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Appendix A. Some intuition about the magnitude of the separable

direct effects.

Consider the following scenarios:

• Scenario 1: A has a null direct effect on the competing event (A 9 Dk),

and the separable direct effect is equal to the total effect.

• Scenario 2: A has a null direct effect on the event of interest (A9 Yk), and

the indirect effect is equal to the total effect.

• Scenario 3: A has an average harmful (positive) total effect on both Yk and

Dk. The separable direct effects Pr(Y aY =1,aD
k+1 = 1) vs. Pr(Y aY =0,aD

k+1 = 1)

are harmful (positive), and the separable indirect effects Pr(Y aY ,aD=1
k+1 =

1) vs. Pr(Y aY ,aD=0
k+1 = 1) are protective (negative).

• Scenario 4: A has an average harmful (positive) total effect on Yk and a

protective (negative) total effect on Dk, and the separable direct effects

Pr(Y aY =1,aD
k+1 = 1) vs. Pr(Y aY =0,aD

k+1 = 1) are harmful (positive), and the sep-

arable indirect effects Pr(Y aY ,aD=1
k+1 = 1) vs. Pr(Y aY ,aD=0

k+1 = 1) are harmful

(positive).

To provide some intuition about the magnitude of the separable effects across

these scenarios, we conducted simulations under the following data generating pro-

cess:

(1) Draw L1 ∼ Bernoulli[p = 0.25].

(2) Draw AY ∼ Bernoulli[p = 0.5].

(3) Draw AD ∼ Bernoulli[p = 0.5].

(4) Define A = a if AY = a and AD = a.

(5) Set D0 = Y0 = 0.

(6) For each k ∈ {0, K},
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• if Dk = Yk = 0,

draw Dk+1 ∼ Bernoulli[p = ψk(AY , AD, L1, L2)], where

ψk(AY , L1) = expit(ω0 + ω1,kk + ω2AY + ω3L1)

if Dk+1 = 0,

draw Yk+1 ∼ Bernoulli(p = λk(AD, L1)), where

λk(AD, L1) = expit(ξ0 + ξ1,kk + ξ2AD + ξ3L1)

if Dk+1 = 1, set Yk+1 = 0.

• else, define Dk+1 = Dk,Yk+1 = Yk.

Scenario 1 is illustrated in Figure 1a, which was generated using the coefficients

from the first row of Table 1.

Scenario 2 illustrated in Figure 1b, which was generated using the coefficients

from the second row of Table 1.

Scenario 3 is illustrated in Figure 1c, which was generated using the coefficients

from the third row of Table 1.

Scenario 4 is illustrated in Figure 1d, where data were generated from the forth

row of Table 1.
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Figure 1. Counterfactual outcomes under the data generating
mechanisms from Table 1. In the upper left panel, there is perfect
overlap between the black and green curves, and of the red and blue
curves. In the upper right panel, there is perfect overlap between the
red and green curves, and of the black and blue curves.
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Scenario αY ω1 ω2 ω3 αD ξ1 ξ2 ξ3

1 0.01 0 10 5 0.03 0 0 5
2 0.01 0 0 5 0.03 0 5 5
3 0.01 0 10 5 0.03 0 5 5
4 0.01 0 10 5 0.03 0 -5 5

Table 1. Coefficients for the data generating mechanism of the ex-
amples in Appendix A.
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To provide additional intuition about the magnitude of the separable effects, it

may be helpful to consider two hypothetical sets of individuals (Table 2).

First, define the set Qk of individuals such that i ∈ Qk if i would experience the

competing event at time ti < k under full treatment (that is, AY = 1, AD = 1), and

would experience the event of interest at a time si, where ti < si < k, under the

hypothetical treatment AY = 1, AD = 0, see Table 2. Heuristically, this happens

if the hypothetical treatment delays the competing event such that the event of

interest is allowed to occur. If Qk comprises a large fraction of the population,

we would expect the total effect and the separable direct effect to be different at

k, because competing events would make it impossible for the event of interest to

occur under full treatment, but not under the hypothetical treatment.

Second, define the set of individuals Rk such that all individuals j ∈ Rk experience

the competing event at time tj < k under full treatment, but would either experience

the competing event at sj, where sj < k, or not experience any event before k under

the hypothetical treatment. That is, the subjects in Rk will not experience the event

of interest before k under the hypothetical treatment, regardless of the time at which

the competing event occurs. If Rk comprises a large fraction of the population, the

total effect and the separable direct effect on the event of interest will be close at

k.

Table 2. Outcomes at time k in subgroups Qk and Rk.

Treatment Outcomes at k in Qk Outcomes at k in Rk

AY = 1, AD = 1 (Yk = 0, Dk = 1) (Yk = 0, Dk = 1)
AY = 1, AD = 0 (Yk = 1, Dk = 0) (Yk = 0, Dk = 1) or (Yk = 0, Dk = 0)
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Appendix B. Conditional Independencies that imply the dismissible

component conditions.

We expressed the dismissible component conditions ∆1 and ∆2 in terms of equal-

ities of hazard functions. We now show that these equalities are implied by certain

counterfactual independencies that can be read directly off of successive single world

transformation of a causal DAG.

