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Abstract

The first constructive definition of the real numbers was in terms of
Dedekind cuts. A Dedekind cut is an ordered partition of the rational
numbers into two non-empty sets, the lower set and the upper set. How-
ever, outlawing empty sets makes the definition partial.

We totalise the set of ordered partitions by admitting two cuts: the
negative infinity cut is the cut with an empty lower set and a full upper
set; the positive infinity cut is the cut with a full lower set and an empty
upper set. These correspond to the affine infinities of the extended-real
numbers. We further admit the nullity cut that has both an empty lower
set and an empty upper set. We say that the set of all Trans-Dedekind
cuts comprises the set of all Dedekind cuts, together with the three strictly
Trans-Dedekind cuts: positive infinity, negative infinity, and nullity.

The arithmetical operations and order relation on Dedekind cuts are
usually defined only on the lower or else upper sets, which is incoher-
ent when applied to strictly Trans-Dedekind cuts. We totalise these op-
erations and relation over lower and upper sets. We call our totalised
Dedekind arithmetic, Trans-Dedekind arithmetic.

We find that the Trans-Dedekind arithmetic of Trans-Dedekind cuts
is isomorphic to transreal arithmetic, which is total. This construction
gives transreal arithmetic the same ontological status as real arithmetic.

c© James A.D.W. Anderson 2020 Licence CC BY-SA 4.0

https://transmathematica.org
https://en.wikipedia.org/wiki/James_A._D._W._Anderson
mailto:james.a.d.w.anderson@btinternet.com
http://sites.ifrj.edu.br/tiago-reis
mailto:tiago.reis@ifrj.edu.br
https://portal.ifrj.edu.br
https://portal.ifrj.edu.br
http://creativecommons.org/licenses/by-sa/4.0/


1 Introduction

The first constructive definition of the real numbers was published in the
1900s in terms of the Dedekind cut. The German originals of Dedekind’s
works are available in English translation [19].

The real numbers, like all of the usual number systems, are partial
because they do not allow division by zero. Dedekind notes that division
by zero is not defined [19] and goes on to define cuts so that they faithfully
describe the real numbers as a partial number system. Dedekind does this
by making the cuts partial. A Dedekind cut is an ordered partition of the
rational numbers into two non-empty sets, the lower set and the upper
set. Outlawing empty sets makes the definition partial.

The computable real numbers were accepted into computer science in
the 1930s [37]. However, in general, it is a Turing incomputable problem
to determine, at compile time, whether a program will generate a zero at
run time. Hence the operation of computable division cannot be guarded,
at compile time, from dividing by zero at run time. In the case that a
division by zero is instructed, the computer program fails at run time,
ultimately because mathematical division of real numbers by zero is not
defined. We shall presently say a little more about the computational
means by which division by zero is handled as an exception to the closure
of the mathematical division operator but, for now, we note that if division
is extended to be a closed mathematical operation then no such exceptions
occur.

Transmathematics grew out of research in computer science that aims
to totalise mathematics by arranging that all functions are total functions.
In other words, transmathematics is a research programme that aims to
remove all exceptions from mathematics. In this area of research, the
prefix trans is applied to the name of a mathematical object to warn the
reader that it has been totalised and may, therefore, have some unexpected
properties.

Transmathematics began, in 1997, with an effort to totalise projective
geometry for use in computer vision programs [1]. The point at issue
is the contradiction that the position of a camera in Euclidean space is
given by its centre of projection but the centre of projection is punctured
from projective space. When both spaces are described in homogeneous
co-ordinates, the centre of projection has co-ordinates 0{0. This diffi-
culty was resolved by giving a geometrical construction in which three
distinct points, with homogeneous co-ordinates ´1{0, 1{0, 0{0, occur in
well defined positions. These three points were named: minus infinity,
´8 “ ´1{0; positive infinity, 8 “ 1{0; and nullity, Φ “ 0{0. We stress
that these were recognised as well defined numbers because: they have
a well defined geometrical construction, they appear as solutions to an
algebraic equation, and they are syntactically identical to rational num-
bers. This syntactic identity made it easy to extend rational arithmetic
packages to solve numerically ill-conditioned problems [2] [3].

It is customary in computer science to treat projective space as a
double cover so that the unoriented infinity of projective geometry can
be distinguished as the positive and negative affine infinities. Thus the
transnumber infinities were identified with their usual projective and affine
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properties and nullity was identified as an unordered and isolated point
that lies outside both projective and extended-real space.

Transrational and transreal arithmetic were developed over a number
of years until transreal arithmetic was axiomatised and proved consistent,
by machine proof, in 2007 [5]. This publication excited some controversy.
After this time, the linear sequence of publications broke down, with re-
sults appearing at times that were out of sequence with their development
and out of sequence with their foundational role.

There have been many controversies in mathematics, many of which
have been settled when a constructive definition is given. With this objec-
tive in mind, constructive proofs were given of the consistency of transreal
[29] [31] and transcomplex arithmetic [26].

Mathematical controversies have also ended when theoretical or prac-
tical utility is demonstrated. With this objective in mind, many areas of
mathematics have been totalised, in the expectation that the totalised ver-
sions will find application in mathematics, computation or physics. The
topology of the transreal [7] [28] and transcomplex [32] [33] numbers was
developed and lead to both transreal analysis [6] [27] [28] and transcom-
plex analysis [34] [35] – all which confirmed transreal nullity, Φ “ 0{0, as
the unique unordered transreal number and the transreal numbers nega-
tive infinity, ´8 “ ´1{0, and positive infinity, 8 “ 1{0, as, respectively,
the least and greatest of the ordered numbers. There was some devel-
opment of paraconsistent logics [10] [20] [22] [23] and Boolean logic was
generalised to a wide class of trans-Boolean logics [31]. A number of ap-
plications of transreal arithmetic were discussed in computer science [4]
[8] [9] [11] [24] [36] and mathematical physics [7] [12]. Some philosophical
aspects on transmathematics were also discussed [21] [29] [30].

Perhaps the greatest computational advantage of the transfloating-
point numbers is that they remove one binade of exceptional, Not-a-
Number (NaN), states [8], which allows twice the numerical accuracy
in the same number of floating-point bits and simplifies the semantics
of floating-point programs, especially where division by zero occurs [9].
Perhaps the greatest advantages for mathematical physics are that the
transreal numbers dissolve the problem of the infinite electron self-energy
[7] and explain how convection currents can pass through the singularity
in a black hole [12].

Mathematical controversies have also ended when people other than
the original proponents take up research, as is beginning to happen with
transmathematics [13] [14] [17] [18] [25] .

We now present a construction of the transreal numbers via Dedekind
cuts. Our objective is to put the transreal numbers on the same math-
ematical foundation as the real numbers so that both number systems
have the same validity and debate can move on to a comparison or their
relative merits.

We define that Trans-Dedekind cuts are made up of the Dedekind
cuts, together with three strictly Trans-Dedekind cuts. First, the negative
infinity cut is the cut with an empty lower set and a full upper set. Second,
the positive infinity cut is the cut with a full lower set and an empty upper
set. These two cuts correspond to the affine infinities of the extended-real
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numbers. Finally the nullity cut has both an empty lower set and an
empty upper set.

The arithmetical operations and order relation on Dedekind cuts are
usually defined only on the lower or else upper sets [15], Chapter 7, and
[19]. However if they are applied only to lower sets, they cannot distin-
guish negative infinity from nullity. If they are, instead, applied only to
upper sets, they cannot distinguish positive infinity from nullity. Hence we
define the arithmetical operations and order relation so that they apply,
simultaneously, to the lower and upper sets.

We begin our presentation with two sections of preliminary material.
In Section 2 Sets of Rational Numbers, we define certain sets of rational
numbers and operations on them. In Section 3 Dedekind Cut, we review
the Dedekind Cut and set out some well known theorems. We then present
the main work. In Section 4 Equivalent Arithmetic, we define the additive
inverse, multiplication, and multiplicative inverse in a different, but equiv-
alent, way so that they produce results identical to Dedekind arithmetic
when applied to Dedekind cuts. In Section 5 Trans-Dedekind Cut, we
define the Trans-Dedekind cuts and some operations on them. In Section
6 Trans-Dedekind Arithmetic, we establish that Trans-Dedekind Arith-
metic implements transreal arithmetic. In Section 7 Proofs, we present
the somewhat lengthy proofs that establish the theorems in the previous
two sections. In Section 8 Discussion, we discuss future opportunities for
research. In Section 9 Conclusion, we state the main consequence of our
technical results.

2 Sets of Rational Numbers

Definition 1 (Intervals). In this paper all intervals are intervals of ratio-
nal numbers. That is, for all a, b P Q it follows that:

ra, bs :“ tx P Q | a ď x ď bu,

pa, bq :“ tx P Q | a ă x ă bu,

ra, bq :“ tx P Q | a ď x ă bu,

pa, bs :“ tx P Q | a ă x ď bu,

p´8, bs :“ tx P Q |x ď bu,

p´8, bq :“ tx P Q |x ă bu,

ra,8q :“ tx P Q | a ď xu,

pa,8q :“ tx P Q | a ă xu,

p´8,8q :“ Q.

Definition 2 (Negative and Positive Numbers). We denote Q´ :“ p´8, 0q
and Q` :“ p0,8q.

Definition 3 (Closed Downwards and Closed Upwards Sets). Let L and
U be sets of rational numbers. We say that L is closed downwards if and
only if L satisfies the property: if b P L then p´8, bq Ă L. We say that
U is closed upwards if and only if U satisfies the property: if a P U then
pa,8q Ă U .
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Definition 4 (Arithmetical Operations on Sets). Let A and B be sets of
rational numbers. We define:

a) A`B :“ tx P Q | there are a P A and b P B such that x “ a` bu

b) ´B :“ tx P Q | there is b P B such that x “ ´bu

c) A ¨B :“ tx P Q | there are a P A and b P B such that x “ abu

d) B´1 :“
 

x P Q | there is b P B such that x “ b´1
(

, if B does not

contain zero.

Definition 5 (Open Interval of a Set). Let A be a set of rational numbers.
We define IpAq :“ tx P Q | there are a, b P A such that x P pa, bqu.

3 Dedekind Cut

Definition 6 (Dedekind Cut). A Dedekind cut is an ordered pair, xL,Uy,
where L and U are subsets of rational numbers that satisfy:

0) L ‰ H and L ‰ Q,

1) LY U “ Q,

2) LX U “ H,

3) L is closed downwards,

4) L does not have a greatest element.

Definition 7 (Relation). Let xL1, U1y and xL2, U2y be Dedekind cuts.
We say that xL1, U1y ă xL2, U2y if and only if L1 is a proper subset of L2

and U2 is a proper subset of U1. We say that xL1, U1y ď xL2, U2y if and
only if xL1, U1y ă xL2, U2y or xL1, U1y “ xL2, U2y.

Theorem 8 (Total Order Relation). ď is a total order relation on the
set of all Dedekind cuts.

Definition 9. Let xL1, U1y and xL2, U2y be Dedekind cuts. We say that:

a) xL1, U1y ě xL2, U2y if and only if xL2, U2y ď xL1, U1y,

b) xL1, U1y ą xL2, U2y if and only if xL2, U2y ă xL1, U1y,

c) xL1, U1y ­ă xL2, U2y if and only if xL1, U1y ă xL2, U2y does not hold,

d) xL1, U1y ­ą xL2, U2y if and only if xL1, U1y ą xL2, U2y does not hold.

Theorem 10. Let xL1, U1y and xL2, U2y be Dedekind cuts. It follows
that:

a) xL1, U1y ­ă xL2, U2y necessarily implies xL1, U1y ě xL2, U2y.

b) xL1, U1y ­ą xL2, U2y necessarily implies xL1, U1y ď xL2, U2y.

