Supplementary Table S2 – Published Pollen Morphological Data

Taxa	Equatorial diameter	Papilla length & shape	Polar length (incl. Papilla)	Exine thickness	Referecne
Athrotaxoideae					
Athrotaxis cupressoides	28–30 μm	2.5-4 µm, straight or weakly bent			6
	27–30 µm				7
	14–18 μm				9
	27–30 µm	<2 µm			11
Cunninghamioideae					
Cunninghamia lanceolata	30–38 µm				1
(=C. sinensis)	34.2–40 μm	very short or not detectable			3
	34–40 μm	indistinct aperture			5
	31–34 µm	porate, very short or not detectable			4, 7
	27 (39) 47 µm	very short or not detectable			6
	28–39 µm				9
	31–53 µm	very short			10
	31–54 µm	<2 µm			11
	(26.5) µm	very short	(24.4) μm		14
	26–36 µm				16
	(32.7) µm		(16.2) µm		17
	32.4 (40.8) 46 µm	4–5 μm	35.7 (36.5) 40.8 µm		20
Taiwanioideae					
Taiwania cryptomeroides	30–32 µm	indistinct aperture			5, 9
(=T. flousiana)	29 (30) 31 µm	<5.5 μm			6
	(20) µm	very short			7
	20–31 µm	<2 μm			11
	21.7 (23.7) 26.7 µm	very short	18.4 (22.2) 25.1 μm		13, 14
	24–36 µm			3–4 µm	16
Sequoioideae					
Metasequoia glyptostroboides	19–28 μm	>6 µm, straight or top bent			5
	22 (25) 30 µm	>3 µm			6
	(30) µm				7
	18–23 μm	2–3.5 µm			9
	17.2 (24.3) 26.5 µm	<3 µm, weakly or sharply bent			11
	25–28 μm			2–3 µm	16
	(24.4) µm		(12) µm		17
	18.7–28 μm			2–3 µm	18
Sequoia sempervirens	28–32 μm	sharply bent	(33) µm		4
	28–34 µm	sharply bent			5
	27 (37) 41 μm	<3.5 μm			6
	22–25 μm	·			8
	34–36 µm	3.4–4.5 μm			9
	30.5 (34.7) 40.6 µm	3–4 µm, weakly or sharply bent			11
	23–43 µm			2–3 µm	18

Sequoiadendron giganteum	33–42 μm				5
	28–30 µm	8–11 μm			9
	25.4 (28.4) 30.5 μm	$>4 \ \mu m$, weakly or sharply bent			11
Sequoia + Sequoiadendron	28.5–41 μm	sharply bent			3
Taxoidioideae					
Cryptomeria japonica	30–35 µm				1
	23.9–31.9 μm	top bent			3
	23.9–31.9 μm	straight or weakly bent	30–34 µm		4, 7
	24–32 μm	straight or top bent			5
	22 (28) 30 µm	<5.5 µm, straight or top bent			6
	28–32 μm	5.5–6.5 μm			9
	23.9–39 μm	3-4 µm, straight or weakly bent			11
	26.3 (27.3) 33.8	<10 µm		<5 µm	12
	26.3 (27.3) 33.8	2.5 (3.9) 6.3 μm	28.8 (33.3) 37.5 µm	3–4 µm	14, 15
	22–30 µm	<6 µm	33–37 μm	3–4 µm	16
	(24.9) µm		(16.5) µm		17
	25–35 μm			2–3 µm	18
	34.9–41.8 μm	2.3–5.6 μ m, straight or weakly bent	35.1–41.6 µm		20
Glyptostrobus pensilis	29.6–30.8 μm	sharply bent			3
(=G. heterophyllos)	29–31 μm	straight or top bent			5
	(30) µm	<2.75 μm			6
	27 µm		33 µm		7
	29–31 μm	2–2.5 μm			9
	25.4 (30.8) 31.8 μm	$23 \ \mu\text{m}$, weakly or sharply bent			11
Taxodium	22–32 μm				6
	28–36 μm				8
	22.9 (25.6) 27.9 μm	$<3 \mu m$, sharply bent			11
Taxodium distichium	30–37 µm				2
	27.4–31.4 μm	straight			3
	24–27 μm	straight			4, 7
	27–32 μm	small papilla			5
	22–28 µm	1.5–2 μm			9
	23–28 µm			3–4 µm	16
	17.5–28.6 μm	$2-3 \ \mu m$, sharply bent	19.5–28.6 μm		19
Taxodium mucronatum	(27) µm	<2 µm			6
	(25) µm				7
	33–35 μm			3–4 µm	16
	10.4–44.2 μm	sharply bent	15–28.6 μm		19