Hypothetical trial. Suppose that each component of A is randomly assigned in a

hypothetical 4-arm trial G. To indicate that the random variables are defined with

respect to G, let AY (G) and AD(G) be the value of AY and AD observed under

G, respectively. We assume that AY (G) and AD(G) are randomized independently

of each other to values in {0, 1}, that is AY (G) ⊥⊥ AD(G). Assume no losses to

follow-up. Define the independencies

Yk+1(G) ⊥⊥ AD(G) | AY (G), Yk(G) = 0, Dk+1(G) = 0, L(G),(1)

Dk+1(G) ⊥⊥ AY (G) | AD(G), Dk(G) = 0, Yk(G) = 0, L(G).(2)

B.1. Conditions that ensure ∆1 and ∆2. Since AY (G) and AD(G) are ran-

domly assinged, conditional exchangeability is satisfied in the trial G, such that

Ȳ aY ,aD
K+1 (G), D̄aY ,aD

K+1 (G) ⊥⊥ AY (G), AD(G) | L(G),

where aY , aD ∈ {0, 1}. In the special case where aY = aD, this conditional ex-

changeability condition is the same as the conditional exchangeability condition in

the main text.
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Furthermore, we assume consistency in G, that is, if AY = aY and AD = aD then

Y aY ,aD
k+1 (G) = Yk+1(G)

DaY ,aD
k+1 (G) = Dk+1(G),

where aY , aD ∈ {0, 1}. This consistency condition is identical to the consistency

condition in the main text when aY = aD.

We assume positivity in G, that is, for all l ∈ L,

Pr(L(G) = l) > 0 =⇒

Pr(AY (G) = aY , AD(G) = aD | L(G) = l) > 0, for aY , aD ∈ {0, 1},(3)

which holds by design in G.

Let aY = 0, aD = 1 (an analogous argument holds when aY = 1, aD = 0). Using

exchangeability and consistency we find that, for all l ∈ L,

Pr(Yk+1(G) = 1 | Yk(G) = 0, Dk+1(G) = 0, AY (G) = 0, AD(G) = 1, L(G) = l)

= Pr(Y aY =0,aD=1
k+1 (G) = 1 | Y aY =0,aD=1

k (G) = 0, DaY =0,aD=1
k+1 (G) = 0, AY (G) = 0, AD = 1, L(G) = l)

consistency, pos.

= Pr(Y aY =0,aD=1
k+1 (G) = 1 | Y aY =0,aD=1

k (G) = 0, DaY =0,aD=1
k+1 (G) = 0, L(G) = l) exchangeability

(4)
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Similarly, using (1), exchangeability and consistency we find

Pr(Yk+1(G) = 1 | Yk(G) = 0, Dk+1(G) = 0, AY (G) = 0, AD(G) = 1, L(G) = l)

= Pr(Yk+1(G) = 1 | Yk(G) = 0, Dk+1(G) = 0, AY (G) = 0, L(G) = l) due to (1)

= Pr(Yk+1(G) = 1 | Yk(G) = 0, Dk+1(G) = 0, AY (G) = 0, AD(G) = 0, L(G) = l) due to (1)

= Pr(Y aY =0,aD=0
k+1 (G) = 1 | Y aY =0,aD=0

k (G) = 0, DaY =0,aD=0
k+1 (G) = 0, AY (G) = AD(G) = 0, L(G) = l)

consistency, pos.

= Pr(Y aY =0,aD=0
k+1 (G) = 1 | Y aY =0,aD=0

k (G) = 0, DaY =0,aD=0
k+1 (G) = 0, L(G) = l) exchangeability

(5)

The derivations in (4) and (5) show that ∆1 is satisfied if condition (1) holds, as-

suming conditional exchangeability, positivity and consistency. We can use exactly

the same argument to show that condition ∆2 holds under conditional exchange-

ability, positivity, consistency and condition (2). Conditions (1) and (2) are helpful

in practice because these independences can be evaluated in causal graphs. In par-

ticular, these conditions hold in Figure 2, where we have described a trial in which

AY and AD are randomly assigned such that Pr(AY = aY , AD = aD) > 0 for all

aD, aY ∈ {0, 1}.

Note that conditions (3) and (4) in the main text, which are part of the decom-

position assumption, are required for the independencies (1) and (2) to hold.

Appendix C. Proof of identifiability

We assume a Finest Fully Randomized Causally Interpretable Structured Tree

Graph (FFRCISTG) model [1]. The aim is to identify P
(
Y aY ,aD,c̄=0
k = 1

)
as a

function of the factual data, in which A is randomized. To do this, we will initially
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Figure 2. Directed acyclic graph describing a trial (G) in which AY

and AD are randomized. Here, ∆1 and ∆2 hold.

consider a scenario in which both AY and AD are randomized, that is, we consider

a 4 arm trial G, as described in Appendix B. Hereafter we omit the string ’(G)’

after the random variables, e.g. AY (G) = AY , to avoid clutter. We will provide a

proof for the scenario with a measured pretreatment covariate L and censoring Ck.

The results will immediately hold in simpler scenarios, e.g. by defining L or Ck to

be empty.