Theorem 11. For all r P Q, xp´8, rq, rr,8qy is a Dedekind cut.

Definition 12. We denote the Dedekind cut xp´8, 0q, r0,8qy simply
as 0 and the Dedekind cut xp´8, 1q, r1,8qy simply as 1, that is, 0 “
xp´8, 0q, r0,8qy and 1 “ xp´8, 1q, r1,8qy.

The Definition 12 is justified by the fact that xp´8, 0q, r0,8qy and
xp´8, 1q, r1,8qy are, respectively, the additive identity and multiplicative
identity of the field of all Dedekind cuts (theorems 15, 21 and 24).
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Definition 13 (Addition). Let xL1, U1y and xL2, U2y be Dedekind cuts.
We define xL1, U1y ` xL2, U2y :“ xL1 ` L2, U1 ` U2y.

Theorem 14 (Closure under Addition). If xL1, U1y and xL2, U2y are
Dedekind cuts then xL1, U1y ` xL2, U2y is a Dedekind cut.

Theorem 15 (Existence of Additive Identity). xp´8, 0q, r0,8qy is the
identity element of the set of all Dedekind cuts with respect to `.

Definition 16 (Additive Inverse and Subtraction). Let xL1, U1y and
xL2, U2y be Dedekind cuts.

a) We denote ´xL1, U1y :“ xL2, U2y if and only if xL1, U1y`xL2, U2y “

0.

b) We define xL1, U1y ´ xL2, U2y :“ xL1, U1y ` p´xL2, U2yq.

Theorem 17 (Existence of Additive Inverse). For all Dedekind cuts
xL,Uy, there is ´xL,Uy.

Theorem 18. Let xL,Uy be a Dedekind cut. It follows that xL,Uy ă 0
if and only if ´xL,Uy ą 0.

Definition 19 (Multiplication). Let xL1, U1y and xL2, U2y be Dedekind
cuts. We define:

a) xL1, U1y ˆ xL2, U2y :“ xL3, U3y where

L3 “ p´8, 0q Y
`

pL1 X r0,8qq ¨ pL2 X r0,8qq
˘

,

U3 “ QzL3,

if xL1, U1y ě 0 and xL2, U2y ě 0,

b) xL1, U1y ˆ xL2, U2y :“ ´
`

xL1, U1y ˆ p´xL2, U2yq
˘

,

if xL1, U1y ě 0 and xL2, U2y ă 0,

c) xL1, U1y ˆ xL2, U2y :“ ´
`

p´xL1, U1yq ˆ xL2, U2y
˘

,

if xL1, U1y ă 0 and xL2, U2y ě 0,

d) xL1, U1y ˆ xL2, U2y :“ p´xL1, U1yq ˆ p´xL2, U2yq,

if xL1, U1y ă 0 and xL2, U2y ă 0.

Theorem 20 (Closure under Multiplication). If xL1, U1y and xL2, U2y

are Dedekind cuts then xL1, U1y ˆ xL2, U2y is a Dedekind cut.

Theorem 21 (Existence of Multiplicative Identity). xp´8, 1q, r1,8qy is
the identity element of the set of all Dedekind cuts with respect to ˆ.

Definition 22 (Multiplicative Inverse and Division). Let xL1, U1y and
xL2, U2y be Dedekind cuts.

a) We denote xL1, U1y
´1 :“ xL2, U2y if and only if xL1, U1yˆxL2, U2y “

1.

b) If xL2, U2y ‰ 0, we define xL1, U1y˜xL2, U2y :“ xL1, U1yˆ
`

xL2, U2y
´1

˘

.

Theorem 23 (Existence of Multiplicative Inverse). for all Dedekind cuts
xL,Uy such that xL,Uy ‰ 0, there is xL,Uy´1.

Theorem 24 (All Dedekind Cuts Form a Complete Ordered Field). The
set of all Dedekind cuts is a complete ordered field with respect to the
order ď, the addition ` and the multiplication ˆ.

Theorem 25 (Rational Numbers As an Ordered Subfield). The function
r ÞÑ xp´8, rq, rr,8qy is an isomorphism of ordered fields between Q and
the subset of Dedekind cuts

 

xp´8, rq, rr,8qy | r P Q
(

.
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4 Equivalent Arithmetic

In this section we define three arithmetical operations on Dedekind cuts
that have an identical effect to the usual operations on Dedekind cuts but
which support the generalisation to Trans-Dedekind cuts. Thus we gen-
eralise the additive inverse, multiplication, and the multiplicative inverse
of Dedekind cuts.

Theorem 26 (Equivalent Definition of the Additive Inverse of a Dedekind
Cut). For all Dedekind cut xL,Uy it follows that ´xL,Uy “ xL3, U3y

where

U23 “ tx P Q |x “ inf Uu,

U3 “ ´pLY U23 q,

L3 “ ´pUzU23 q.

Theorem 27 (Equivalent Definition of the Multiplication of Dedekind
Cuts). For all Dedekind cuts xL1, U1y and xL2, U2y such that xL1, U1y ě 0
and xL2, U2y ě 0 it follows that xL1, U1y ˆ xL2, U2y “ xL3, U3y where

U 13 “ pU1 XQ`q ¨ pU2 XQ`q,
U23 “ tx P Q |x “ inf U 13u,

U3 “ U23 Y U
1
3,

L13 “ pL1 XQ`q ¨ pL2 XQ`q,
L23 “ ´pL13 Y U 13q Y L

1
3,

L3 “ IpL23q.

Theorem 28 (Equivalent Definition of the Multiplicative Inverse of a
Dedekind Cut). for all Dedekind cuts xL,Uy such that xL,Uy ą 0 it
follows that xL,Uy´1

“ xL3, U3y where

U 13 “ pLXQ`q´1,

U23 “ tx P Q |x “ inf U 13u,

U3 “ U23 Y U
1
3,

L13 “ pU XQ`q´1,

L23 “ ´pL13 Y U
1
3q Y L

1
3,

L3 “ IpL23q.

Theorems 26, 27 and 28 show that we can define the additive
inverse, multiplication and multiplicative inverse in a different
way from the usual one but this still gives the same results.

5 Trans-Dedekind Cut

Definition VI (Trans-Dedekind Cut). A Trans-Dedekind cut is an or-
dered pair, xL,Uy, where L and U are subsets of rational numbers that
satisfy:
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I) LY U “ H or LY U “ Q,

II) LX U “ H,

III) L is closed downwards,

IV) L does not have a greatest element.

Definition VII (Relation). Let xL1, U1y and xL2, U2y be Trans-Dedekind
cuts. We say that xL1, U1y ă xL2, U2y if and only if L1 is a proper subset
of L2 and U2 is a proper subset of U1. We say that xL1, U1y ď xL2, U2y if
and only if xL1, U1y ă xL2, U2y or xL1, U1y “ xL2, U2y.

Theorem VIII (Order Relation). ď is an order relation in the set of all
Trans-Dedekind cuts.

Definition IX. Let xL1, U1y and xL2, U2y be Trans-Dedekind cuts. We
say that:

a) xL1, U1y ě xL2, U2y if and only if xL2, U2y ď xL1, U1y,

b) xL1, U1y ą xL2, U2y if and only if xL2, U2y ă xL1, U1y,

c) xL1, U1y ­ă xL2, U2y if and only if xL1, U1y ă xL2, U2y does not hold,

d) xL1, U1y ­ą xL2, U2y if and only if xL1, U1y ą xL2, U2y does not hold.

Theorem X. Let xL1, U1y and xL2, U2y be Trans-Dedekind cuts. It fol-
lows that:

a) xL1, U1y ­ă xL2, U2y does not necessarily imply xL1, U1y ě xL2, U2y,

b) xL1, U1y ­ą xL2, U2y does not necessarily imply xL1, U1y ď xL2, U2y,

c) xL1, U1y ą xL2, U2y necessarily implies xL1, U1y ­ă xL2, U2y,

d) xL1, U1y ă xL2, U2y necessarily implies xL1, U1y ­ą xL2, U2y.

Theorem XI. Every Dedekind cut is a Trans-Dedekind cut.

Remark XII. Recall that 0 and 1 are Dedekind cuts (Definition 12).
Thus 0 and 1 are Trans-Dedekind cuts.

Definition XIII (Addition). Let xL1, U1y and xL2, U2y be Trans-Dedekind
cuts. We define xL1, U1y ` xL2, U2y :“ xL1 ` L2, U1 ` U2y.

Theorem XIV (Closure under Addition). If xL1, U1y and xL2, U2y are
Trans-Dedekind cuts then xL1, U1y ` xL2, U2y is a Trans-Dedekind cut.

Theorem XV (Existence of Additive Identity). xp´8, 0q, r0,8qy is the
identity element of the set of all Trans-Dedekind cuts with respect to `.

Definition XVI (Opposite and Subtraction). Let xL1, U1y and xL2, U2y

be Trans-Dedekind cuts. We define:

a) ´xL,Uy :“ xL3, U3y where

U23 “ tx P Q |x “ inf Uu,

U3 “ ´pLY U23 q,

L3 “ ´pUzU23 q,

b) xL1, U1y ´ xL2, U2y :“ xL1, U1y ` p´xL2, U2yq.

Theorem XVII (Closure under Opposite and Subtraction). If xL,Uy is
a Trans-Dedekind cut then ´xL,Uy is a Trans-Dedekind.
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Theorem XVIII. Let xL,Uy be a Trans-Dedekind cut. It follows that
xL,Uy ă 0 if and only if ´xL,Uy ą 0.

Definition XIX (Multiplication). Let xL1, U1y and xL2, U2y be Trans-
Dedekind cuts. We define:

a) xL1, U1y ˆ xL2, U2y :“ xL3, U3y, where

U 13 “ pU1 XQ`q ¨ pU2 XQ`q,
U23 “ tx P Q |x “ inf U 13u,

U3 “ U23 Y U
1
3,

L13 “ pL1 XQ`q ¨ pL2 XQ`q,
L23 “ ´pL13 Y U 13q Y L

1
3,

L3 “ IpL23q,

if xL1, U1y ­ă 0 and xL2, U2y ­ă 0,

b) xL1, U1y ˆ xL2, U2y :“ ´pxL1, U1y ˆ p´xL2, U2yqq,

if xL1, U1y ­ă 0 and xL2, U2y ă 0,

c) xL1, U1y ˆ xL2, U2y :“ ´pp´xL1, U1yq ˆ xL2, U2yq,

if xL1, U1y ă 0 and xL2, U2y ­ă 0,

d) xL1, U1y ˆ xL2, U2y :“ p´xL1, U1yq ˆ p´xL2, U2yq,

if xL1, U1y ă 0 and xL2, U2y ă 0.

Theorem XX (Closure under Multiplication). If xL1, U1y and xL2, U2y

are Trans-Dedekind cuts then xL1, U1yˆxL2, U2y is a Trans-Dedekind cut.

Theorem XXI (Existence of Multiplicative Identity). xp´8, 1q, r1,8qy
is the identity element of the set of all Trans-Dedekind cuts with respect
to ˆ.

Definition XXII (Reciprocal and Division). Let xL1, U1y and xL2, U2y

be Trans-Dedekind cuts. We define:

a) xL2, U2y
´1 :“ xL3, U3y, where

U 13 “ pL2 XQ`q´1,

U23 “ tx P Q |x “ inf U 13u,

U3 “ U23 Y U
1
3,

L13 “ pU2 XQ`q´1,

L23 “ ´pL13 Y U
1
3q Y L

1
3,

L3 “ IpL23q,

if xL2, U2y ­ă 0,

b) xL2, U2y
´1 :“ ´pp´xL2, U2yq

´1
q, if xL2, U2y ă 0,

c) xL1, U1y ˜ xL2, U2y :“ xL1, U1y ˆ
`

xL2, U2y
´1

˘

.

