Who Acquires Infection from Whom?  An Introduction to Non-Random Population Mixing

Recapitulation

In the course to date, we have discussed infectious disease models as processes that involve populations that mix fairly homogeneously.  Even when we introduced age-structured models, we regarded all age groups as contributing to force of infection in direct proportion to the number of infectious individuals in each age group.  For example, because we modeled a high-R0 disease with long-lasting immunity, most infectious cases were children (especially before we started vaccinating).  The fact that populations mix in a non-random way, such that (for example) infected children preferentially mix with susceptible children while infectious adults preferentially mix with susceptible adults, was not discussed.

In this simplistic system, we do get variation by age in the incidence of infection, but only as a result of diminishing numbers of susceptible individuals in older age groups.  Similarly, children will contribute disproportionately to the genesis of new infections in the population, but only because they are more likely to be infected as a result of initial susceptibility.  The force of infection (the rate at which susceptibles become infected) does not change with age at all.  You can verify this based on the formula for FOI in an age structured model, which is just  = I, where I = the total number of infections in the population (irrespective of age).

However, we know empirically that human beings don’t mix randomly.  They tend to mix in a manner that we could term “assortative”: like individuals mix with other individuals according to similar demographics, economics, sexual preferences, behavioral factors, ethnicities, etc.  Mixing can also be dissortative: like mixes with unlike.  Heterosexual sexual mixing is an example of dissortative mixing.  As you might expect, non-random mixing has a fairly profound impact on how epidemics present in populations, and has important implications for identifying optimal disease control strategies.  Over the course of the next few pages we’ll discuss how we might estimate mixing “matrices” in populations when actual patterns of mixing are unknown, how to incorporate such nonrandom mixing patterns into models.

1. Force of Infection, Age-Seroprevalence Curves, and WAIFW Matrices

We have previously discussed the fact that we can estimate FOI off age-seroprevalence curves using the relation:

 = -ln((1-It+1)/(1-It))/t

So for example, if seroprevalence in 5 year-olds is 0.45, and seroprevalence in 7 year-olds is 0.65, the FOI is

-ln((1-0.65)/(1-0.45))/2 = 0.23
1.1. The curve below represents an age-seroprevalence curve (ignoring maternally-derived antibody in < 6 month-olds) with a constant annual FOI.  Using the data provided on the graph, what is your best estimate of the (constant) FOI for this disease?





The force of infection, based on a seroprevalence of 80% at age 17 (the midpoint of the oldest age group) would be –ln(0.2)/17 = 0.095.  We can check this by estimating the seroprevalence in 12 year olds as 1-exp(-12*0.095), which is around 0.68, similar to what’s on the graph.


1.2. However, in most situations, we wouldn’t have a constant hazard of infection (a.k.a., constant force of infection).  The graph below shows simulated seroprevalence data from a population where there are two different forces of infection at work: one in children aged < 10, and the second in those aged 10 and over.  Using the data presented on the graph, calculate the force of infection in these distinct groups.  It’s hard to read proportion seropositive directly off the graph, so I will tell you that 79% of 9 year-olds are seropositive, 83% of 10 year-olds are seropositive, and 88% of 16 year-olds are seropositive.




FOI for little kids = -ln(1-0.83)/10 = 0.177
FOI for teens = -ln((1-0.88)/(1-0.83))/6 = 0.058


1.3. You have now calculated two distinct FOI values for this population: the FOI in kids is around 0.2 per year, and the FOI for older individuals is around 0.05 per year.  Why might this be the case?  Behaviors might change as individuals get older.  Infectiousness might change as people get older (either because of burden of virus shed by an infected individual, or because the probability of being asymptomatic or minimally symptomatic changes over time).  This would only lead to changes in force of infection by age if there is “age-assortative mixing”: if younger individuals (who are more likely to be infectious due to less immunity or more infectious behavior) mix preferentially with other younger individuals, this will lead to a higher FOI in younger individuals.  We can write out differential force of infection using the two following equations, where the subscripts “y” and “o” represent “young” and “old” respectively.  Ii(t) represents the infectious individuals in the ith age group at time (t).


