Yk+1 =0.
e clse, define Dy 1 = Dg,Yii1 = V3.
The coeflicients in each of the scenarios are found in Table 3 and the true cumu-

lative incidence curves of Yy i1,k € {0,99} is found in Figure 5.

Scenario  ay

S & & & & & & ap wr Wy W3 Wy Wy W Wy
1 001 0 10 O 5 O 0 0003 0O 0O -2 b 0O 0 O
2 001 0 10 0O -2 5 0 0003 0 O -2 5 -2 0 0
3 001 0 10 O 5 -10 5 0 003 0O 0 -2 5 -10 O O
4 001 0 10 5 5 O 0 0003 0O 0O -2 5 0O 0 O
5 001 0 10 0 -10 O 0 0003 0 0O -2 0 0O 0 O

TABLE 3. Data generating mechanism for the 5 simulation scenarios.



27
F.2. Scenario 1: Dismissible component conditions hold and no model
mis-specification. Data were generated from the simple setting described by the
first row in Table 3; that is, there is a causal effect of (i) Ay on Yy, (ii) Ap on Dy,
and (iii) L; on both Yj and Dy. Here, both the dismissible component conditions
hold conditional on L;.

To estimate the separable effects, we fitted the following models

(18) IOgIt[ﬁ(Yk = 1 | Dk = }/;c—l = 0, A, Ll, Lg)] = 90,1: —I— 9114 —|— 92L1 —|— 03L2

(19) 1Og1t[ﬁ(Dk =1 | Dk—l = Yk—l = 07 A7 Lla LQ)] - 60,.% + BIA + 52[/17

which are correctly specified, even if model (18) includes a term 65 that is redun-
dant. Thus, we would expect all our estimators to have nominal coverage, and this
is confirmed in Table 4; here, coverage is derived from estimated 95% confidence
intervals based on the parametric g-formula estimator (g-formula) and the weighted

estimators (21 4y ap 4 a0d D24y o %) for the trial with n = 400 subjects.

n = 400
Parameter Estimator | k=100 k=75 k=25
Pr(y, == = 1) g-formula 095 094  0.93
non-parametric 0.95 0.94 0.95
Pr(y,=0r=0 = 1) g-formula 094 093  0.92
non-parametric 0.94 0.95 0.95
Pr(Yy=hr=0 = 1) g-formula 095 096  0.94

Doy ap & 094 095  0.95
D50y ap 096 095  0.95
Pr(Yy="00=t = 1) g-formula 093 093  0.94
Doy ap & 0.92 090  0.95
ﬁQ,ay,aD,k 0.94 0.94 0.92
TABLE 4. Scenario 1.
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Scenario 2: Dismissible component conditions hold and minor model
mis-specification. In this scenario, there are causal effects of both L; and L on
Y) and Dy (second row in Table 3). Both the dismissible component conditions
hold conditional on Ly and Ly. We used regression models (18) and (19) for model
fitting.

Note that in this setting (18) is correctly specified, but (19) is mis-specified
because it does not include a term for L,. Thus, we would expect that the IPW
estimator that uses the correctly specified regression model ( 5 4, 4, %) is unbiased,
but the parametric g-formula estimator and the other IPW estimator ( 14y ap )
are biased because (19) is mis-specified. The results in Table 5, however, suggest
that all estimators have close to nominal coverage. This may be explained by the
fact that the model mis-specification is minor, and the magnitude of the separable

effects is small (see Figure 5).

n =400
Parameter Estimator | k=100 k=75 k=25
Pr(Yy v =her=l = 1) g-formula 0.91 0.92 0.91
non-parametric 0.95 0.96 0.93
Pr(Yy="00=0 = 1) g-formula 094 094  0.93
non-parametric 0.93 0.93 0.93
Pr(y,=1r=0 = 1) g-formula 096 094  0.91

Dy ap 093 095  0.93
D90y ap 091 092 088
Py, ==l = 1) g-formula 094 093  0.93
DN oay apk 0.90 091  0.93
D9,y ap k 093 094 094
TABLE 5. Scenario 2.
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Scenario 3: Dismissible component conditions hold and model mis-specification.
In this scenario, both the dismissible component conditions hold conditional on L,
and Lo. Unlike Scenarios 1 and 2, we fitted the following regression models to the

simulated data,

(20) logit[Pr(Yy = 1| Dy = Yi_y = 0, A, L1, Ly)] = O + 1A + 6,1,

(21) 1Ogit[13}(Dk =1|Dy1=Yo1=0,A,L1,Ly)| = Bor + B1A+ PaLy + B5Lo.