Theorem XXIII (Closure under Reciprocal and Division). If xL,Uy is
a Trans-Dedekind cut then xL,Uy´1 is a Trans-Dedekind cut.
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Theorem 29 (All Arithmetical Operations are Total on Trans-Dedekind
Cuts). There are no exceptions in any of the arithmetical operations on
Trans-Dedekind cuts: addition, opposite, subtraction, multiplication, re-
ciprocal and division. That is, for all Trans-Dedekind cuts xL1, U1y and
xL2, U2y it follows that xL1, U1y`xL2, U2y, ´xL2, U2y, xL1, U1y´xL2, U2y,
xL1, U1y ˆ xL2, U2y, xL2, U2y

´1 and xL1, U1y ˜ xL2, U2y are well defined
Trans-Dedekind Cuts.

Theorem 30. The Trans-Dedekind order relation and all of the Trans-
Dedekind arithmetical operations coincide with their Dedekind homo-
logues when applied to Dedekind cuts. That is, for all Dedekind cuts
xL1, U1y and xL2, U2y:

a) xL1, U1y ď xL2, U2y from Definition VII has the same truth value as
xL1, U1y ď xL2, U2y from Definition 7,

b) xL1, U1y`xL2, U2y from Definition XIII has the same value as xL1, U1y`

xL2, U2y from Definition 13,

c) ´xL2, U2y from Definition XVI has the same value as ´xL2, U2y from
Definition 16,

d) xL1, U1y´xL2, U2y from Definition XVI has the same value as xL1, U1y´

xL2, U2y from Definition 16,

e) xL1, U1yˆxL2, U2y from Definition XIX has the same value as xL1, U1yˆ

xL2, U2y from Definition 19,

f) if xL2, U2y ‰ 0 then xL2, U2y
´1 from Definition XXII has the same

value as xL2, U2y
´1 from Definition 22,

g) if xL2, U2y ‰ 0 then xL1, U1y ˜ xL2, U2y from Definition XXII has
the same value as xL1, U1y ˜ xL2, U2y from Definition 22.

6 Trans-Dedekind Arithmetic

Trans-Dedekind arithmetic is homologous to transreal arithmetic.

Definition 31. We denote the set of all Trans-Dedekind Cuts as RT and
denote Φ :“ xH,Hy, ´8 :“ xH,Qy and 8 :“ xQ,Hy.
Theorem 32. RT

“ RY tΦ,´8,8u.
Theorem 33. It follows that:

a) x ­ă Φ for all x P RT .

b) Φ ­ă x for all x P RT .

c) ´8 ă x for all x P R.

d) x ă 8 for all x P R.

e) ´Φ “ Φ.

f) ´p´8q “ 8.

g) ´p8q “ ´8.

h) 0´1
“ 8.

i) Φ´1
“ Φ.
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j) p´8q´1
“ 0.

k) 8´1
“ 0.

l) Φ` x “ Φ.

m) 8` p´8q “ Φ.

n) 8` Φ “ Φ.

o) 8`8 “ 8.

p) 8` x “ 8 for all x P R.

q) ´8`8 “ Φ.

r) ´8` Φ “ Φ.

s) ´8` p´8q “ ´8.

t) ´8` x “ ´8 for all x P R.

u) Φˆ x “ Φ.

v) 8ˆ 0 “ Φ.

w) 8ˆ Φ “ Φ.

x) 8ˆ x “ ´8 for all x P RT such that x ă 0.

y) 8ˆ x “ 8 for all x P RT such that x ą 0.

z) ´8ˆ 0 “ Φ.

α) ´8ˆ Φ “ Φ.

β) ´8ˆ x “ 8 for all x P RT such that x ă 0.

γ) ´8ˆ x “ ´8 for all x P RT such that x ą 0.

Theorem 34. It follows that:

a) x˜ 0 “ 8 for all x P R such that x ą 0,

b) y ˜ 0 “ ´8 for all y P R such that y ă 0,

c) 0˜ 0 “ Φ.

By Theorem 33, all of the thirty-two axioms of transreal
arithmetic [5] follow from Trans-Dedekind arithmetic.

7 Proofs

Lemma 35. It follows that:

a) H is closed downwards,

b) Q is closed downwards,

c) H does not have a greatest element,

d) Q does not have a greatest element.

Proof. The results follow from the vacuity of the empty set and from the
properties of the rational numbers.
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Lemma 36. Let A and B be sets of rational numbers. It follows that:

a) H`A “ A`H “ H,

b) If A ‰ H then Q`A “ A`Q “ Q,

c) ´H “ H,

d) ´Q “ Q,

e) ´pAzBq “ p´Aqzp´Bq,

f) ´pAYBq “ p´Aq Y p´Bq,

g) ´pAXQ´q “ p´Aq XQ`,

h) ´pAXQ`q “ p´Aq XQ´,

i) H ¨A “ A ¨ H “ H,

j) If A ‰ H then Q ¨A “ A ¨Q “ Q,

k) If AXQ` ‰ H then Q` ¨ pAXQ`q “ pAXQ`q ¨Q` “ Q`,

l) H´1
“ H,

m) pQ`q´1
“ Q`,

n) if A and B each one does not contain zero then A´1
YB´1

“ pAY
Bq´1.

Proof. The results follow from the properties of sets and from the prop-
erties of the rational numbers.

We do not present the proofs of the theorems of Section 3 since Dedekind
cuts are widely known.

Lemma 37. If xL,Uy is a Dedekind cut then:

a) U ‰ H and U ‰ Q,

b) U “ QzL,

c) U is closed upwards,

d) x ă y for all x P L and y P U ,

e) tx P Q |x “ inf Uu is not empty if and only if tx P Q |x “ supLu is
not empty and in this case inf U “ supL,

f) if tx P Q |x “ inf Uu is not empty then inf U P U .

Proof. The results follow from the definition of Dedekind cuts (Definition
6) and from the properties of the rational numbers.

Lemma 38. If xL,Uy is a Dedekind cut then xL3, U3y where

U23 “ tx P Q |x “ inf Uu,

U3 “ ´pLY U23 q,

L3 “ ´pUzU23 q

is a Dedekind cut.
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Proof. Let xL,Uy be a Dedekind cut and xL3, U3y where

U23 “ tx P Q |x “ inf Uu,

U3 “ ´pLY U23 q,

L3 “ ´pUzU23 q.

It is immediate that L3 and U3 are sets of rational numbers.
Notice that either U23 is the empty set or U23 is a singleton set. Since

U ‰ H and U is closed upwards it follows that U is not a singleton
set whence UzU23 ‰ H. Hence L3 ‰ H. Since U ‰ Q it follows that
UzU23 ‰ Q. Hence L3 ‰ Q.

Notice that

L3 Y U3 “ p´pUzU
2
3 qq Y p´pLY U

2
3 qq

“ pp´Uqzp´U23 qq Y pp´Lq Y p´U
2
3 qq

“ pp´Uqzp´U23 qq Y p´Lq Y p´U
2
3 q

“ pp´Uqzp´U23 qq Y p´U
2
3 q Y p´Lq

“ p´Uq Y p´U23 q Y p´Lq

“ p´Lq Y p´Uq Y p´U23 q

“ p´pLY Uqq Y p´U23 q

“ p´Qq Y p´U23 q
“ QY p´U23 q
“ Q.

Notice also that

L3 X U3 “ p´pUzU
2
3 qq X p´pLY U

2
3 qq

“ pp´Uqzp´U23 qq X pp´Lq Y p´U
2
3 qq

“ ppp´Uqzp´U23 qq X p´Lqq Y ppp´Uqzp´U
2
3 qq X p´U

2
3 qq

“ ppp´Uq X p´Lqqzp´U23 qq Y ppp´Uq X p´U
2
3 qqzp´U

2
3 qq

“ pp´pU X Lqqzp´U23 qq Y pp´pU X U
2
3 qqzp´U

2
3 qq

“ pp´Hqzp´U23 qq Y pp´U
2
3 qzp´U

2
3 qq

“ pHzp´U23 qq YH

“ HYH

“ H.

If there is x P pL3 X U3q then
Let there be an arbitrary b P L3 and an arbitrary x P p´8, bq. Since

x ă b it follows that ´b ă ´x. Since b P L3 “ ´pUzU
2
3 q “ p´Uqzp´U

2
3 q

it follows that b P p´Uq whence ´b P U . Since ´b P U and ´b ă ´x it
follows that ´x is not infimum of U whence ´x R U23 . Since ´b P U and
´b ă ´x and U is closed upwards it follows that ´x P U . Since ´x P U
and ´x R U23 it follows that ´x P UzU23 whence x P p´pUzU23 qq that is
x P p´pUzU23 qq “ L3. Since x was taken arbitrarily in p´8, bq it follows
that p´8, bq Ă L3. Since b was taken arbitrarily in L3 it follows that L3

is closed downwards.
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Let there be an arbitrary x P L3. Since x P L3 “ p´pUzU23 qq “
p´Uqzp´U23 q it follows that x R p´U23 q whence ´x R U23 that is ´x is not
infimum of U whence ´x is not the least element of U . Hence there is
y P U such that y ă ´x. Since y ă ´x it follows that y ă y`p´xq

2
. Since

y P U and y ă y`p´xq
2

and U is closed upwards it follows that y`p´xq
2

P U .

Since y P U and y ă y`p´xq
2

it follows that y`p´xq
2

is not infimum of U

whence y`p´xq
2

R U23 . Since y`p´xq
2

P U and y`p´xq
2

R U23 it follows that
y`p´xq

2
P UzU23 whence ´ y`p´xq

2
P p´pUzU23 qq “ L3. Since y ă ´x it

follows that y`p´xq
2

ă ´x whence x ă ´ y`p´xq
2

. Since ´ y`p´xq
2

P L3 and

x ă ´
y`p´xq

2
it follows that x is not the greatest element of L3. Since

x was taken arbitrarily in L3 it follows that L3 does not have a greatest
element.

Since L3 and U3 are sets of rational numbers and L3 ‰ H and L3 ‰ Q
and L3 Y U3 “ Q and L3 X U3 “ H and L3 is closed downwards and
L3 does not have a greatest element, by the Definition 6, xL3, U3y is a
Dedekind cut.

Proof of Theorem 26. Let xL,Uy be a Dedekind cut and xL3, U3y where

U23 “ tx P Q |x “ inf Uu,

U3 “ ´pLY U23 q,

L3 “ ´pUzU23 q.

By Lemma 38, xL3, U3y is a Dedekind cut whence xL,Uy ` xL3, U3y

is well defined. Denote xL1, U1y “ xL,Uy ` xL3, U3y. By Definition 13,
L1 “ L`L3 whence L1 “ L`L3 “ L`p´pUzU23 qq “ tw P Q | there are a P
L and b P p´pUzU23 qq such that w “ a ` bu “ tw P Q | there are a P
L and c P UzU23 such that w “ a´ cu.

For every a P L and c P UzU23 it follows that a ă c whence a´ c ă 0.
Hence L1 Ă p´8, 0q.

Let there be an arbitrary x P p´8, 0q. Since xL,Uy is a Dedekind cut
it follows that L ‰ H and L ‰ Q and LYU “ Q and U is closed upwards.

• If U23 ‰ H then there is ǔ P Q such that ǔ “ inf U whence ǔ.
Denoting a “ ǔ ` x

2
and c “ ǔ ´ x

2
it follows that a ´ c “ ǔ ` x

2
´

`

ǔ´ x
2

˘

“ x. Since x P p´8, 0q it follows that a “ ǔ` x
2
ă ǔ whence

a R U . Hence a P L. Since x P p´8, 0q it follows that c “ ǔ´ x
2
ą ǔ.