C.1. Identifiabilty conditions in the presence of censoring. First, we gen-

eralize the identifiability conditions to allow for censoring. Assume that subjects

may be lost to follow-up, and that the losses to follow-up can depend on AY , AD

and L, as suggested in Figure 6. Further, assume that the losses to follow-up are

independent of future counterfactual events (’independent censoring’). To be more

precise, we consider a setting in which we intervened such that no subject was lost to

follow-up. Let Ck ∈ {0, 1} be an indicator of loss to follow-up by k. Let DaY ,aD,c̄=0
k

and Y aY ,aD,c̄=0
k be the counterfactual values of Yk and Dk when AY is set to a∗, AD

is set to a, and follow-up is ensured at all times.

In a continuous time setting, it is usually assumed that two events cannot occur

at the same point in time. In our discrete time setting with pretreatment covariates
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L and censoring Ck, we define a temporal order

(L,AD, AY , C1, D1, Y1, C2, D2, Y2, ..., CK+1, DK+1, YK+1).

For all k ∈ {0, K} we consider the following conditions. First, we extend the

exchangeability conditions from Section 5.1,

E1 : Ȳ a,c̄=0
K+1 , D̄a,c̄=0

K+1 ⊥⊥ A | L

E2 : Ya,c̄=0
k+1 ,Da,c̄=0

k+1 ⊥⊥ Ck+1 | Yk = Dk = C̄k = 0, L, A.

Here, as in Section 5.1, E1 holds when A ≡ AY ≡ AD are randomized. E2 requires

that losses to follow-up are independent of future counterfactual events, given the

measured past. This condition is similar to the ’independent censoring’ condition

that is assumed to hold in classical randomized trials [2].

Furthermore, we require a consistency condition such that if AY = aY , AD = aD

and C̄k = 0, then Yk = Y aY ,aD,c̄=0
k and Dk = DaY ,aD,c̄=0

k , and still we only observe

scenarios where aY = aD. The consistency condition ensures that if an individual

has a data history consistent with the intervention under a counterfactual scenario,

then the observed outcome is equal to the counterfactual outcome.

Similar to Section 5.1, the exchangeability and consistency conditions are con-

ventional in the causal inference literature. We also require an extra positivity

condition in the presence of censoring, that is,

Pr(A = a, Yk = 0, Dk = 0, C̄k = 0, L = l) > 0 =⇒

Pr(Ck+1 = 0 | Yk = 0, Dk = 0, C̄k = 0, L = l, A = a) > 0,
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for a = {0, 1}, which ensures that for any possible history of treatment assignments

and covariates among those who are event-free and uncensored at k, some subjects

will remain uncensored at k + 1.

Finally, we rely on two dismissible component conditions which generalize the

conditions in Section 5, by allowing for a hypothetical intervention to eliminate

censoring at all times.

Dismissible component conditions: For all l ∈ L,

∆1c : Pr(Y aY ,aD=1,c̄=0
k+1 = 1 | Y aY ,aD=1,c̄=0

t = 0, DaY ,aD=1,c̄=0
k+1 = 0, L = l)

= Pr(Y aY ,aD=0,c̄=0
k+1 = 1 | Y aY ,aD=0,c=0

t = 0, DaY ,aD=0,c=0
k+1 = 0, L = l)

∆2c : Pr(DaY =1,aD,c̄=0
k+1 = 1 | Y aY =1,aD,c̄=0

k = 0, DaY =1,aD,c̄=0
k = 0, L = l)

= Pr(DaY =0,aD,c̄=0
k+1 = 1 | Y aY =0,aD,c=0

k = 0, DaY =0,aD,c=0
k = 0, L = l).

Under these conditions, Pr(Y aY ,aD,c̄=0
K+1 = 1) is identified from (10).

C.2. Proof of identifiability. We consider the counterfactual outcomes in a set-

ting where aY = 0 and aD = 1 (analogous arguments holds for the setting where

aY = 1 and aD = 0), and we use laws of probability as well as ∆1c and ∆2c to
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express

Pr(Y aY =0,aD=1,c̄=0
K+1 = 1)

=
∑
l

[
Pr(Y aY =0,aD=1,c̄=0

K+1 = 1 | L = l)
]

Pr(L = l)

=
∑
l

[ K∑
s=0

Pr(Y aY =0,aD=1,c̄=0
s+1 = 1 | DaY =0,aD=1,c̄=0

s+1 = Y aY =0,aD=1,c̄=0
s = 0, L = l)

s∏
j=0

[
Pr(DaY =0,aD=1,c̄=0

j+1 = 0 | DaY =0,aD=1,c̄=0
j = Y aY =0,aD=1,c̄=0

j = 0, L = l)

× Pr(Y aY =0,aD=1,c̄=0
j = 0 | DaY =0,aD=1,c̄=0

j = Y aY =0,aD=1,c̄=0
j−1 = 0, L = l)

]]
Pr(L = l)

=
∑
l

[ K∑
s=0

Pr(Y aY =0,aD=0,c̄=0
s+1 = 1 | DaY =0,aD=0,c̄=0

s+1 = Y aY =0,aD=0,c̄=0
s = 0, L = l)

s∏
j=0

[
Pr(DaY =1,aD=1c̄=0

j+1 = 0 | DaY =1,aD=1c̄=0
j = Y aY =1,aD=1c̄=0

j = 0, L = l)

× Pr(Y aY =0,aD=0,c̄=0
j = 0 | DaY =0,aD=0,c̄=0

j = Y aY =0,aD=0,c̄=0
j−1 = 0, L = l)

