
exascaleproject.org

Improving Reproducibility Through Better
Software Practices

David E. Bernholdt
Oak Ridge National Laboratory

Michael A. Heroux
Sandia National Laboratories

Better Scientific Software Tutorial
ECP 4th Annual Meeting, Houston, Texas

See slide 2 for
license details

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, James M.

Willenbring, Better Scientific Software tutorial, in Exascale Computing Project Fourth Annual
Meeting, Houston, Texas. DOI: 10.6084/m9.figshare.11786868

• Individual modules may be cited as Module Authors, Module Title, in Better Scientific Software Tutorial…

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing

Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Administration.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission
laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525. SAND NO SAND2017-5474 PE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.11786868

3

Outline

• Reproducibility taxonomies.
• Increasing focus on reproducibility.
• Role of better software practices.
• Publication requirements.
• Trustworthiness at Scale.
• Personal Productivity Commitment.

Addressing Confusion in Taxonomies

Reproducible vs Replicable4

5

6

Transparency & Reproducibility

Why we pursue better software practices

7

8

Transparency &
Reproducibility

• NY Times highlights “problems”.
• Only one of many cited

examples.
• Computational science had been

spared this “spotlight”.

http://www.nytimes.com/2015/08/28/science/many-social-science-findings-not-as-strong-as-claimed-study-says.html

http://www.nytimes.com/2015/08/28/science/many-social-science-findings-not-as-strong-as-claimed-study-says.html

9

Computational Science Example

• Behavior of pure water just above homogeneous
nucleation temperature (~ - 40 C/F).

• Debenedetti/Princeton (2009):
– 2 possible phases: High or low density.

• Chandler/Berkeley (2011):
– Only 1 phase: High density.

• No sharing of details across teams until 2016:
– Chandler in Nature: “LAMMPS codes used in refs 5 and 12 are

standard and documented, with scripts freely available upon request.”
– Debenedetti with colleague Palmer: ”Send us your code.”
– Received code after requests and appeal to Nature.

Source: https://physicstoday.scitation.org/do/10.1063/PT.6.1.20180822a/full/

10

Computational Science Example

• Palmer located bug/feature in Berkeley code.
• Used to speed up LAMMPS execution.
• Replaced with more standard approach.
• Obtained result similar to Debenedetti 2009.
• Resolution took 7 years.

For Palmer, the ordeal exemplifies the importance of transparency in scientific
research, an issue that has recently drawn heightened attention in the science
community. “One of the real travesties,” he says, is that “there’s no way you
could have reproduced [the Berkeley team’s] algorithm—the way they had
implemented their code—from reading their paper.” Presumably, he adds, “if
this had been disclosed, this saga might not have gone on for seven years.”

Source: https://physicstoday.scitation.org/do/10.1063/PT.6.1.20180822a/full/

11

Most Recent Example: My Response, “What about a unit test?”

• scripts' use of Python's glob module
• Generated different file lists in Linux and Mac Mojave
• Casts doubt on results in

150 papers.

https://arstechnica.com/information-technology/2019/10/chemists-discover-cross-platform-python-scripts-not-so-cross-platform/

Publication Trends12

Increased Emphasis on Transparency & Reproducibility

13

ACM TOMS Reproducible Computational Results (RCR)

• Submission: Optional RCR option.
• Standard reviewer assignment: Nothing changes.
• RCR reviewer assignment:

– Concurrent with standard reviews.
– As early as possible in review process.
– Known to and works with authors during the RCR process.

• RCR process:
– Multi-faceted approach, Bottom line: Trust the reviewer.

• Publication:
– Reproducible Computational Results Designation.
– The RCR referee acknowledged.
– Review report appears with published manuscript.

14

SC20 Transparency and Reproducibility Initiative

• Two appendices:
– Artifact description (AD).

• Blue print for setting up your computational experiment.
• Makes it easier to rerun computations in future.
• AD appendix is mandatory for paper submissions (since SC19).
• Largely auto-generated from submission information.