Since ǔ P U and c P pǔ,8q and U is closed upwards it follows that
c P U . Since c ą ǔ it follows that c is not the infimum of U whence
c R U23 . Since c P U and c R U23 it follows that c P UzU23 . Since there
are a P L and c P UzU23 such that x “ a´ c it follows that x P L1.

• If U23 “ H then UzU23 “ U . Since L ‰ H it follows that there
is z P L. Since U ‰ H it follows that there is y P U . Since N
is unbounded above, there is m P N such that m ą

z´y
x

whence
z´mx ą y. Since y P U and z´mx P py,8q and U is closed upwards
it follows that z ´mx P U . Since z ´mx P U it follows that the set
tm P N | z ´mx P Uu is not empty whence tm P N | z ´mx P Uu has
a least element. Denote n the least element of tm P N | z ´mx P Uu.
In this way n P tm P N | z ´mx P Uu and n´1 R tm P N | z ´mx P Uu.
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Denote a “ z ´ pn ´ 1qx and c “ z ´ nx. Notice that a ´ c “
z ´ pn ´ 1qx ´ pz ´ nxq “ x. Since n P tm P N | z ´mx P Uu it
follows that c “ z ´ nx P U . Since c P U and UzU23 “ U it follows
that c P UzU23 . Since n ´ 1 R tm P N | z ´mx P Uu it follows that
a “ z ´ pn ´ 1qx R U whence a P L. Since there are a P L and
c P UzU23 such that x “ a´ c it follows that x P L1.

Since x was taken arbitrarily in p´8, 0q it follows that p´8, 0q Ă L1.
Since L1 Ă p´8, 0q and p´8, 0q Ă L1 it follows that L1 “ p´8, 0q.

Since U1 “ QzL1 it follows that U1 “ r0,8q. Hence xL1, U1y “ 0 whence
xL,Uy ` xL3, U3y “ 0. Thus xL3, U3y “ ´xL,Uy.

Lemma 39. Let xL1, U1y and xL2, U2y be Dedekind cuts and

U 13 “ pU1 XQ`q ¨ pU2 XQ`q,
U23 “ tx P Q |x “ inf U 13u,

U3 “ U23 Y U
1
3,

L13 “ pL1 XQ`q ¨ pL2 XQ`q,
L23 “ ´pL13 Y U 13q Y L

1
3

L3 “ IpL23q.

If xL1, U1y “ 0 or xL2, U2y “ 0 then xL1, U1y ˆ xL2, U2y “ xL3, U3y.

Proof. Let xL1, U1y and xL2, U2y be Dedekind cuts and

U 13 “ pU1 XQ`q ¨ pU2 XQ`q,
U23 “ tx P Q |x “ inf U 13u,

U3 “ U23 Y U
1
3,

L13 “ pL1 XQ`q ¨ pL2 XQ`q,
L23 “ ´pL13 Y U 13q Y L

1
3

L3 “ IpL23q.

By Definition 19, xL1, U1y ˆ xL2, U2y “ xL4, U4y where

L4 “ p´8, 0q Y
`

pL1 X r0,8qq ¨ pL2 X r0,8qq
˘

,

U4 “ QzL4.

If xL1, U1y “ 0 then L1 “ p´8, 0q and U1 “ r0,8q. Hence

L4 “ p´8, 0q Y
`

pL1 X r0,8qq ¨ pL2 X r0,8qq
˘

“ p´8, 0q Y
`

pp´8, 0q X r0,8qq ¨ pL2 X r0,8qq
˘

“ p´8, 0q Y
`

H ¨ pL2 X r0,8qq
˘

“ p´8, 0q YH

“ p´8, 0q

and thereby
U4 “ QzL4 “ Qzp´8, 0q “ r0,8q.
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Furthermore

U 13 “ pU1 XQ`q ¨ pU2 XQ`q

“ pr0,8q XQ`q ¨ pU2 XQ`q

“ Q` ¨ pU2 XQ`q

“ Q`

whence
U23 “ tx P Q |x “ inf U 13u “ t0u

and thereby
U3 “ U23 Y U

1
3 “ t0u YQ` “ r0,8q,

and

L13 “ pL1 XQ`q ¨ pL2 XQ`q

“ pp´8, 0q XQ`q ¨ pL2 XQ`q

“ H ¨ pL2 XQ`q
“ H

whence

L23 “ ´pL
1
3 Y U

1
3q Y L

1
3 “ ´pHY U 13q YH “ ´U 13 “ ´Q` “ Q´

and
L3 “ IpL23q “ IpQ´q “ Q´ “ p´8, 0q.

Therefore

xL1, U1y ˆ xL2, U2y “ xL4, U4y “ xp´8, 0q, r0,8qy “ xL3, U3y.

If xL2, U2y “ 0 then in a similar way we prove that xL1, U1yˆxL2, U2y “

xL3, U3y.

Lemma 40. If xL,Uy is a Dedekind cut such that xL,Uy ą 0 then there
is r P L such that r P Q`.

Proof. Let xL,Uy be a Dedekind cut such that xL,Uy ą 0. By Definition
7, Q´ Ă L and U Ă t0u YQ`.

If there would be no r P L such that r P Q` then L Ă Q´ Y t0u
whence Q´ Ă L Ă Q´ Y t0u. Hence either L “ Q´ or L “ Q´ Y t0u. If
L “ Q´ Y t0u then L would have a greatest element, which contradicts
Definition 6. If L “ Q´ then, since U is the complement of L, U would be
t0u Y Q` whence C would be xQ´, t0u Y Q`y “ 0 which contradicts the
fact that C is non zero. Therefore there is r P L such that r P Q`.

Lemma 41. If xL,Uy is a Dedekind cut such that xL,Uy ą 0 then U Ă
Q`.

Proof. Let xL,Uy be a Dedekind cut such that xL,Uy ą 0. By Definition
7, Q´ Ă L and U Ă t0u YQ`.

If 0 P U then, since U is closed upwards, U Ă t0uYQ`. Since LYU “
Q, it would follow that L “ Q´ and thus xL,Uy “ xQ´, t0u Y Q`y “ 0
which contradicts the fact that xL,Uy ą 0. Therefore 0 R U .

Since U Ă t0u YQ` and 0 R U it follows that U Ă Q`.

16



Lemma 42. If xL1, U1y and xL2, U2y are Dedekind cuts such that xL1, U1y ą

0 and xL2, U2y ą 0 then Q`zppL1 XQ`q ¨ pL2 XQ`qq “ U1 ¨ U2.

Proof. Let xL1, U1y and xL2, U2y be Dedekind cuts such that xL1, U1y ą 0
and xL2, U2y ą 0. By Lemma 41, U1 Ă Q` and U2 Ă Q`.

Let there be an arbitrary y P U1 ¨ U2. It follows that there are a P U1

and b P U2 such that y “ ab. Since a P U1 and b P U2 and U1 Ă Q`
and U2 Ă Q` it follows that ab ą 0 whence y “ ab P Q`. If y P
ppL1XQ`q¨pL2XQ`qq then there would be c P pL1XQ`q and d P pL2XQ`q
such that y “ cd. Since c P L1 and a P U1 it would follow that c ă a.
Since d P L2 and b P U2 it would follow that d ă b. Since c ą 0 and d ą 0
and c ă a and d ă b it would follow that cd ă ab, that is, y “ cd ă ab “ y
which is an absurd. Thus y R ppL1 XQ`q ¨ pL2 XQ`qq. Since y P Q` and
y R ppL1XQ`q ¨ pL2XQ`qq it follows that y P Q`zppL1XQ`q ¨ pL2XQ`qq.
Since y was taken arbitrarily in U1 ¨U2 it follows that U1 ¨U2 Ă pQ`zppL1X

Q`q ¨ pL2 XQ`qqq.
Let there be an arbitrary y P Q`zppL1 X Q`q ¨ pL2 X Q`qq. Let there

be an arbitrary b P L2XQ`. If there is a P L1XQ` such that y
b
ď a then,

since a P L1 and L1 is closed downwards, it would follow that y
b
P L1

whence y
b
P L1XQ` and thereby y “ y

b
b P ppL1XQ`q ¨ pL2XQ`qq which

contradicts the fact that y R ppL1 XQ`q ¨ pL2 XQ`qq. Thus a ă y
b

for all
a P L1 X Q` whence a ă y

b
for all a P L1. Hence y

b
R L1 whence y

b
P U1.

If there is no z P U1 such that z ă y
b

then y
b

would be the lest element of
U1 whence y

b
would be the infimum of U1. Since b P L2 and L2 does not

have a greatest element, there would be c P L2 such that b ă c. Hence
c ą 0 and b

c
ă 1 whence y

c
“ b

c
y
b
ă

y
b
“ inf U1. Thus y

c
R U1 whence

y
c
P L1. Since y

c
ą 0 it would follow that y

c
P L1XQ`. Since y

c
P L1XQ`

and c P L2 X Q` it would follow that y “ y
c
c P ppL1 X Q`q ¨ pL2 X Q`qq

which contradicts the fact of y R ppL1XQ`q ¨ pL2XQ`qq. Therefore there
is z P U1 such that z ă y

b
. Since U1 Ă Q` it follows that z ą 0. Since

z ă y
b

and 0 ă z it follows that b ă y
z
. Since b was taken arbitrarily

in L2 X Q` it follows that b ă y
z

for all b P L2. Hence y
z
R L2 whence

y
z
P U2. Since z P U1 and y

z
P U2 it follows that y “ z y

z
P U1 ¨ U2. Since

y was taken arbitrarily in Q`zppL1 X Q`q ¨ pL2 X Q`qq it follows that
pQ`zppL1 XQ`q ¨ pL2 XQ`qqq Ă pU1 ¨ U2q.

Since U1 ¨ U2 Ă pQ`zppL1 X Q`q ¨ pL2 X Q`qqq and pQ`zppL1 X Q`q ¨
pL2 X Q`qqq Ă pU1 ¨ U2q it follows that pQ`zppL1 X Q`q ¨ pL2 X Q`qqq “
pU1 ¨ U2q.

Lemma 43. Let xL1, U1y and xL2, U2y be Dedekind cuts and

U 13 “ pU1 XQ`q ¨ pU2 XQ`q,
U23 “ tx P Q |x “ inf U 13u,

U3 “ U23 Y U
1
3,

L13 “ pL1 XQ`q ¨ pL2 XQ`q,
L23 “ ´pL13 Y U 13q Y L

1
3

L3 “ IpL23q.

If xL1, U1y ą 0 and xL2, U2y ą 0 then xL1, U1y ˆ xL2, U2y “ xL3, U3y.

17



Proof. Let xL1, U1y and xL2, U2y be Dedekind cuts such that xL1, U1y ą 0
and xL2, U2y ą 0. Let xL3, U3y where

U 13 “ pU1 XQ`q ¨ pU2 XQ`q,
U23 “ tx P Q |x “ inf U 13u,

U3 “ U23 Y U
1
3,

L13 “ pL1 XQ`q ¨ pL2 XQ`q,
L23 “ ´pL13 Y U 13q Y L

1
3

L3 “ IpL23q.

By Definition 19, xL1, U1y ˆ xL2, U2y “ xL4, U4y where

L4 “ p´8, 0q Y
`

pL1 X r0,8qq ¨ pL2 X r0,8qq
˘

,

U4 “ QzL4.