]]
Pr(L = l),

=
∑
l

[ K∑
s=0

Pr(Y a=0,c̄=0
s+1 = 1 | Da=0,c̄=0

s+1 = Y a=0,c̄=0
s = 0, L = l)

s∏
j=0

[
Pr(Da=1c̄=0

j+1 = 0 | Da=1c̄=0
j = Y a=1c̄=0

j = 0, L = l)

× Pr(Y a=0,c̄=0
j = 0 | Da=0,c̄=0

j = Y a=0,c̄=0
j−1 = 0, L = l)

]]
Pr(L = l),

(6)

where Y aY ,aD,c̄=0
−1 and Y aY ,c̄=0

−1 are empty.
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For s ≥ 0 and all l such that Pr(Da,c̄=0
s+1 = Y a,c̄=0

s = 0, L = l) > 0, let us consider

the term

Pr(Y a,c̄=0
s+1 = 1 | Da,c̄=0

s+1 = Y a,c̄=0
s = 0, L = l)

= Pr(Y a,c̄=0
s+1 = 1 | Da,c̄=0

s+1 = Y a,c̄=0
s = Y0 = D0 = C̄0 = 0, L = l)

=
Pr(Y a,c̄=0

s+1 = 1, D̄a,c̄=0
s+1 = Ȳ a,c̄=0

s = 0 | Y0 = D0 = C̄0 = 0, A = a, L = l)

P (D̄a,c̄=0
s+1 = Ȳ a,c̄=0

s = 0 | Y0 = D0 = C̄0 = 0, A = a, L = l)
,

where we use the fact that all subjects are event-free and uncensored at k = 0 in

the 2nd line, and laws of probability and E1 in the 3rd line. Then, we use positivity

and E2 to find

Pr(Y a,c̄=0
s+1 = 1 | Da,c̄=0

s+1 = Y a,c̄=0
s = Y0 = D0 = C̄0 = 0, A = a, L = l)

=
Pr(Y a,c̄=0

s+1 = 1, D̄a,c̄=0
s+1 = Ȳ a,c̄=0

s = 0 | Y0 = D0 = C̄1 = 0, A = a, L = l)

P (D̄a,c̄=0
s+1 = Ȳ a,c̄=0

s = 0 | Y0 = D0 = C̄1 = 0, A = a, L = l)

= Pr(Y a,c̄=0
s+1 = 1 | Da,c̄=0

s+1 = Y a,c̄=0
s = Y0 = D0 = C̄1 = 0, A = a, L = l).

(7)

Similarly, if s = 1 we use consistency, a new step like (7), and consistency to find

that

Pr(Y a,c̄=0
2 = 1 | Da,c̄=0

2 = Y a,c̄=0
1 = Y0 = D0 = C̄1 = 0, A = a, L = l)

= Pr(Y a,c̄=0
2 = 1 | Da,c̄=0

2 = Y1 = D1 = C̄1 = 0, A = a, L = l)

= Pr(Y a,c̄=0
2 = 1 | Da,c̄=0

2 = Y1 = D1 = C̄2 = 0, A = a, L = l)

= Pr(Y2 = 1 | Y1 = D2 = C̄2 = 0, A = a, L = l).
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If s > 1, we use consistency to find

Pr(Y a,c̄=0
s+1 = 1 | Da,c̄=0

s+1 = Y a,c̄=0
s = Y0 = D0 = C̄1 = 0, A = a, L = l)

= Pr(Y a,c̄=0
s+1 = 1 | Da,c̄=0

s+1 = Y a,c̄=0
s = Y1 = D1 = C̄1 = 0, A = a, L = l).

(8)

Then, we repeat the steps in (7) and (8) to find that for all s ∈ (1, 2, ..., K + 1),

Pr(Y a,c̄=0
s+1 = 1 | Dac̄=0

s+1 = Y a,c̄=0
s = Y0 = D0 = C̄0 = 0, A = a, L = l)

= Pr(Ys+1 = 1 | Ds+1 = Ys = C̄s+1 = 0, A = a, L = l).

(9)

Similarly, for Da,c̄=0
s+1 we could follow the same steps as for Y a,c̄=0

s+1 to express

Pr(Da,c̄=0
s+1 = 1 | Da,c̄=0

s = Y a,c̄=0
s = Yk = Dk = C̄k = 0, A = a, L = l)

= Pr(Ds+1 = 1 | Ds = Ys = C̄s+1 = 0, A = a, L = l).

(10)

Using the results in (6), (9) and (10), we find that

Pr(Y aY ,aD,c̄=0
K+1 = 1)

=
∑
l

[ K∑
s=0

Pr(Ys+1 = 1 | Ds+1 = Ys = C̄s+1 = 0, A = aY , L = l)

s∏
j=0

[
Pr(Dj+1 = 0 | Dj = Yj = C̄j+1 = 0, A = aD, L = l)

× Pr(Yj = 0 | Dj = Yj−1 = C̄j = 0, A = aY , L = l)
]]

Pr(L = l).
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In words, we have derived that Pr(Y aY ,aD,c̄=0
K+1 = 1) is identified from a trial in

which only subjects with (AY = AD = A) are observed, i.e. in a trial in which A

is randomized. Hence, in practice we only need data from the treatment arms in

which A ≡ AY ≡ AD ∈ {0, 1}.
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Appendix D. Proof of weighted representations

For the ease of exposition, define

W ′
C,k(aY ) =

1∏k
j=0 Pr(Cj+1 = 0 | C̄j = Dj = Yj = 0, L = l, A = aD)

.