Jimbo T. 1933. The diagnosis of the pollen of forest trees, I. 930 Scientific reports of the Tohoku Imperial University series 4, Vol. 8. Sendai: Faculty of Science, Tohoku University.
Potonié R, Venitz H. 1934. Zur Mikrobotanik des miocänen Humodils der niederrheinischen Bucht: Preussische Geologische Landesanstalt, Institut für Paläobotanik und Petrographie der Brennsteine 5: 5–54.

3) Wodehouse RP. 1935. Pollen grains. New York: McGraw-Hill.

4) Erdtman G. 1943. An introduction to pollen analysis. Waltham, MA: Chronica Botanica

5) Ueno J. 1951. Morphology of pollen of Metasequoia, Sciadopitys and Taiwania. Journal of the Institute of Polytechnics Osaka City University, Series D 2: 22–28.

6) Van Campo-Duplan M. 1951. Recherches sur la phylogénie des Taxodiacées d'après leurs grains de pollen. Travaux du Laboratoire Forestier de Toulouse, Tome II 4: 1–14.

7) Erdtman G. 1965. Pollen and spore morphology/plant taxonomy. Gymnospermae, Bryophyta (An Introduction to Palynology. III). Stockholm: Almqvist & Wiksell.

8) Lewis WH, Vinay P, Zenger VE. 1983. Airborne and allergenic Pollen of North America. Baltimore, MD: The Johns Hopkins University Press.

9) Kvavadze EV. 1988. The pollen of Taxodiaceae and its peculiarities. Tbilisi: Metsniereba.

Surova TD, Kvavadze EV. 1988. Ultrastruktura sporodermy nekotoryh golosemennyh (Metasequoia, Cunninghamia, Sciadopitys). Botanicheskij Zhurnal 73: 34-44.

10) Kurmann MH. 1990a. Exine formation in Cunninghamia lanceolate (Taxodiaceae). Review of Palaeobotany and Palynology 64: 175–179.

11) Hernandéz-Castillo GR, Stockey RA, Beard G. 2005. Taxodiaceous pollen cones from the Early Tertiary of British Columbia, 920 Canada. International Journal of Plant Sciences 166: 339–346.

Serbet R, RA Stockey 1991 Taxodiaceous pollen cones from the Upper Cretaceous (Horseshoe Canyon Formation) of Drumheller, Alberta, Canada. Review of Palaeobotany and Palynology 70:67–76.

12) Beug H-J. 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Munchen: Verlag Dr. Friedrich Pfeil.

13) Fujiki T, Yasuda Y, Zhou Z. 2002. Pollen of Taiwania flousiana (Taxodiaceae). Japanese Journal of Palynology 48: 29-31.

14) Fujiki T, Zhou Z, Yasuda Y. 2005. Asian environmental history 1. The pollen flora of Yunnan, China. Vol. I. New Delhi: Roli Books Pvt, Ltd.

15) Fujiki T, Ozawa T. 2007. The pollen flora of Ryukyu, Japan. Ginowan: Akua Koraru Kikaku.

16) Li TQ, Cao HJ, Kang MS, Zhang ZX, Zhao N, Zhang H. 2010. Pollen flora of China, woody plants by SEM. Bejing: Science Press.

17) Lu Y, Jin B, Wang L, Wang Y, Wang D, Jiang XX, Chen P. 2011. Adaptation of male reproductive structures to wind pollination in gymnosperms: Cones and pollen grains. Canadian Journal of Plant Sciences 91: 897–906. 18) Miyoshi N, Fujiki T, Kimura H. 2011. Pollen flora of Japan. Sapporo: Hokkaido University Press.

19) Tiwari SP, Yadav D, Kumar P, Chauhan DK. 2012. Comparative palynology and wood anatomy of *Taxodium distichum* (L.) Rich. and *Taxodium mucronatum* Ten. Plant Systematics and Evolution 298: 723–730. 20) Bykowska J, Klimko M. 2016. Pollen morphology in selected Cupressaceae Gray. and Sciadopytaceae Luerss. species in an experimental culture. Steciana 20: 7–14.