Since xL1, U1y ą 0 and xL2, U2y ą 0 and the set of all Dedekind cuts
is an ordered field, xL1, U1y ˆ xL2, U2y ą 0 whence xL4, U4y ą 0. Hence,
by Lemma 40, there is r P L4 such that r P Q`. Since r P L4 and 0 ă r
and L4 is closed downwards it follows that 0 P L4. In this way

L4 “ p´8, 0q Y
`

pL1 X r0,8qq ¨ pL2 X r0,8qq
˘

“ p´8, 0q Y
`

pL1 X pt0u YQ`qq ¨ pL2 X pt0u YQ`qq
˘

“ p´8, 0q Y
`

ppL1 X t0uq Y pL1 XQ`qq ¨ ppL2 X t0uq Y pL2 XQ`qq
˘

“ p´8, 0q Y
`

pL1 X t0uq Y pL2 X t0uq Y ppL1 XQ`q ¨ pL2 XQ`qq
˘

“ p´8, 0q Y pL1 X t0uq Y pL2 X t0uq Y ppL1 XQ`q ¨ pL2 XQ`qq

“ p´8, 0q Y t0u Y ppL1 XQ`q ¨ pL2 XQ`qq

“ p´8, 0s Y ppL1 XQ`q ¨ pL2 XQ`qq

and thereby

U4 “ QzL4

“ Qzpp´8, 0s Y ppL1 XQ`q ¨ pL2 XQ`qqq

“ Q`zppL1 XQ`q ¨ pL2 XQ`qq.

Furthermore, since xL1, U1y ą 0 and xL2, U2y ą 0, by Lemma 41, U1 Ă Q`
and U2 Ă Q` whence

U 13 “ pU1 XQ`q ¨ pU2 XQ`q
“ U1 ¨ U2

and

U23 “ tx P Q |x “ inf U 13u

“ tx P Q |x “ infpU1 ¨ U2qu

“ tx P Q |x “ inf U1 inf U2u
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and thereby

U3 “ U23 Y U
1
3

“ tx P Q |x “ inf U1 inf U2u Y pU1 ¨ U2q

“ ptx P Q |x “ inf U1u ¨ tx P Q |x “ inf U2uq Y pU1 ¨ U2q

“ ptx P Q |x “ inf U1u Y U1q ¨ ptx P Q |x “ inf U2u Y U2q

“ U1 ¨ U2.

Further
L13 “ pL1 XQ`q ¨ pL2 XQ`q

and

L23 “ ´pL
1
3 Y U

1
3q Y L

1
3

“ ´pppL1 XQ`q ¨ pL2 XQ`qq Y pU1 ¨ U2qq Y ppL1 XQ`q ¨ pL2 XQ`qq

and L3 “ IpL23q.
By Lemma 42, Q`zppL1 X Q`q ¨ pL2 X Q`qq “ U1 ¨ U2 whence U4 “

Q`zppL1 XQ`q ¨ pL2 XQ`qq “ U1 ¨ U2 “ U3.
Since Q`zppL1XQ`q ¨ pL2XQ`qq “ U1 ¨U2 it follows that ppL1XQ`q ¨

pL2 XQ`qq Y pU1 ¨ U2q “ Q` whence

L23 “ ´pppL1 XQ`q ¨ pL2 XQ`qq Y pU1 ¨ U2qq Y ppL1 XQ`q ¨ pL2 XQ`qq

“ ´Q` Y ppL1 XQ`q ¨ pL2 XQ`qq

“ Q´ Y ppL1 XQ`q ¨ pL2 XQ`qq.

Hence

L3 “ IpL23q

“ I
`

Q´ Y ppL1 XQ`q ¨ pL2 XQ`qq
˘

“ p´8, 0s Y ppL1 XQ`q ¨ pL2 XQ`qq “ L4.

Therefore xL1, U1y ˆ xL2, U2y “ xL4, U4y “ xL3, U3y

Proof of Theorem 27. The results follows from the lemmas 39 and 43.

Lemma 44. Let xL,Uy be a Dedekind cut such that xL,Uy ą 0 and
ǔ P Q. It follows that ǔ is the supremum of L if and only if ǔ´1 is the
infimum of pLXQ`q´1.

Proof. Let xL,Uy be a Dedekind cut such that xL,Uy ą 0 and ǔ P Q.

Suppose that ǔ is the supremum of L. Since ǔ is the supremum of L,
ǔ is the infimum of U .

By Lemma 40 there is r P L such that r P Q`. Since r P L we have
that r ă y for all y P U whence r is a lower bound of U . Thus r ď ǔ.
Since r P Q` we have that 0 ă r. Hence 0 ă r ď ǔ that is 0 ă ǔ.

Since there is r P LXQ` it follows that pLXQ`q´1 is non-empty.
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Let there be an arbitrary x P pLXQ`q´1. Since x´1
P L we have that

x´1
ă y for all y P U whence x´1 is a lower bound of U . Thus x´1

ď ǔ.
Since x ą 0 and ǔ ą 0 it follows that ǔ´1

ď x. Since x was taken
arbitrarily in pLXQ`q´1 it follows that ǔ´1

ď x for all x P pLXQ`q´1.
Thus ǔ´1 is a lower bound of pLXQ`q´1.

Let there be an arbitrary x P Q such that x ą ǔ´1. Since x ą ǔ´1

it follows that x ą 0 and x´1
ă ǔ whence x´1

ă ǔ ď y for all y P U .
Since x´1

‰ y for all y P U it follows that x´1
R U whence x´1

P L. Since
L does not have a greatest element, there is z P L such that x´1

ă z
whence z ą 0 and z´1

ă x. Since z P L and z ą 0 it follows that
z´1

P pL X Q`q´1. Since there is z´1
P pL X Q`q´1 such that z´1

ă x
it follows that x is not a lower bound of pL X Q`q´1. Since x satisfying
x ą ǔ´1 was taken arbitrarily in Q it follows that if x is any rational
number such that x ą ǔ´1 then x is not a lower bound of pL X Q`q´1.
Therefore ǔ´1 is the greatest lower bound of pLXQ`q´1. That is ǔ´1 is
the infimum of pLXQ`q´1.

If ǔ´1 is the infimum of pL X Q`q´1 then in a similar way we show
that ǔ is the supremum of L.

Lemma 45. Let xL,Uy be a Dedekind cut such that xL,Uy ą 0 and
ǔ P Q. It follows that ǔ is the infimum of U if and only if ǔ´1 is the
supremum of pU XQ`q´1.

Proof. The proof is similar to the proof of the Lemma 44.

Lemma 46. If xL1, U1y is a Dedekind cut such that xL1, U1y ą 0 then
xL3, U3y where

U 13 “ pLXQ`q´1,

U23 “ tx P Q |x “ inf U 13u,

U3 “ U23 Y U
1
3,

L13 “ pU XQ`q´1,

L23 “ ´pL13 Y U
1
3q Y L

1
3,

L3 “ IpL23q

is a Dedekind cut.

Proof. Let xL1, U1y be a Dedekind cut such that xL1, U1y ą 0 and
xL3, U3y where

U 13 “ pL1 XQ`q´1,

U23 “ tx P Q |x “ inf U 13u,

U3 “ U23 Y U
1
3,

L13 “ pU1 XQ`q´1,

L23 “ ´pL13 Y U
1
3q Y L

1
3,

L3 “ IpL23q,

It is immediate that L3 and U3 are sets of rational numbers.
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Since xL1, U1y ą 0, by Lemma 41, U1 Ă Q` whence U1 X Q` “ U1.
Hence

L23 “ ´pL
1
3 Y U

1
3q Y L

1
3

“ ´ppU1 XQ`q´1
Y pL1 XQ`q´1

q Y pU1 XQ`q´1

“ ´pppU1 XQ`q Y pL1 XQ`qq´1
q Y pU1 XQ`q´1

“ ´pppU1 Y L1q XQ`q´1
q Y U´1

1

“ ´ppQXQ`q´1
q Y U´1

1

“ ´ppQ`q´1
q Y U´1

1

“ ´pQ`q Y U´1
1

“ Q´ Y U´1
1 .

Since L23 “ Q´ Y U´1
1 it follows that Q´ Ă L23 whence Q´ Ă IpL23q “

L3. Thus L3 ‰ H. By Lemma 40 there is r P L1 such that r P Q`. Thus
p0, rq X U1 “ H whence

`

r´1,8
˘

X U´1
1 “ H. Hence r´1

R IpQ´ Y U´1
1 q

whence L3 “ IpL23q “ IpQ´ Y U´1
1 q ‰ Q.

Let there be an arbitrary r P Q. Suppose r R U3.

• If r ă 0 then r P
`

2r, r
2

˘

. Since 2r, r
2
P Q´ it follows that 2r, r

2
P

Q´ Y U´1
1 “ L23. Since r P

`

2r, r
2

˘

and 2r, r
2
P L23 it follows that

r P tx P Q | there are a, b P L23 such that x P pa, bqu “ IpL23q “ L3.

• If r “ 0 then, since U1 is non-empty and U1 Ă Q`, it follows that
U´1

1 is non-empty and U´1
1 Ă Q`. Hence there is s P U´1

1 . Since
U´1

1 Ă Q` it follows that s P Q`. Since r “ 0 and s P Q` it follows
that r P p´1, sq. Since r P p´1, sq and ´1, s P Q´ Y U´1

1 “ L23 it
follows that r P tx P Q | there are a, b P L23 such that x P pa, bqu “
IpL23q “ L3.

• If r ą 0 then, since r R U3, it follows that r R U 13 whence r R
pL1 X Q`q´1. Since r P Q` and r R pL1 X Q`q´1 it follows that
r´1

R L1. Hence r´1
P U1 whence x ă r´1 for all x P L1. Thus r´1

is a upper bound of L1.

Since r R U3 it follows that r is not the infimum of U 13 that is r is
not the infimum of pL1 X Q`q´1. Hence, by Lemma 44, r´1 is not
the supremum of L1.

Since r´1 is a upper bound of L1 but not the supremum of L1 there
is s P Q such that s ă r´1 and s is a upper bound of L1.

If s P L1 then, since s is a upper bound of L1, s would be the
greatest element of L1 which contradicts the fact that L1 does not
have a greatest element. Thus s R L1.

Since s R L1 it follows that s P U1 whence s´1
P U´1

1 . Since s ă r´1

it follows that s´1
ą r.

Since s´1
ą r and r ą 0 it follows that r P p´1, s´1

q. Since r P
p´1, s´1

q and ´1, s´1
P Q´ Y U´1

1 “ L23 it follows that r P tx P
Q | there are a, b P L23 such that x P pa, bqu “ IpL23q “ L3.

That is, in any case if r R U3 then r P L3. Therefore L3 Y U3 “ Q.
Let there be an arbitrary x P U3. It follows that x P pU23 Y U 13q. If

x P U23 then x “ inf U 13 that is x “ infpL1 X Q`q´1. By Lemma 44,
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x´1
“ supL1 whence x´1

“ inf U1. By Lemma 45, x “ suppU1 X Q`q´1

whence x “ supL13. Thus x R Ip´pL13 Y U 13q Y L13q “ IpL23q “ L3. If
x P U 13 then x P pL1 X Q`q´1 whence x´1

P L1. Hence x´1
R U1 that is

x´1
R pU1 X Q`q whence x R pU1 X Q`q´1 that is x R L13. Since x P Q`

it follows that x R p´8, 0s. Since x R p´8, 0s and x R L13 it follows that
x R Ip´pL13 Y U 13q Y L13q “ IpL23q “ L3. Since x was taken arbitrarily in
U3 it follows that L3 X U3 “ H.

Let x, y P Q such that x ă y and y P L3. Since y P L3 “ IpL23q “
tx P Q | there are a, b P L23 such that x P pa, bqu, there are w, z P L23 such
that y P pw, zq. Since x ă y and y P pw, zq it follows that x ă y ă z.
Since Q´ is not bounded below there is v P Q´ such that v ă x. Since
v P Q´ it follows that v P Q´ Y U´1

1 “ L23. Since v ă x and x ă z
it follows that x P pv, zq. Since x P pv, zq and v, z P L23 it follows that
x P tx P Q | there are a, b P L23 such that x P pa, bqu “ IpL23q “ L3.
Therefore L3 is closed downwards.