Consider the expression

E[WC,k(aY )WD,k(aY , aD)Yk+1(1− Yk)(1−Dk+1) | A = aY ]

=E[W ′
C,k(aY )WD,k(aY , aD)Yk+1(1− Yk)(1−Dk+1)(1− C̄k+1) | A = aY ]

=
∑
l

∑
ȳk+1

∑
d̄k+1

[Pr(ȳk+1, dk+1, ck+1, l | A = aY )W ′
C,k(a)WD,k(aY , aD)

× yk+1(1− yk)(1− dk+1)(1− ck+1)]

=
∑
l

[Pr(Yk+1 = 1, Yk = Dk+1 = C̄k+1 = 0, l | A = aY )W ′
C,k(aY )WD,k(aY , aD)]

=
∑
l

[Pr(Yk+1 = 1 | Yk = Dk+1 = C̄k+1 = 0, L = l, A = aY )

× Pr(Dk+1 = 0 | C̄k+1 = D̄k = Ȳk = 0, L = l, A = aY )

× Pr(Ck+1 = 0 | D̄k = Ȳk = C̄k = 0, L = l, A = aY )

× Pr(Ȳk = D̄k = C̄k = 0, L = l | aY )

×W ′
C,k(aY )WD,k(aY , aD)]

where we use the definition of expected value, the fact that Yk and Dk are binary,

and laws of probability.
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We use laws of probability to express Pr(Ȳk = D̄k = C̄k = 0, L = l | A = aY ) as

Pr(Yk = 0 | C̄k = Dk = Yk−1 = 0, L = l, A = aY )

× Pr(Dk = 0 | C̄k = Dk−1 = Yk−1 = 0, L = l, A = aY )

× Pr(Ck = 0 | Dk−1 = Yk−1 = C̄k−1 = 0, L = l, A = aY )

× Pr(Ȳk−1 = D̄k−1 = 0, C̄k−1 = 0, L = l | A = aY ),

where any variable indexed with a number m < 0 are defined to be empty.

Arguing iteratively for k − 1, k − 2, ..., 0 we find that

E[W ′
C,k(aY )WD,k(aY , aD)Yk+1(1− Yk)(1−Dk+1)(1− Ck+1) | A = aY ]

=
∑
l

[
Pr(Yk+1 = 1 | Yk = Dk+1 = C̄k+1 = 0, L = l, A = aY )

k∏
j=0

{
Pr(Dj+1 = 0 | C̄j+1 = Dj = Yj = 0, L = l, A = aY )

× Pr(Yj = 0 | C̄j = Dj = Yj−1 = 0, L = l, A = aY )

× Pr(Cj+1 = 0 | D̄j = Ȳj = C̄j = 0, L = l, aY )
}

×Pr(L = l)W ′
C,k(aY )WD,k(aY , aD)

]
,
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We plug in the expression for W ′
C,k(aY ) to get

=
∑
l̄

[Pr(Yk+1 = 1 | Yk = Dk+1 = C̄k+1 = 0, L = l, A = aY )

×
k∏

j=0

{
Pr(Dj+1 = 0 | C̄j+1 = Dj = Yj = 0, L = l, A = aY )

× Pr(Yj = 0 | C̄j = Dj = Yj−1 = 0, L = l, A = aY )
}

× Pr(L = l)WD,k(aY , aD)].

We plug in the expression for the weights WD,k(aY , aD) to get

=
∑
l̄

[Pr(Yk+1 = 1 | Yk = Dk+1 = C̄k+1 = 0, L = l, A = aY )

×
k∏

j=0

{
Pr(Dj+1 = 0 | C̄j+1 = Dj = Yj = 0, L = l, A = aD)

× Pr(Yj = 0 | C̄j = Dj = Yj−1 = 0, L = l, A = aY )
}
,

×Pr(L = l)],

and the final expression is equal to (10).



20

A

AY | aY

AD | aD

Y1
aY ,aD

D1
aY ,aD

Y2
aY ,aD

D2
aY ,aD

L UY

UD

Figure 3. Single world intervention template (SWIT) that describes
a scenario with interventions on AY , AD and C̄k. Even if UY and UD

are unmeasured, ∆1 and ∆2 hold.

Appendix E. Exploring the dismissible component conditions

By considering causal graphs, we provide some insight into the interpretation of

assumptions ∆1 and ∆2.

E.1. Scenario in which the dismissible component conditions are satis-

fied. Consider the study from Appendix B in which AY and AD were random-

ized without loss to follow-up, which ensures positivity and exchangeability. Fur-

thermore, we assume that the usual assumptions about consistency is satisfied; if

AY = aY ,AD = aD, then Yk = Y aY ,aD
k .

Assume that the causal structure in the single world intervention template (SWIT)

of Figure 5 holds. Here, AY is d-separated from both Y aY ,aD
k and DaY ,aD

k for k ∈ 1, 2.