Here, (20) is mis-specified because it does not include a term for Lo, but (21)
is correctly specified; thus the correctness of the model specifications are opposite
from Scenario 2. Also, L, exerts larger effects on Y, and Dy, in this setting compared
to Scenario 2.

The results in Table 6 illustrate that the IPW estimator 7 4, 4, is unbiased
because it only relies on a model that is correctly specified, but the parametric g-
formula estimator and the other IPW estimator (2 4, 4, %) are biased —in particular,

for shorter follow-up times — because they rely on mis-specified regression models.

n = 400
Parameter Estimator | k =100 k=75 k=25
Pr(y, > =1r=! = 1) g-formula 093 095 0091
non-parametric 0.93 0.93 0.94
Pr(Y="00=0 = 1) g-formula 093 086 048
non-parametric 0.94 0.93 0.94
Pr(Yy=her=0 = 1) g-formula 093 094  0.93

D ay apk 094 094 093
ﬁQ,ay,aD,k 0.91 0.72 0.56
Pr(y,=0r=! = 1) g-formula 0.82 0.74 045
Ny ap k 0.95 095  0.94
D50y ap k 0.84 072  0.33
TABLE 6. Scenario 3.
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Scenario 4: Dismissible component conditions fail and model misspecifi-
cation. The dismissible component condition A2 fails in this scenario due to the
non-zero coefficient wy = 5; there is a direct effect Ay — Dy for k € {0,100}. Yet
we fitted regression models (18) and (19) to the simulated data.

The simulations suggest that none of the estimators has nominal coverage for

Pr(Y, == = 1). However, since dismissible component condition Al holds
we can identify Pr(Y,ffl:l’a’F0 = 1), as suggested by the nominal coverage for

this quantity in Table 7. Yet we cannot interpret a contrast Pr(Ylfj:lzo’aD:1 =

1) vs Plr(Y,fj:lzl’a’jz1 = 1) as the separable direct effect of A, due to the violation of

the dismissible component condition.

n = 400
Parameter Estimator | k =100 =75 k=25
Pr(y, == = 1) g-formula 096 094  0.93
non-parametric 0.95 0.94 0.94
Pr(y,=0r=0 = 1) g-formula 0.93 093  0.92
non-parametric 0.93 0.93 0.95
Pr(y,=1r=0 = 1) g-formula 096 097  0.94

Ulay ap.k 094 096 094
Da.ay apk 0.97  0.96  0.96
Pr(y;=0r= = 1) g-formula 0.05 005  0.07
D1y .apk 031 026 034
D2.ay apk 0.05 0.04 0.12
TABLE 7. Scenario 4.
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Scenario 5: Dismissible component conditions hold and no model mis-
specification. In this scenario, L; exerts (strong) causal effects on Y, but not on
Dy. Thus, all the dismissible component conditions hold marginally. To illustrate
that we obtain unbiased estimates even if L; is not included in any of the regression

models, we fitted the parsimonious models,

(22) logit[Pr(Yy = 1| Dy = Vi1 = 0, A)] = b + 6, A.
(23) IOglt[ﬁ(Dk =1 ‘ Dk,1 = Yk,1 = 0, A)] = Bo,k + ﬁlA,

and the results in Table 8 show that all estimators have nominal coverage, even if

L; is not included in the models.

n = 400
Parameter Estimator | k=100 k=75 k=25
Pr(y, == = 1) g-formula 095 094  0.94
non-parametric 0.95 0.95 0.95
Pr(y,=0r=0 = 1) g-formula 094 094  0.93
non-parametric 0.95 0.94 0.94
Pr(Yy=1%r= = 1) g-formula 096 095  0.94

Noay apk 097 096  0.95
D50y ap 095 095 094
Pr(y, == = 1) g-formula 093 094  0.94
ﬁl,ay,ap,k 0.94 0.93 0.94
D30y ap 094 094 094
TABLE 8. Scenario 5.
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