If L3 would have a greatest element u3 then u3 P L3“tx P Q | there are
a, b P L23 such that x P pa, bqu whence there would be w, z P L23 such that
u3 P pw, zq. Since w ă u3 ă

u3`z
2

ă z, it would follow that u3`z
2

P pw, zq
whence u3`z

2
P tx P Q | there are a, b P L23 such that x P pa, bqu “ L3.

But, u3`z
2

ą u3 which contradicts the fact that u3 is the greatest element
of L3. Therefore L3 does not have a greatest element.

Since L3 and U3 are sets of rational numbers and L3 ‰ H and L3 ‰ Q
and L3 Y U3 “ Q and L3 X U3 “ H and L3 is closed downwards and
L3 does not have a greatest element, by the Definition 6, xL3, U3y is a
Dedekind cut.

Proof of Theorem 28. Let xL,Uy be a Dedekind cut such that xL,Uy ą
0 and xL3, U3y where

U 13 “ pLXQ`q´1,

U23 “ tx P Q |x “ inf U 13u,

U3 “ U23 Y U
1
3,

L13 “ pU XQ`q´1,

L23 “ ´pL13 Y U
1
3q Y L

1
3,

L3 “ IpL23q.

By Lemma 46, xL3, U3y is a Dedekind cut whence xL,Uy ˆ xL3, U3y is
well defined. Denote xL4, U4y “ xL,Uy ˆ xL3, U3y. So, as it was seen in
the proof of the Lemma 43, U4 “ U ¨ U3.

Let there be an arbitrary y P U4. Since y P U ¨U3 it follows that there
are x P U and x3 P U3 such that y “ xx3.

• If x3 is the infimum of U 13 then x3 is the infimum of pL X Q`q´1

whence, by Lemma 44, x´1
3 is the supremum of L. Hence x´1

3 is the
infimum of U whence x´1

3 ď x. Thus 1 “ x´1
3 x3 ď xx3 “ y.

• If x3 is not the infimum of U 13 then x3 P U
1
3 “ pL X Q`q´1 whence

x´1
3 P L. Since x´1

3 P L and x P U it follows that x´1
3 ă x whence

1 “ x´1
3 x3 ă xx3 “ y.
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Since y was taken arbitrarily in U4 it follows that U4 Ă r1,8q.
Since U4 Ă r1,8q it follows that 1 is a lower bound of U4. Now, let

there be an arbitrary w P p1,8q. Let y P p1, wq. Since xL,Uy ą 0, by
Lemma 40, there is r P L such that r P Q` whence r P LXQ`. Since U ‰
H, there is z P U . Since y ą 1 there is m P N such that ym ą z

r
whence

rym ą z. Since z P U and rym ą z and U is closed upwards it follows
that rym P U . Since rym P U it follows that the set tm P N | rym P Uu
is not empty whence tm P N | rym P Uu has a least element. Denote n
the least element of tm P N | rym P Uu. In this way n P tm P N | rym P Uu
and n ´ 1 R tm P N | rym P Uu. Since n P tm P N | rym P Uu it follows
that ryn P U . Since n ´ 1 R tm P N | rym P Uu it follows that ryn´1

R U
whence ryn´1

P L. Hence ryn´1
P LXQ` whence r´1y1´n

P pLXQ`q´1
“

U 13 Ă pU23 Y U 13q “ U3 Since ryn P U and r´1y1´n
P U3 it follows that

y “ rynr´1y1´n
P U ¨ U3. Since y ă w and y P U ¨ U3 “ U4 it follows

that w is not a lower bound of U4. Since y ă w and y P U4 and U4 is
closed upwards it follows that w P U4. Since w was taken arbitrarily in
p1,8q it follows that, for all w P p1,8q, w is not a lower bound of U4 and
w P U4. Since w P U4 for all w P p1,8q it follows that p1,8q Ă U4. Since
1 is a lower bound of U4 and, for all w P p1,8q, w is not a lower bound of
U4 it follows that 1 is the greatest lower bound of U4 that is 1 “ inf U4.
Since xL4, U4y is a Dedekind cut it follows that 1 “ inf U4 P U4. Since
p1,8q Ă U4 and 1 P U4 it follows that r1,8q Ă U4.

Since U4 Ă r1,8q and r1,8q Ă U4 it follows that U4 “ r1,8q.
Since xL4, U4y is a Dedekind cut it follows that L4 “ QzU4. Thus,

since U4 “ r1,8q, it follows that L4 “ p´8, 1q. Hence xL,UyˆxL3, U3y “

xL4, U4y “ xp´8, 1q, r1,8qy “ 1. Therefore xL,Uy´1
“ xL3, U3y.

Proof of Theorem VIII. The properties reflexivity, antisymmetry and
transitivity of ď on Trans-Dedekind cuts follow, respectively, from the
properties reflexivity, antisymmetry and transitivity of the inclusion rela-
tion, Ă, on sets.

Lemma 47. It follows that:

a) xL,Uy ­ă xH,Hy for all Trans-Dedekind cut xL,Uy,

b) xH,Hy ­ă xL,Uy for all Trans-Dedekind cut xL,Uy,

c) xH,Qy ă xL,Uy for all Dedekind cuts xL,Uy,

d) xL,Uy ă xQ,Hy for all Dedekind cuts xL,Uy.

Proof.

a) Let xL,Uy be a Trans-Dedekind cut. Since L is not a proper subset
of H it follows that xL,Uy ă xH,Hy does not hold. Thus xL,Uy ­ă
xH,Hy.

b) Let xL,Uy be a Trans-Dedekind cut. Since U is not a proper subset
of H it follows that xH,Hy ă xL,Uy does not hold. Thus xH,Hy ­ă
xL,Uy.

c) Let xL,Uy be a Dedekind cut. It follows that L ‰ H and U ‰ Q
whence H is a proper subset of L and U is a proper subset of Q.
Thus xH,Qy ă xL,Uy.
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d) Let xL,Uy be a Dedekind cut. It follows that L ‰ Q and U ‰ H

whence L is a proper subset of Q and H is a proper subset of U .
Thus xL,Uy ă xQ,Hy.

Proof of Theorem X. a) By the item a of the Lemma 47, xQ,Hy ­ă
xH,Hy but xQ,Hy ě xH,Hy does not hold.

b) The proof is similar to the item a.

c) Let xL1, U1y and xL2, U2y be Trans-Dedekind cuts such that xL1, U1y ą

xL2, U2y. It follows that xL2, U2y ă xL1, U1y whence L2 Ă L1 and
L2 ‰ L1. Hence L1 Ă L2 does not hold whence xL1, U1y ď xL2, U2y

does not hold. Thus xL1, U1y ă xL2, U2y does not hold whence
xL1, U1y ­ă xL2, U2y.

d) The proof is similar to the item c.

Proof of Theorem XI. The result is immediate from definitions of Trans-
Dedekind cuts (Definition VI) and Dedekind cuts (Definition 6).

Lemma 48. The set of all Trans-Dedekind cuts is of all Dedekind cuts
together with xH,Hy, xH,Qy and xQ,Hy.

Proof. Let xL,Uy be a Trans-Dedekind cut. By the Definition VI,

I) LY U “ H or LY U “ Q,

II) LX U “ H,

III) L is closed downwards,

IV) L does not have a greatest element.

• If L “ H then either U “ H or U “ Q. If U “ H then xL,Uy “
xH,Hy. If U “ Q then xL,Uy “ xH,Qy.

• If L “ Q then, by the item II, U “ H whence xL,Uy “ xQ,Hy.
• If L ‰ H and L ‰ Q then L Y U ‰ H whence, by the item I,
LY U “ Q. Thus

0) L ‰ H and L ‰ Q,

1) LY U “ Q,

2) LX U “ H,

3) L is closed downwards,

4) L does not have a greatest element

whence, by the Definition 6, xL,Uy is a Dedekind cut.

Lemma 49. It follows that:

a) xH,Hy ` xL,Uy “ xH,Hy for all Trans-Dedekind cut xL,Uy.

b) xH,Qy ` xQ,Hy “ xH,Hy.
c) xH,Qy ` xH,Hy “ xH,Hy.
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d) xH,Qy ` pxH,Qyq “ xH,Qy.
e) xH,Qy ` xL,Uy “ xH,Qy for all Dedekind cuts xL,Uy.

f) xQ,Hy ` xH,Qy “ xH,Hy.
g) xQ,Hy ` xH,Hy “ xH,Hy.
h) xQ,Hy ` xQ,Hy “ xQ,Hy.
i) xQ,Hy ` xL,Uy “ xQ,Hy for all Dedekind cuts xL,Uy.

Proof. Let xL,Uy be a Trans-Dedekind cut.

a) Since H`L “ H and H`U “ H, by the Definition XIII, xH,Hy`
xL,Uy “ xH,Hy.

b) Since H`Q “ H and Q`H “ H, by the Definition XIII, xH,Qy`
xQ,Hy “ xH,Hy.

c) Since H`H “ H and Q`H “ H, by the Definition XIII, xH,Qy`
xH,Hy “ xH,Hy.

d) Since H`H “ H and Q`Q “ Q, by the Definition XIII, xH,Qy`
xH,Qy “ xH,Qy.

e) If xL,Uy is a Dedekind cut then L ‰ whence Q` U “ Q. Thus, by
the Definition XIII, xH,Qy ` xL,Uy “ xH,Qy.

f) Since Q`H “ H and H`Q “ H, by the Definition XIII, xQ,Hy`
xH,Qy “ xH,Hy.

g) Since Q`H “ H and H`H “ H, by the Definition XIII, xQ,Hy`
xH,Hy “ xH,Hy.

h) Since Q`Q “ Q and H`H “ H, by the Definition XIII, xQ,Hy`
xQ,Hy “ xQ,Hy.

i) If xL,Uy is a Dedekind cut then L ‰ whence Q` L “ Q. Thus, by
the Definition XIII, xQ,Hy ` xL,Uy “ xQ,Hy.

Proof of Theorem XIV. Let xL1, U1y and xL2, U2y be Trans-Dedekind
cuts. By Lemma 48, either xL1, U1y and xL2, U2y are both Dedekind cuts
or xL1, U1y “ xH,Hy or xL1, U1y “ xH,Qy or xL1, U1y “ xQ,Hy.

If xL1, U1y and xL2, U2y are both Dedekind cuts then, by Theorem
14, the Dedekind sum between xL1, U1y and xL2, U2y is a Dedekind cut.
Since the addition of Trans-Dedekind cuts (Definition XIII) is identical to
the addition of Dedekind cuts (Definition 13) it follows that the Trans-
Dedekind sum between xL1, U1y and xL2, U2y, xL1, U1y ` xL2, U2y, is the
Dedekind sum between xL1, U1y and xL2, U2y. Hence xL1, U1y ` xL2, U2y

is a Dedekind cut. Thus, by Theorem XI, xL1, U1y ` xL2, U2y is a Trans-
Dedekind cut.

If xL1, U1y “ xH,Hy then, by the item a of the Lemma 49, xL1, U1y`

xL2, U2y is a Trans-Dedekind cut.
If xL1, U1y “ xH,Qy then, by the items b, c, d and e of the Lemma

49, xL1, U1y ` xL2, U2y is a Trans-Dedekind cut.
If xL1, U1y “ xQ,Hy then, by the items f, g, h and i of the Lemma 49,

xL1, U1y ` xL2, U2y is a Trans-Dedekind cut.
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Proof of Theorem XV. Let xL,Uy be a Trans-Dedekind cut. By Lemma
48, either xL,Uy is a Dedekind cut or xL,Uy “ xH,Hy or xL,Uy “ xH,Qy
or xL,Uy “ xQ,Hy.

If xL,Uy is a Dedekind cut then, by Theorem 15, xL,Uy`xp´8, 0q, r0,8qy “
xL,Uy.