Similarly AD is d-separated from both Y aY ,aD
k and DaY ,aD

k . Hence, under the as-

sumptions about positivity and consistency, we can identify the following joint law
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from the g-formula,

Pr(Y aY ,aD
2 = 1, Y aY ,aD

1 = 0, DaY ,aD
2 = 0, DaY ,aD

1 = 0 | L)

= Pr(D1 = 0 | AY = aY , AD = aD, L) Pr(Y1 = 0 | D1 = 0, AY = aY , AD = aD, L)

×Pr(D2 = 0 | D1 = 0, Y1 = 0, AY = aY , AD = aD, L)

×Pr(Y2 = 1 | D2 = 0, D1 = 0, Y1 = 0, AY = aY , AD = aD, L)

= Pr(D1 = 0 | AD = a, L) Pr(Y1 = 0 | D1 = 0, AY = aY , L)

×Pr(D2 = 0 | D1 = 0, Y1 = 0, AD = aD, L) Pr(Y2 = 1 | D2 = 0, D1 = 0, Y1 = 0, AY = aY , L),

(11)

where the last equality follows due to conditional independences that we read off

the causal graph. Similarly, we can identify

Pr(Y aY ,aD
1 = 0, DaY ,aD

2 = 0, DaY ,aD
1 = 0 | L)

= Pr(D1 = 0 | AD = aD, L) Pr(Y1 = 0 | D1 = 0, AY = aY , L)

×Pr(D2 = 0 | D1 = 0, Y1 = 0, AD = aD, L).

(12)

Using laws of total probability,

Pr(Y aY ,aD
2 = 1 | Y aY ,aD

1 = 0, DaY ,aD
2 = 0, DaY ,aD

1 = 0, L)

=
Pr(Y aY ,aD

2 = 1, Y aY ,aD
1 = 0, DaY ,aD

2 = 0, DaY ,aD
1 = 0 | L)

Pr(Y aY ,aD
1 = 0, DaY ,aD

2 = 0, DaY ,aD
1 = 0 | L)

= Pr(Y2 = 1 | D2 = 0, D1 = 0, Y1 = 0, AY = aY , L).

(13)
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Hence,

= Pr(Y aY ,aD=1
2 = 1 | Y aY ,aD=1

1 = 0, DaY ,aD=1
2 = 0, DaY ,aD=1

1 = 0, L)

= Pr(Y aY ,aD=0
2 = 1 | Y aY ,aD=0

1 = 0, DaY ,aD=0
2 = 0, DaY ,aD=0

1 = 0, L),

that is ∆1 is satisfied at k = 2. Using the same argument, we can derive that

∆2 is satisfied for k = 2, and both ∆1 and ∆2 will be satisfied for k = 1. That

is, Figure 5 implies that ∆1 and ∆2 hold. Furthermore, we could use exactly the

same derivations to find that ∆1 and ∆2 hold in Figure 3, even if UY and UD are

unmeasured.



23

E.2. Scenario in which the dismissible component conditions are not nec-

essarily satisfied. Consider the SWIT in Figure 4, which only differs from Figure

5 in the variable UY that is an unmeasured common cause of Y1 and D1. Here we

read off Figure 4 to find that

Pr(Y aY ,aD
1 = 1 | DaY ,aD

1 = 0, L)

= Pr(Y1 = 1 | D1 = 0, AY = aY , AD = aD, L),

(14)

However, we cannot conclude from the graph that

Pr(Y1 = 1 | D1 = 0, AY = aY , AD = 1, L)

= Pr(Y1 = 1 | D1 = 0, AY = aY , A = 0, L)

(15)

because there is an open collider path aD → D1 ← UY D → Y1. Hence, we cannot

conclude that the graph in Figure 4 implies ∆1, and our results do not allow us to

identify Pr(Y aY ,aD
1 = 1) in this scenario. The unmeasured common cause UY D of

Yk and Dk′ for k, k′ ∈ (0, 1, ..., K + 1) leads to violation of ∆1 and ∆2.
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A

AY | aY

AD | aD

Y1
aY ,aD

D1
aY ,aD

Y2
aY ,aD

D2
aY ,aD

L

UY D

Figure 4. Single world intervention template (SWIT) of a scenario
in which ∆1 and ∆2 are not implied by the graph.
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Appendix F. Simulations

Here we present simulations from 5 scenarios to illustrate the finite sample perfor-

mance of the separable effects. We consider settings where the dismissible compo-

nent conditions are satisfied, but also settings where these conditions are violated.

Furthermore, we consider coverage under violation of the parametric model assump-

tions.

In each scenario, we simulated two randomized experiments in which 400 and

2000 subjects were randomly assigned to treatment A ∈ {0, 1}, respectively. To

assess finite sample behavior, we calculated confidence intervals for 3 time points

by simulating each experiment 500 times, and for each of these experiments we

created non-parametric percentile bootstrap confidence intervals from 500 bootstrap

samples.

The true cumulative incidences from the simulation scenarios are shown in Fig-

ure 5. Generally, our simulations confirm that the g-formula and IPW estimators

perform satisfactory when the identifiability conditions are satisfied.

F.1. Data generating mechanism. For each individual, the data were gener-

ated from the following algorithm, where we have omitted i subscripts to indicate

inidivuals:

(1) Draw L1 ∼ Bernoulli[p = 0.25].

(2) Draw L2 ∼ Bernoulli[p = 0.2L1 + 0.8(1− L1)].

(3) Draw A ∼ Bernoulli[p = 0.5], and define AY ≡ AD ≡ A.