young = yyIy+yoIo


older = oyIy+ooIo


Those of you who are familiar with matrices will see that we can really describe this system as a matrix, such that:


This matrix is, clumsily, known as a “who-acquires-infection-from-whom” (WAIFW) matrix.  Suppose we knew the annual incidence of infection in young and older people, the annual incidence of infection in young and older people, respectively.  We could then solve for force of infection using the following system of equations.  Suppose, for the sake of argument, that the incidence of infection in younger individuals is 10,000 per year, while the incidence in older individuals is 1000 per year.

 = yy10000 +yo1000


 = oy10000 +oo1000


1.4. There’s a problem, of course!  We have 2 equations, but 4 unknowns.  The usual approach to this problem is to simplify the transmission matrix.  For example, let’s assume that there are only two betas at work here: one reflects child-child transmission (1) and the other reflects transmission when adults are involved (2).  We can now rewrite our matrix above as:



Assuming that this matrix does, indeed, represent mixing patterns in the population, try substituting in the numbers you have available, and solving for 1 and 2.

From the equation for FOI in the younger individuals:

 = 110000 +21000

Algebraically, then, 1 = ( - 21000)/10000

From the equation for FOI in older individuals:

 = 210000 +21000 =110002

So 2 = 0.05/(11000) = 4.54 x 10-6

Substituting that back in to the first equation, we can solve for 1 which is:


1 = ( - 4.54 x 10-61000)/10000 = 1.95 x 10-5.



1.5. What did you find?  Which is larger?  Is this what you expected?  Of course, there are other possible representations of contact matrices in the simple population described above.

So it looks as though younger individuals are more infectious to other younger individuals than they are to older individuals, or than older individuals are to young people or each other.  If you’ve ever watched a group of preschoolers at play this may make sense to you.

1.5.1. Write down the expression for a matrix where child-adult transmissions occur with the same , but child-to-child and adult-to-adult transmissions occur with another .  Solve for the two values of 





 = 210000+11000

 = 110000+21000

We can solve this algebraically as follows:

1 = ( - 210000)/1000
2 = ( - 110000)/1000
1 = ( - ( - 110000)/100010000)/1000

1 = ( - ( - 1100000))/1000

-990001  = -0.03

1  = 3.03 x 10-7
2 = 4.70 x 10-5





1.5.2. Write down the expression for a matrix where adults infect one another with one , and adult-child or child-child interactions (i.e., any interaction involving a child) has a second .





1.6. We can structure our models by attributes other than age.  Try writing down WAIFW matrices for the following scenarios:

1.6.1. A model for sexually transmitted infections, which considers same-sex and opposite sex partnerships.  (Note that this is a bit artificial: we don’t usually use “” formulations for STI’s, which are not at all density dependent.  But the basic idea in terms of mixing matrices is the same).







1.6.2. A spatially explicit “patch model” where there are both “rural” and “urban” individuals with some mixing between urban and rural individuals.








1.7. Of course, having only two forces of infection operative in a population is highly unrealistic.  We can extend the WAIFW approach to any number of groups, as long as we make simplifying assumptions such that we have <= unknowns than equations.  Try the following examples:
1.7.1. Now we have three age groups in our population (young, middle-aged, and old).  The force of infection in young individuals is 0.2, in middle-aged individuals is 0.05, and in old individuals is 0.01.  Incidence of disease is 200 cases per year in the young, 100 cases per year in the middle-aged, and 50 cases per year in the old.  Using the WAIFW approach, write out a matrix of betas by age-group, and solve for the values of these betas.  Remember that you can’t have more betas than age groups.

These problems are a bit cumbersome but here’s how you’d set this up for one particular (simple) mixing pattern:




Here we know that 2 is 0.05, and that is equal to (200 + 150 + 50)2.  So we can solve for 2 =  0.000125.