If xL,Uy “ xH,Hy then, by the item a of the Lemma 49, xL,Uy `
xp´8, 0q, r0,8qy “ xL,Uy.

If xL,Uy “ xH,Qy then, by the item e of the Lemma 49, xL,Uy `
xp´8, 0q, r0,8qy “ xL,Uy.

If xL,Uy “ xQ,Hy then, by the item i of the Lemma 49, xL,Uy `
xp´8, 0q, r0,8qy “ xL,Uy.

Therefore xp´8, 0q, r0,8qy is the identity element of the set of all
Trans-Dedekind cuts with respect to `.

Lemma 50. It follows that:

a) ´xH,Hy “ xH,Hy.

b) ´xH,Qy “ xQ,Hy.
c) ´xQ,Hy “ xH,Qy.

Proof.

a) It follows that ´xH,Hy “ xL3, U3y where

U23 “ tx P Q |x “ infHu “ H,

U3 “ ´pHYHq “ ´H “ H,

L3 “ ´pHzHq “ ´H “ H.

Thus ´xH,Hy “ xL3, U3y “ xH,Hy.

b) It follows that ´xH,Qy “ xL3, U3y where

U23 “ tx P Q |x “ inf Qu “ H,
U3 “ ´pHYHq “ ´H “ H,

L3 “ ´pQzHq “ ´Q “ Q,

Thus ´xH,Qy “ xL3, U3y “ xQ,Hy.
c) It follows that ´xQ,Hy “ xL3, U3y where

U23 “ tx P Q |x “ infHu “ H,

U3 “ ´pQYHq “ ´Q “ Q,
L3 “ ´pHzHq “ ´H “ H,

Thus ´xQ,Hy “ xL3, U3y “ xH,Qy.

Proof of Theorem XVII. Let xL,Uy be a Trans-Dedekind cut. By
Lemma 48, either xL,Uy is a Dedekind cut or xL,Uy “ xH,Hy or xL,Uy “
xH,Qy or xL,Uy “ xQ,Hy.

If xL,Uy is a Dedekind cut then, by the Definition XVI and the Theo-
rem 26, ´xL,Uy is the additive inverse of xL,Uy. Hence, by Theorem 17,
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´xL,Uy is a Dedekind cut. Thus, by Theorem XI, ´xL,Uy is a Trans-
Dedekind cut.

If xL,Uy “ xH,Hy then, by the item a of the Lemma 50, ´xL,Uy is
a Trans-Dedekind cut.

If xL,Uy “ xH,Qy then, by the item b of the Lemma 50, ´xL,Uy is a
Trans-Dedekind cut.

If xL,Uy “ xQ,Hy then, by the item c of the Lemma 50, ´xL,Uy is a
Trans-Dedekind cut.

Proof of Theorem XVIII. Let xL,Uy be a Trans-Dedekind cut.
Suppose xL,Uy ă 0. By the item b of the Lemma 47, xL,Uy ‰ xH,Hy.

By the item d of the Lemma 47, xL,Uy ‰ xQ,Hy. Thus, by Lemma
48, either xL,Uy is a Dedekind cut or xL,Uy “ xH,Qy. If xL,Uy is a
Dedekind cut then, by the Definition XVI and the Theorem 26, ´xL,Uy
is the additive inverse of xL,Uy. Hence, by Theorem 24, ´xL,Uy is greater
than 0 with respect to the Dedekind order relation. Thus, since the Trans-
Dedekind order relation (Definition VII) is identical to the Dedekind order
relation (Definition 7) it follows that´xL,Uy is greater than 0 with respect
to the Trans-Dedekind order relation, that is, ´xL,Uy ą 0. If xL,Uy “
xH,Qy then, by the item b of the Lemma 50 and the item d of the Lemma
47, ´xL,Uy “ ´xH,Qy “ xQ,Hy ą 0.

Suppose ´xL,Uy ą 0. In a similar way we prove that xL,Uy ă 0.

Lemma 51. It follows that:

a) xH,Hy ˆ xL,Uy “ xH,Hy for all Trans-Dedekind cut xL,Uy.

b) xQ,Hy ˆ xp´8, 0q, r0,8qy “ xH,Hy.
c) xQ,Hy ˆ xH,Hy “ xH,Hy.
d) xQ,Hy ˆ xL,Uy “ xQ,Hy for all Trans-Dedekind cut xL,Uy such

that xL,Uy ą 0.

e) xQ,Hy ˆ xL,Uy “ xH,Qy for all Trans-Dedekind cut xL,Uy such
that xL,Uy ă 0.

f) xH,Qy ˆ xp´8, 0q, r0,8qy “ xH,Hy.
g) xH,Qy ˆ xH,Hy “ xH,Hy.
h) xH,Qy ˆ xL,Uy “ xH,Qy for all Trans-Dedekind cut xL,Uy such

that xL,Uy ą 0.

i) xH,Qy ˆ xL,Uy “ xQ,Hy for all Trans-Dedekind cut xL,Uy such
that xL,Uy ă 0.

Proof.

a) Let xL,Uy be a Trans-Dedekind cut. It follows that xH,Hy ˆ
xL,Uy “ xL3, U3y where

U 13 “ pHXQ`q ¨ pU XQ`q “ H ¨ pU XQ`q “ H,
U23 “ tx P Q |x “ infHu “ H,

U3 “ HYH “ H,

L13 “ pHXQ`q ¨ pLXQ`q “ H ¨ pLXQ`q “ H,
L23 “ ´pHYHq YH “ ´HYH “ HYH “ H

L3 “ IpHq “ H.
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Thus xH,Hy ˆ xL,Uy “ xL3, U3y “ xH,Hy.

b) It follows that xQ,Hy ˆ xp´8, 0q, r0,8qy “ xL3, U3y where

U 13 “ pHXQ`q ¨ pr0,8q XQ`q “ H ¨ pr0,8q XQ`q “ H,
U23 “ tx P Q |x “ infHu “ H,

U3 “ HYH “ H,

L13 “ pQXQ`q ¨ pp´8, 0q XQ`q “ pQXQ`q ¨ H “ H,

L23 “ ´pHYHq YH “ ´HYH “ HYH “ H

L3 “ IpHq “ H.

Thus xQ,Hy ˆ xp´8, 0q, r0,8qy “ xL3, U3y “ xH,Hy.

c) It follows that xQ,Hy ˆ xH,Hy “ xL3, U3y where

U 13 “ pHXQ`q ¨ pH XQ`q “ H ¨ H “ H,

U23 “ tx P Q |x “ infHu “ H,

U3 “ HYH “ H,

L13 “ pQXQ`q ¨ pH XQ`q “ pQXQ`q ¨ H “ H,

L23 “ ´pHYHq YH “ ´HYH “ HYH “ H

L3 “ IpHq “ H.

Thus xQ,Hy ˆ xH,Hy “ xL3, U3y “ xH,Hy.

d) Let xL,Uy be a Trans-Dedekind cut such that xL,Uy ą 0. By
Lemma 40, there is r P L such that r P Q` whence L X Q` ‰ H.
Thus xQ,Hy ˆ xL,Uy “ xL3, U3y where

U 13 “ pHXQ`q ¨ pU2 XQ`q “ H ¨ pU2 XQ`q “ H,
U23 “ tx P Q |x “ infHu “ H,

U3 “ HYH “ H,

L13 “ pQXQ`q ¨ pLXQ`q “ Q` ¨ pLXQ`q “ Q`,
L23 “ ´pQ` YHq YQ` “ ´Q` YQ` “ Q´ YQ` “ Qzt0u
L3 “ IpQzt0uq “ Q,

Thus xQ,Hy ˆ xL,Uy “ xL3, U3y “ xQ,Hy.
e) Let xL,Uy be a Trans-Dedekind cut such that xL,Uy ă 0. It follows

that ´xL,Uy ą 0 and xQ,Hy ˆ xL,Uy “ ´pxQ,Hy ˆ p´xL,Uyqq.
Thus

xQ,Hy ˆ xL,Uy “ ´pxQ,Hy ˆ p´xL,Uyqq
“ ´xQ,Hy
“ xH,Qy.

f) By the item b of the Lemma 50, ´xH,Qy “ xQ,Hy. It follows that
xH,Qyˆxp´8, 0q, r0,8qy “ ´pp´xH,Qyqˆxp´8, 0q, r0,8qyq. Thus

xH,Qy ˆ xp´8, 0q, r0,8qy “ ´pp´xH,Qyq ˆ xp´8, 0q, r0,8qyq
“ ´pxQ,Hy ˆ xp´8, 0q, r0,8qyq
“ ´xH,Hy

“ xH,Hy.
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g) By the item b of the Lemma 50, ´xH,Qy “ xQ,Hy. It follows that
xH,Qy ˆ xH,Hy “ ´pp´xH,Qyq ˆ xH,Hyq. Thus

xH,Qy ˆ xH,Hy “ ´pp´xH,Qyq ˆ xH,Hyq
“ ´pxQ,Hy ˆ xH,Hyq
“ ´xH,Hy

“ xH,Hy.

h) Let xL,Uy be a Trans-Dedekind cut such that xL,Uy ą 0. By the
item b of the Lemma 50, ´xH,Qy “ xQ,Hy. It follows that xH,Qyˆ
xL,Uy “ ´pp´xH,Qyq ˆ xL,Uyq. Thus

xH,Qy ˆ xL,Uy “ ´pp´xH,Qyq ˆ xL,Uyq
“ ´pxQ,Hy ˆ xL,Uyq
“ ´xQ,Hy
“ xH,Qy.

i) Let xL,Uy be a Trans-Dedekind cut such that xL,Uy ă 0. It follows
that ´xL,Uy ą 0 and xH,Qy ˆ xL,Uy “ p´xH,Qyq ˆ p´xL,Uyq.
Thus

xH,Qy ˆ xL,Uy “ p´xH,Qyq ˆ p´xL,Uyq
“ xQ,Hy ˆ p´xL,Uyq
“ xQ,Hy.

Proof of Theorem XX. Let xL1, U1y and xL2, U2y be Trans-Dedekind
cuts. By Lemma 48, either xL1, U1y and xL2, U2y are both Dedekind cuts
or xL1, U1y “ xH,Hy or xL1, U1y “ xH,Qy or xL1, U1y “ xQ,Hy.

If xL1, U1y and xL2, U2y are both Dedekind cuts then, by Theorem
20, the Dedekind product between xL1, U1y and xL2, U2y is a Dedekind
cut. By Theorem 27, the Trans-Dedekind product between xL1, U1y and
xL2, U2y, xL1, U1y ˆ xL2, U2y, is the Dedekind product between xL1, U1y

and xL2, U2y. Hence xL1, U1y ˆ xL2, U2y is a Dedekind cut. Thus, by
Theorem XI, xL1, U1y ˆ xL2, U2y is a Trans-Dedekind cut.

If xL1, U1y “ xH,Hy then, by the item a of the Lemma 51, xL1, U1yˆ

xL2, U2y is a Trans-Dedekind cut.
If xL1, U1y “ xH,Qy then, by the items f, g, i and h of the Lemma 51,

xL1, U1y ˆ xL2, U2y is a Trans-Dedekind cut.
If xL1, U1y “ xQ,Hy then, by the items b, c, e and d of the Lemma

51, xL1, U1y ˆ xL2, U2y is a Trans-Dedekind cut.

Proof of Theorem XXI. Let xL,Uy be a Trans-Dedekind cut. By Lemma
48, either xL,Uy is a Dedekind cut or xL,Uy “ xH,Hy or xL,Uy “ xH,Qy
or xL,Uy “ xQ,Hy.

If xL,Uy is a Dedekind cut then, by Theorem 21, xL,Uyˆxp´8, 1q, r1,8qy “
xL,Uy.