(4) Set D0 = Y0 = 0.

(5) For each k ∈ {0, K},
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• if Dk = Yk = 0,

draw Dk+1 ∼ Bernoulli[p = αDψk(AY , AD, L1, L2)], where

ψk(AY , AD, L1, L2) = expit(ω0 + ω1,kk + ω2AY + ω3AD + ω4L1 + ω5L2

+ ω6AYL1 + ω7ADL1)(16)

if Dk+1 = 0,

draw Yk+1 ∼ Bernoulli(p = αY λk(AY , AD, L1, L2)), where

λk(AY , AD, L1, L2) = expit(ξ0 + ξ1,kk + ξ2AY + ξ3AD + ξ4L1 + ξ5L2

+ ξ6AYL1 + ξ7ADL1).(17)

if Dk+1 = 1, set Yk+1 = 0.

• else, define Dk+1 = Dk,Yk+1 = Yk.

The coefficients in each of the scenarios are found in Table 3 and the true cumu-

lative incidence curves of Yk+1, k ∈ {0, 99} is found in Figure 5.

Scenario αY ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 αD ω1 ω2 ω3 ω4 ω5 ω6 ω7

1 0.01 0 10 0 5 0 0 0 0.03 0 0 -2 5 0 0 0
2 0.01 0 10 0 -2 5 0 0 0.03 0 0 -2 5 -2 0 0
3 0.01 0 10 0 5 -10 5 0 0.03 0 0 -2 5 -10 0 0
4 0.01 0 10 5 5 0 0 0 0.03 0 0 -2 5 0 0 0
5 0.01 0 10 0 -10 0 0 0 0.03 0 0 -2 0 0 0 0

Table 3. Data generating mechanism for the 5 simulation scenarios.
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F.2. Scenario 1: Dismissible component conditions hold and no model

mis-specification. Data were generated from the simple setting described by the

first row in Table 3; that is, there is a causal effect of (i) AY on Yk, (ii) AD on Dk,

and (iii) L1 on both Yk and Dk. Here, both the dismissible component conditions

hold conditional on L1.

To estimate the separable effects, we fitted the following models

logit[P̂r(Yk = 1 | Dk = Yk−1 = 0, A, L1, L2)] = θ0,k + θ1A+ θ2L1 + θ3L2(18)

logit[P̂r(Dk = 1 | Dk−1 = Yk−1 = 0, A, L1, L2)] = β0,k + β1A+ β2L1,(19)

which are correctly specified, even if model (18) includes a term θ3 that is redun-

dant. Thus, we would expect all our estimators to have nominal coverage, and this

is confirmed in Table 4; here, coverage is derived from estimated 95% confidence

intervals based on the parametric g-formula estimator (g-formula) and the weighted

estimators (ν̂1,aY ,aD,k and ν̂2,aY ,aD,k) for the trial with n = 400 subjects.

n = 400
Parameter Estimator k = 100 k = 75 k = 25

Pr(Y aY =1,aD=1
k = 1) g-formula 0.95 0.94 0.93

non-parametric 0.95 0.94 0.95

Pr(Y aY =0,aD=0
k = 1) g-formula 0.94 0.93 0.92

non-parametric 0.94 0.95 0.95

Pr(Y aY =1,aD=0
k = 1) g-formula 0.95 0.96 0.94

ν̂1,aY ,aD,k 0.94 0.95 0.95
ν̂2,aY ,aD,k 0.96 0.95 0.95

Pr(Y aY =0,aD=1
k = 1) g-formula 0.93 0.93 0.94

ν̂1,aY ,aD,k 0.92 0.90 0.95
ν̂2,aY ,aD,k 0.94 0.94 0.92

Table 4. Scenario 1.
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Scenario 2: Dismissible component conditions hold and minor model

mis-specification. In this scenario, there are causal effects of both L1 and L2 on

Yk and Dk (second row in Table 3). Both the dismissible component conditions

hold conditional on L1 and L2. We used regression models (18) and (19) for model

fitting.

Note that in this setting (18) is correctly specified, but (19) is mis-specified

because it does not include a term for L2. Thus, we would expect that the IPW

estimator that uses the correctly specified regression model ( ν̂2,aY ,aD,k) is unbiased,

but the parametric g-formula estimator and the other IPW estimator ( ν̂1,aY ,aD,k)

are biased because (19) is mis-specified. The results in Table 5, however, suggest

that all estimators have close to nominal coverage. This may be explained by the

fact that the model mis-specification is minor, and the magnitude of the separable

effects is small (see Figure 5).

n = 400
Parameter Estimator k = 100 k = 75 k = 25

Pr(Y aY =1,aD=1
k = 1) g-formula 0.91 0.92 0.91

non-parametric 0.95 0.96 0.93

Pr(Y aY =0,aD=0
k = 1) g-formula 0.94 0.94 0.93

non-parametric 0.93 0.93 0.93

Pr(Y aY =1,aD=0
k = 1) g-formula 0.96 0.94 0.91

ν̂1,aY ,aD,k 0.93 0.95 0.93
ν̂2,aY ,aD,k 0.91 0.92 0.88

Pr(Y aY =0,aD=1
k = 1) g-formula 0.94 0.93 0.93

ν̂1,aY ,aD,k 0.90 0.91 0.93
ν̂2,aY ,aD,k 0.93 0.94 0.94

Table 5. Scenario 2.
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Scenario 3: Dismissible component conditions hold and model mis-specification.