We can then set up the equality:

0.2 = 200 (1) + (150+50)2
Since 2  = 0.000125, we can solve for 1  = 0.175/200 = 0.000875
Now we can solve for 3 in the same way and get:
0.01 = 350(2) + 503 = -0.000675.
The fact that 3 has a negative value tells us that this is not, in fact, a plausible mixing pattern!  Back to the drawing board!

1.7.2. Write down an interpretation of the mixing pattern you have described in words.

My matrix indicates that there is one  for between group mixing, and also within-group mixing in the middle age groups.  However, there are different within-group betas (1 and 3) for within-group interactions in the youngest and oldest age groups.  My matrix is symmetrical (see below).  Note that there are some mixing patterns you can come up with that won’t result in plausible values of beta (e.g., non-positive values) which indicates that those mixing patterns aren’t possible in the context of the data we are given.  That’s what happened with this matrix above!

1.8. Symmetry and directionality of transmission.  With respect to interpretation of these matrices, note that matrices that display symmetry are those where transmission is non-directional.  Directionality of transmission means, in words, that one kind of person transmits much more effectively to a second type of person than vice-versa.  We can actually think of lots of different types of directional transmission: for some STI, men are more infectious to women than women are to men (genital herpes, for example).  With whooping cough (pertussis) small infants don’t actually cough, so aren’t very good at transmitting pertussis to adults or one another, but adults do cough and so transmit effectively to infants.  A symmetrical matrix is one where matrix contents on either side of a diagonal plane extending from top left to bottom right mirror each other perfectly.  (Note that directed transmission is a subject that has received extensive consideration by two modelers named Babak Pourbohloul and Lauren Ancel-Meyers; one of their important papers is posted on Blackboard).

For example, the matrix on the left is symmetrical but the matrix on the right isn’t[image: ]




Suppose we have a population composed of younger and older individuals: which of the following matrices is symmetrical?  Describe in words the transmission patterns implied by the asymmetrical matrices.




In this matrix, interactions have differential transmission depending on whether the infectious individual is young or old.




In this matrix, interactions between young people and older infectious individuals have one type of transmission, while all other interactions have another type of transmission.




In this matrix, within group interactions have one type of transmission, and between group interactions have another.  This is actually a symmetrical matrix (sorry).

1.9. We can use these matrices to estimate, for a given number of infections, how many new infections will emerge, in each age group, in the next generation.  Remember that the reproductive number for an infectious disease is:

R =  x N x D

So for example, if we have a totally susceptible population of 106 with a  of 2 x 10-6
and a duration of 3 days, the number of new infections per old infection would be 6.  We can set up a “next generation matrix” that predicts how many new cases are created by an old case in each age group with every passing generation.  For example, in a population with young and old individuals, the next generation matrix would be:




The number of cases in the next generation of the epidemic can thus be estimated by multiplying the next generation matrix by the number of infectives in each age group, as follows:



1.9.1. Calculate the number of cases created by one young case and one old case introduced into the following population.  Duration of infectiousness = 1 day.  Number of young individuals = 100,000.  Number of older individuals = 300,000.  1= 4 x 10-5; 2 = 2 x 10-5.  The WAIFW matrix for this system is:




Write out the values for Ryy, Ryo, Roy, and Roo below, and write out the number of new infections, by age group and source of infection, for the next generation of this matrix. 

Ryy = 4 x 10-5 x 100000 = 4

Ryo = 4 x 10-5 x 100000 = 4

Roy = 4 x 10-5 x 300000 = 12

Roo = 2 x 10-5 x 300000 = 6


1.9.2. You can imagine that one might attempt to use the next generation matrix to estimate the R0 for a given pathogen.  In fact, you can try to estimate next generation matrices serially (i.e., calculate the next generation matrix in order to estimate the number of new young and old cases, then calculate the next generation matrix from those inputs, and so on).  If you go through this exercise, what you’ll find is that R0 estimates bounce around a fair bit, and depend heavily on your starting conditions (i.e., you’ll get different initial patterns if you start with 1 young person, 1 older person, or a younger and an older person).