If xL,Uy “ xH,Hy then, by the item a of the Lemma 51, xL,Uy ˆ
xp´8, 1q, r1,8qy “ xL,Uy.
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If xL,Uy “ xH,Qy then, by the item h of the Lemma 51, xL,Uy ˆ
xp´8, 1q, r1,8qy “ xL,Uy.

If xL,Uy “ xQ,Hy then, by the item d of the Lemma 51, xL,Uy ˆ
xp´8, 1q, r1,8qy “ xL,Uy.

Therefore xp´8, 1q, r1,8qy is the identity element of the set of all
Trans-Dedekind cuts with respect to ˆ.

Lemma 52. It follows that:

a) xp´8, 0q, r0,8qy´1
“ xQ,Hy.

b) xH,Hy´1
“ xH,Hy.

c) xQ,Hy´1
“ xp´8, 0q, r0,8qy.

d) xH,Qy´1
“ xp´8, 0q, r0,8qy.

Proof.

a) Let L2 “ p´8, 0q and U2 “ r0,8q. It follows that xL2, U2y
´1
“

xL3, U3y where

U 13 “ pL2 XQ`q´1
“ pp´8, 0q XQ`q´1

“ H,

U23 “ tx P Q |x “ inf U 13u “ H,

U3 “ U23 Y U
1
3 “ H,

L13 “ pU2 XQ`q´1
“ pr0,8q XQ`q´1

“ Q`,
L23 “ ´pL13 Y U

1
3q Y L

1
3 “ ´pQ` Y Hq YQ` “ Qzt0u,

L3 “ IpL23q “ IpQzt0uq “ Q.

Thus xp´8, 0q, r0,8qy´1
“ xL2, U2y

´1
“ xL3, U3y “ xQ,Hy.

b) Let L2 “ H and U2 “ H. It follows that xL2, U2y
´1
“ xL3, U3y

where

U 13 “ pL2 XQ`q´1
“ pHXQ`q´1

“ H,

U23 “ tx P Q |x “ inf U 13u “ H,

U3 “ U23 Y U
1
3 “ H,

L13 “ pU2 XQ`q´1
“ pHXQ`q´1

“ H,

L23 “ ´pL13 Y U
1
3q Y L

1
3 “ ´pHYHq Y H “ H,

L3 “ IpL23q “ IpHq “ H.

Thus xH,Hy´1
“ xL2, U2y

´1
“ xL3, U3y “ xH,Hy.

c) Let L2 “ Q and U2 “ H. It follows that xL2, U2y
´1
“ xL3, U3y

where

U 13 “ pL2 XQ`q´1
“ pQXQ`q´1

“ Q`,
U23 “ tx P Q |x “ inf U 13u “ tx P Q |x “ inf Q`u “ t0u,
U3 “ U23 Y U

1
3 “ t0u YQ` “ r0,8q,

L13 “ pU2 XQ`q´1
“ pHXQ`q´1

“ H,

L23 “ ´pL13 Y U
1
3q Y L

1
3 “ ´pHYQ`q Y H “ Q´,

L3 “ IpL23q “ IpQ´q “ Q´ “ p´8, 0q.

Thus xQ,Hy´1
“ xL2, U2y

´1
“ xL3, U3y “ xp´8, 0q, r0,8qy.
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d) By the item c of the Lemma 47, xH,Qy ă xp´8, 0q, r0,8qy “ 0.
Hence xH,Qy´1

“ ´pp´xH,Qyq´1
q. Thus

xH,Qy´1
“ ´pp´xH,Qyq´1

q

“ ´pxQ,Hy´1
q

“ ´xp´8, 0q, r0,8qy

“ xp´8, 0q, r0,8qy.

Proof of Theorem XXIII. Let xL,Uy be a Trans-Dedekind cut. By
Lemma 48, either xL,Uy is a Dedekind cut or xL,Uy “ xH,Hy or xL,Uy “
xH,Qy or xL,Uy “ xQ,Hy.

If xL,Uy is a Dedekind cut and xL,Uy ‰ xp´8, 0q, r0,8qy then, by
the Definitions XXII and the Theorem 28, xL,Uy´1 is the multiplicative
inverse of xL,Uy. Hence, by Theorem 23, xL,Uy´1 is a Dedekind cut.
Thus, by Theorem XI, xL,Uy´1 is a Trans-Dedekind cut.

If xL,Uy “ xp´8, 0q, r0,8qy then, by the item a of the Lemma 52,
xL,Uy´1 is a Trans-Dedekind cut.

If xL,Uy “ xH,Hy then, by the item b of the Lemma 52, xL,Uy´1 is
a Trans-Dedekind cut.

If xL,Uy “ xH,Qy then, by the item d of the Lemma 52, xL,Uy´1 is
a Trans-Dedekind cut.

If xL,Uy “ xQ,Hy then, by the item c of the Lemma 52, xL,Uy´1 is
a Trans-Dedekind cut.

Proof of Theorem 29. The result follows from theorems XIV, XVII,
XX and XXIII.

Proof of Theorem 30.

a) The result is immediate since the order relation from Definition VII
is identical to the order relation from Definition 7.

b) The result is immediate since the addition from Definition XIII is
identical to the addition from Definition 13.

c) The result follows from Definition XVI and Theorem 26.

d) The result is immediate since the subtraction from Definition XVI
is identical to the subtraction from Definition 16.

e) The result follows from Definition XIX and Theorem 27.

f) The result follows from Definition XXII and Theorem 28.

g) The result is immediate since the division from Definition XXII is
identical to the division from Definition 22.

Proof of Theorem 32. The results follows from the Lemma 48 and the
Theorem 24 and the Definition 31.

Proof of Theorem 33. a) The results follows from the Definition 31
and the item a of the Lemma 47.
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b) The results follows from the Definition 31 and the item b of the
Lemma 47.

c) The results follows from the Definition 31 and the Theorem 24 and
the item c of the Lemma 47.

d) The results follows from the Definition 31 and the Theorem 24 and
the item d of the Lemma 47.

e) The results follows from the Definition 31 and the item a of the
Lemma 50.

f) The results follows from the Definition 31 and the item b of the
Lemma 50.

g) The results follows from the Definition 31 and the item c of the
Lemma 50.

h) The results follows from the Definition 31 and the item a of the
Lemma 52.

i) The results follows from the Definition 31 and the item b of the
Lemma 52.

j) The results follows from the Definition 31 and the item d of the
Lemma 52.

k) The results follows from the Definition 31 and the item c of the
Lemma 52.

l) The results follows from the Definition 31 and the item a of the
Lemma 49.

m) The results follows from the Definition 31 and the item f of the
Lemma 49.

n) The results follows from the Definition 31 and the item g of the
Lemma 49.

o) The results follows from the Definition 31 and the item h of the
Lemma 49.

p) The results follows from the Definition 31 and the Theorem 24 and
the item i of the Lemma 49.

q) The results follows from the Definition 31 and the item b of the
Lemma 49.

r) The results follows from the Definition 31 and the item c of the
Lemma 49.

s) The results follows from the Definition 31 and the item d of the
Lemma 49.

t) The results follows from the Definition 31 and the Theorem 24 and
the item e of the Lemma 49.

u) The results follows from the Definition 31 and the item a of the
Lemma 51.

v) The results follows from the Definition 31 and the item b of the
Lemma 51.
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w) The results follows from the Definition 31 and the item c of the
Lemma 51.

x) The results follows from the Definition 31 and the item e of the
Lemma 51.

y) The results follows from the Definition 31 and the item d of the
Lemma 51. x P RT such that x ą 0.

z) The results follows from the Definition 31 and the item f of the
Lemma 51.

α) The results follows from the Definition 31 and the item g of the
Lemma 51.

β) The results follows from the Definition 31 and the item i of the
Lemma 51.

γ) The results follows from the Definition 31 and the item h of the
Lemma 51.

Proof of Theorem 34. Let x, y P R where x ą 0 and y ă 0. It follows
that:

a) x˜ 0 “ xˆ 0´1
“ xˆ8 “ 8,

b) y ˜ 0 “ y ˆ 0´1
“ y ˆ8 “ ´8,

c) 0˜ 0 “ 0ˆ 0´1
“ 0ˆ8 “ Φ.

8 Discussion

The transreal numbers were originally developed geometrically [1]. In the
history of mathematics, geometrical definitions of numbers have served
for a long time, before being replaced by axiomatic systems. The tran-
sreal numbers have been axiomatised and have been proved consistent by
machine proof [5]. This is the most detailed kind of proof it is possible to
have but mathematicians often prefer human proofs, especially construc-
tive proofs. The transreal numbers have been constructed as ordered pairs
of real numbers [31]. This establishes the consistency of the transreal num-
bers relative to the real numbers. This proof involves side conditions on
the arithmetical operations on pairs to force transreal behaviour, how-
ever we have now presented a proof that generalises the Dedekind cut
and which unconditionally gives rise to the transreal numbers. This puts
transreal numbers on the same mathematical foundation as real numbers.

It seems that mathematics now has a choice. It can continue with the
partial definition of the Dedekind cut, which leads to real arithmetic and
which, in turn, necessarily leads to partial mathematics with exceptional
or error states, such as the inability to divide by zero and the infinitely
many consequences of this inability, or it can adopt the total definition of
the Trans-Dedekind cut, which leads to transreal arithmetic but does not
necessarily lead to exceptions and error states in any of the applications
of transreal arithmetic.

33



This choice is not entirely straightforward. Mathematicians might
continue to prefer the simpler partial system because it leads to the more
rapid development of new mathematics but computer scientists might
prefer the more complicated total system because it leads to exception-free
computing. In the long term, we expect all mathematics to be proved by
machines that maintain an encyclopaedia of mathematical knowledge in
a machine independent interchange language. We expect these machines
to use total systems of computation to describe both total and partial
mathematical systems – which should satisfy both parties and lead to the
more reliable development of mathematics.

It is instructive to examine the nature of totality in the Trans-Dedekind
cut. The Dedekind cut is partial because it excludes the ordered cut with
an empty lower set, ´8, and the ordered cut with an empty upper set, 8.
Adding these two cuts totalises the set of ordered cuts but the resulting
arithmetic is partial. For example, as usual,8´8, 0ˆ8, and8{8 are all
undefined. But when the unordered cut nullity is admitted, the arithmetic
is totalised and it becomes a theorem that 8´8 “ 0ˆ8 “ 8{8 “ Φ.
We may say that the strictly Trans-Dedekind cuts are totalised over all
combinations of empty lower and upper sets of the Dedekind cut but what
structural feature does this totalise?

The trivial subsets of the rational numbers are the empty set and the
set of rational numbers itself, H and Q. We say that a Trans-Dedekind
cut is a transordered partition of the trivial subsets of the rational num-
bers. Even so, it is not clear why this particular structural totalisation
should lead to a total arithmetic. Perhaps finding useful totalisations is
an inherently creative act?

Even though transreal arithmetic is total, the applications of tran-
sreal arithmetic may be partial. For example, there are many functions
in transreal and transcomplex analysis where limits do not exist. How-
ever, a sufficiently powerful set theory should allow us to totalise any
predicate of transreal arithmetic, φpxq, by operating on the set tx |φpxqu.
By “sufficiently powerful” we mean a set theory that is immune to all of
the paradoxes of set theory. Developing such a set theory is the focus of
current research into the foundations of transmathematics.

In the mean time, we expect transmathematics to advance by totalising
individual mathematical structures, by developing exception-free comput-
ing, and by analysing singular physical systems.

9 Conclusion

The usual definition of the Dedekind cut is partial and leads to the real
numbers, which have exceptional or error states, such as the inability to
divide by zero; but the definition of the Trans-Dedekind cut is total and
leads to the transreal numbers, which do not have exceptional or error
states. This establishes transreal arithmetic as a firmer foundation for
mathematics than real arithmetic.
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