In this scenario, both the dismissible component conditions hold conditional on L1

and L2. Unlike Scenarios 1 and 2, we fitted the following regression models to the

simulated data,

logit[P̂r(Yk = 1 | Dk = Yk−1 = 0, A, L1, L2)] = θ0,k + θ1A+ θ2L1(20)

logit[P̂r(Dk = 1 | Dk−1 = Yk−1 = 0, A, L1, L2)] = β0,k + β1A+ β2L1 + β3L2.(21)

Here, (20) is mis-specified because it does not include a term for L2, but (21)

is correctly specified; thus the correctness of the model specifications are opposite

from Scenario 2. Also, L2 exerts larger effects on Yk and Dk in this setting compared

to Scenario 2.

The results in Table 6 illustrate that the IPW estimator ν̂1,aY ,aD,k is unbiased

because it only relies on a model that is correctly specified, but the parametric g-

formula estimator and the other IPW estimator (ν̂2,aY ,aD,k) are biased – in particular,

for shorter follow-up times – because they rely on mis-specified regression models.

n = 400
Parameter Estimator k = 100 k = 75 k = 25

Pr(Y aY =1,aD=1
k = 1) g-formula 0.93 0.95 0.91

non-parametric 0.93 0.93 0.94

Pr(Y aY =0,aD=0
k = 1) g-formula 0.93 0.86 0.48

non-parametric 0.94 0.93 0.94

Pr(Y aY =1,aD=0
k = 1) g-formula 0.93 0.94 0.93

ν̂1,aY ,aD,k 0.94 0.94 0.93
ν̂2,aY ,aD,k 0.91 0.72 0.56

Pr(Y aY =0,aD=1
k = 1) g-formula 0.82 0.74 0.45

ν̂1,aY ,aD,k 0.95 0.95 0.94
ν̂2,aY ,aD,k 0.84 0.72 0.33

Table 6. Scenario 3.
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Scenario 4: Dismissible component conditions fail and model misspecifi-

cation. The dismissible component condition ∆2 fails in this scenario due to the

non-zero coefficient ω3 = 5; there is a direct effect AY → Dk for k ∈ {0, 100}. Yet

we fitted regression models (18) and (19) to the simulated data.

The simulations suggest that none of the estimators has nominal coverage for

Pr(Y aY =0,aD=1
k+1 = 1). However, since dismissible component condition ∆1 holds

we can identify Pr(Y aY =1,aD=0
k+1 = 1), as suggested by the nominal coverage for

this quantity in Table 7. Yet we cannot interpret a contrast Pr(Y aY =0,aD=1
k+1 =

1) vs Pr(Y aY =1,aD=1
k+1 = 1) as the separable direct effect of A, due to the violation of

the dismissible component condition.

n = 400
Parameter Estimator k = 100 k = 75 k = 25

Pr(Y aY =1,aD=1
k = 1) g-formula 0.96 0.94 0.93

non-parametric 0.95 0.94 0.94

Pr(Y aY =0,aD=0
k = 1) g-formula 0.93 0.93 0.92

non-parametric 0.93 0.93 0.95

Pr(Y aY =1,aD=0
k = 1) g-formula 0.96 0.97 0.94

ν̂1,aY ,aD,k 0.94 0.96 0.94
ν̂2,aY ,aD,k 0.97 0.96 0.96

Pr(Y aY =0,aD=1
k = 1) g-formula 0.05 0.05 0.07

ν̂1,aY ,aD,k 0.31 0.26 0.34
ν̂2,aY ,aD,k 0.05 0.04 0.12

Table 7. Scenario 4.
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Scenario 5: Dismissible component conditions hold and no model mis-

specification. In this scenario, L1 exerts (strong) causal effects on Yk but not on

Dk. Thus, all the dismissible component conditions hold marginally. To illustrate

that we obtain unbiased estimates even if L1 is not included in any of the regression

models, we fitted the parsimonious models,

logit[P̂r(Yk = 1 | Dk = Yk−1 = 0, A)] = θ0,k + θ1A.(22)

logit[P̂r(Dk = 1 | Dk−1 = Yk−1 = 0, A)] = β0,k + β1A,(23)

and the results in Table 8 show that all estimators have nominal coverage, even if

L1 is not included in the models.

n = 400
Parameter Estimator k = 100 k = 75 k = 25

Pr(Y aY =1,aD=1
k = 1) g-formula 0.95 0.94 0.94

non-parametric 0.95 0.95 0.95

Pr(Y aY =0,aD=0
k = 1) g-formula 0.94 0.94 0.93

non-parametric 0.95 0.94 0.94

Pr(Y aY =1,aD=0
k = 1) g-formula 0.96 0.95 0.94

ν̂1,aY ,aD,k 0.97 0.96 0.95
ν̂2,aY ,aD,k 0.95 0.95 0.94

Pr(Y aY =0,aD=1
k = 1) g-formula 0.93 0.94 0.94

ν̂1,aY ,aD,k 0.94 0.93 0.94
ν̂2,aY ,aD,k 0.94 0.94 0.94

Table 8. Scenario 5.
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Figure 5. True cumulative incidence curves for scenarios 1-5.
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