– Artifact Evaluation (AE).
• Targets ”boutique” environments.
• Improves trustworthiness when re-running hard, impossible.
• Remains optional

• Details:
– https://sc20.supercomputing.org/submit/transparency-reproducibility-initiative/

https://sc20.supercomputing.org/submit/transparency-reproducibility-initiative/

What if we can’t re-run a computational experiment?

Improving Trustworthiness at Scale15

16

Reproducibility and Supercomputing
Scenario:
You compute a “hero” calculation using 5M core-hours on
Mira and submit your results for publication. During the
review process, a referee questions the validity of your
results. What options are feasible:
- The reviewer re-runs your code on a laptop or cluster.
- The reviewer re-runs your code on Mira.
- You re-run your code on Mira.
- Your results are rejected.
- Your results are accepted, but with risk.

17

Sources for meta-computations
• Synthetic operators with known:

– Spectrum (Huge diagonals).
– Rank (by constructions).

• Invariant subspaces:
– Example: Positional/rotational invariance (structures).

• Conservation principles:
– Example: Flux through a finite volume.

• General:
– Pre-conditions, post-conditions, invariants.

Can you think of something for your problems?

18

Example: HPCG Benchmark

•Symmetry:
–For any linear operator A, xTAy = yTATx.
–If A symmetric A = AT, so xTAy = yTAx.
–And xTAy - yTAx = 0.

•HPCG computes the above expression for:
–User matrix and the preconditioner.
–Numerical detail: Need to scale by vector & matrix

norms.

19

Coming to Your World Soon: Reproducibility Requirements

• These conferences have artifact evaluation appendices:
– CGO, PPoPP, PACT, RTSS and SC.
– http://fursin.net/reproducibility.html

• ACM Replicated Reproducible Computational Results (RCR).
– ACM TOMS, TOMACS.
– http://toms.acm.org/replicated-computational-results.cfm

• ACM Badging.
– https://www.acm.org/publications/policies/artifact-review-badging

• NISO Committee on Reproducibility and Badging.
– https://www.niso.org/niso-io/2019/01/new-niso-project-badging-scheme-reproducibility-

computational-and-computing
– Publishers: ACM, IEEE, figshare, STM, Reed Elsevier, Springer Nature

http://fursin.net/reproducibility.html
http://toms.acm.org/replicated-computational-results.cfm
https://www.acm.org/publications/policies/artifact-review-badging
https://www.niso.org/niso-io/2019/01/new-niso-project-badging-scheme-reproducibility-computational-and-computing

20

Questions, comments?

Essential for affordable reproducibility

Better Productivity and Sustainability21

Incentives Demand Investments, Enabled by Investments

Transparency &
Reproducibility
Requirements

Productivity &
Sustainability
Investments

Demand

Enable

Common statement: “I would love to do a better job on my software, but I need to:
• Get this paper submitted.
• Complete this project task.
• Do something my employer values more.

Goal: Change incentives to include value of better software, better science.

23

Tradeoffs: Better, faster, cheaper

• “Better, faster, cheaper: Pick two of the three.”
– Scenario: (Today)

You are behind in developing a sophisticated new model in your
software that you want to use for results in an upcoming paper.

– Which of these could be reasonable choices?
• Develop a simpler model for the paper.
• Set other work aside and spend more time on development.
• Ask for an extension on the paper deadline.
• Develop sophisticated model, but don’t test its correctness.
• Develop sophisticated model, but don’t document it or check it in.

24

Improved developer productivity
“Better, faster, cheaper: Pick all three.” – Near term.

Scenario: (6 months later)
After investing in developer productivity improvements,
you are on time in developing a sophisticated new model in
your software that you want to use for results in an
upcoming paper.

Invest in developer tools, processes, practices.

25

Improved software sustainability
“Better, faster, cheaper: Pick all three.” – Long term.

Scenario: (3 years later)
After investing in software sustainability improvements,
you are on time in developing several sophisticated new
models in your software that you want to use for results in
upcoming papers.

Invest in testing, documentation, integration for long-term
software usability.

26

Which of These Enhance Reproducibility?

• Code written by first-year, untrained grad student.
• Tuning for high performance.
• Dynamic parallelism of modern processors.
• Better software testing.
• Source code and versioning management.
• Investing in developer productivity.
• Investing in software sustainability.