As it turns out, if you go through this exercise repeatedly, you’ll find that the ratio of next generation to cases to current generation cases stabilizes over time, and this ratio is actually the R0.  So in practice, you can actually run a model with non-random mixing patterns and estimate this ratio.  I have made a very simple version of such a model in Excel, which you can download from Blackboard (it’s called “next generation.xls”).  You can see that the R0 for this matrix stabilizes over time at around 12.  Interestingly, the ratios of successive generations by age stabilize at the same number.  Does this surprise you?

In fact, a single R0 emerges for all age groups.  This may be a bit counterintuitive, but consider the fact that R0 should be multigenerational.  So we can think of the number of new young cases created by old young cases, through intermediate older cases, and vice versa.  There are analogues to this in malaria and zoonotic diseases!  We see here that the R0 is a property of the whole system and not class specific!


1.9.3. A more “mathematical” way to estimate the same quantity is to use matrix algebra to derive an estimate for R0 directly from the next generation matrix.  As it turns out, R0 is the largest non-negative eigenvector for the next generation matrix.  The values for the next generation matrix described above are:



If you have access to Stata on your laptop, try entering these numbers as a matrix by hand using the following syntax.  If you don’t have it on your laptop you can try this in the 5th floor computer lounge at your leisure.

matrix input ro = (4,4\12,6)

matrix eigenvalues A B = ro

mat list A

You should get the following output:

A[1,2]
      	c1  c2
real  	-2  12

You can see that we get the same “12” as the largest, non-negative real eigenvector of this matrix as we got using the modeling approach above.

2. Modeling Age-Assortive Mixing, and the Impact of Interventions

We are now going to experiment with a model with non-random age-assortive mixing, created by Ashleigh R. Tuite, MPH, in AnyLogic.  This program is called “age_structured_model.alp”, and you can download the model from Blackboard.

[First though, we’ll take a brief break, and I will walk you through the basics of constructing an SIR model in AnyLogic].

2.1. Turning now to the age structured model, you should see a model structure very similar to what we have just created, except that the S, I, and R states are stratified by age (age groups A, B, and C being ranked from youngest to oldest).  In addition, we have the possibility of vaccinating individuals from the A or C categories, and individuals in the oldest age-group (C), have the possibility of dying from illness.

The mixing matrix in this model is set such that contact numbers are as follows:


	
	A
	B
	C

	A
	5
	3
	3

	B
	0.5
	1
	0.5

	C
	0.5
	0.5
	1





Run the model.  Vaccination is set to zero on startup.  Look at the epidemic curves for the three groups.  Which group peaks earliest?  Why?  Note the number of deaths that occur in the absence of vaccination in the oldest age group.

Connectedness drives the early peak in the youngest individuals.  This also increases the impact of immunizing younger individuals.  This is the thrust behind efforts to promote vaccination of younger individuals to protect older individuals against influenza (see, for example, the Galvani paper at http://www.pnas.org/content/104/13/5692.full).  The problem is that younger individuals are probably less concerned about the consequences of influenza (and hence less motivated to accept immunization).

[bookmark: _GoBack]2.2. Now rerun the model.  Use the sliders at the bottom of the “experiment” screen to adjust the proportion of younger and older individuals vaccinated.  Try setting the proportion of younger individuals vaccinated to 25%.  What happens to deaths in older individuals.  Now set the proportion of older individuals vaccinated to 25%.  Is that intervention equally effective?  Consider what you see in light of the paper by Alison Galvani and colleagues that was mentioned in class.  What are the implications of this phenomenon for vaccination programs?  What might be some of the difficulties you would encounter in explaining this phenomenon to the public?
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