Calling out the best in team members

Personal Expectations27

28

Final Thoughts: Commitment to Quality

Canadian engineers' oath (taken from Rudyard Kipling):

My Time I will not refuse;

my Thought I will not grudge;

my Care I will not deny

toward the honour, use,

stability and perfection of

any works to which I may be

called to set my hand.

https://www.egbc.ca/Member-Programs/Students/Iron-Ring

29

A Few Concrete Recommendations

• GitHub stats: Easy to find who made the most commits.
– Some people: Pride in their high ranking.

• Instead, be the person who ranks high in these ways:
– Writes up requirements, analysis and design, even if simple.
– Writes good GitHub issues, tracks their progress to completion.
– Comments on, tests and accepts pull requests.
– Provide good wiki, gh-pages content, responses to user issues.

29

Show me the person making the most commits on an undisciplined software
project and I will show you the person who is injecting the most technical debt.

(Personal) Productivity++ Initiative
Ask: Is My Work _______ ?

https://github.com/trilinos/Trilinos/wiki/Productivity---Initiative
30

https://github.com/trilinos/Trilinos/wiki/Productivity---Initiative

31

Summary
• Reproducibility demands are coming.

– Conferences first, journals slower.
• HPC software is particularly challenging:

– Hardware variation.
– Code optimization.
– Dynamic parallelism.

• Better software practices:
– Improve chances for reproducibility.
– Lower its cost.

• Many tools emerging to enable reproducibility.

32

Other resources

Editorial: ACM TOMS Replicated Computational Results
Initiative. Michael A. Heroux. 2015. ACM Trans. Math.
Softw. 41, 3, Article 13 (June 2015), 5 pages. DOI:
http://dx.doi.org/10.1145/2743015

Enhancing Reproducibility for Computational Methods.
Victoria Stodden, Marcia McNutt, David H. Bailey, Ewa
Deelman, Yolanda Gil, Brooks Hanson, Michael A.
Heroux, John P.A. Ioannidis, Michela Taufer Science (09
Dec 2016), pp. 1240-1241

http://dx.doi.org/10.1145/2743015

33

Agenda
Time Module Topic Speaker

2:30pm-2:35pm 00 Introduction David E. Bernholdt, ORNL

2:35pm-3:00pm 01 Overview of Best Practices in HPC Software Development David E. Bernholdt, ORNL

3:00pm-3:30pm 02 Agile Methodologies and Useful GitHub Tools Jim Willenbring, SNL

3:30pm-4:00pm Break

4:00pm-4:30pm 03 Improving Reproducibility through Better Software
Practices

David E. Bernholdt, ORNL

4:30pm-5:15pm 04 Software Design and Testing Anshu Dubey, ANL

5:15pm-5:45pm 05 Git Workflows Jim Willenbring, SNL

5:45pm-6:00pm 06 Continuous Integration David E. Bernholdt, ORNL

	Improving Reproducibility Through Better Software Practices
	License, Citation and Acknowledgements
	Outline
	Reproducible vs Replicable
	Slide Number 5
	Slide Number 6
	Transparency & Reproducibility
	Transparency & Reproducibility
	Computational Science Example
	Computational Science Example
	Most Recent Example: My Response, “What about a unit test?”
	Publication Trends
	 ACM TOMS Reproducible Computational Results (RCR)
	SC20 Transparency and Reproducibility Initiative
	Improving Trustworthiness at Scale
	Reproducibility and Supercomputing
	Sources for meta-computations
	Example: HPCG Benchmark
	Coming to Your World Soon: Reproducibility Requirements
	Questions, comments?
	Better Productivity and Sustainability
	Incentives Demand Investments, Enabled by Investments
	Tradeoffs: Better, faster, cheaper
	Improved developer productivity
	Improved software sustainability
	Which of These Enhance Reproducibility?
	Personal Expectations
	Final Thoughts: Commitment to Quality
	A Few Concrete Recommendations
	(Personal) Productivity++ Initiative�Ask: Is My Work _______ ?
	Summary
	Other resources
	Agenda

