
exascaleproject.org

Git Workflows

James M. Willenbring
Sandia National Laboratories

Jared O’Neal
Argonne National Laboratory

Better Scientific Software Tutorial
ECP 4th Annual Meeting, Houston, Texas

See slide 2 for
license details

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, James M.

Willenbring, Better Scientific Software tutorial, in Exascale Computing Project Fourth Annual
Meeting, Houston, Texas. DOI: 10.6084/m9.figshare.11786868

• Individual modules may be cited as Module Authors, Module Title, in Better Scientific Software Tutorial…

Acknowledgements
• Anshu Dubey, Klaus Weide, Saurabh Chawdhary, Carlo Graziani, and Iulian Grindeanu
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing

Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Administration.

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission
laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525. SAND NO SAND2017-5474 PE

• This work was performed in part at the Argonne National Laboratory, which is managed managed by UChicago Argonne,
LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.11786868

3

Goals

Development teams would like to use version control to
collaborate productively and ensure correct code
• Understand challenges related to parallel code development via distributed version

control

• Understand extra dimensions of distributed version control & how to use them
– Local vs. remote repositories
– Branches
– Issues, Pull Requests, & Code Reviews (Previous talk)

• Exposure to workflows of different complexity

• What to think about when evaluating different workflows

• Motivate continuous integration

4

Distributed Version Control System (DVCS)

Two developers collaborating via Git
• Local copies of master branch synched to origin
• Each develops on local copy of master branch
• All copies of master immediately diverge
• How to integrate work on origin?

5

DVCS Race Condition

Integration of independent work occurs when
local repos interact with remote repo
• Alice pushes her local commits to remote

repo first
• No integration conflicts
• No risk
• Alice’s local repo identical to remote repo

6

Integration Conflicts Happen

Bob’s push to remote repo is rejected
• Alice updated code in commit D
• Bob updated same code in commit E
• Alice and Bob need to study conflict and decide

on resolution at pull (time-consuming)
• Possibility of introducing bug on master branch

(risky)
loops.cpp (commit C) loops.cpp (commit D) loops.cpp (commit E)

7

Our First Workflow

This process of collaborating via Git is called the Centralized Workflow
• See Atlassian/BitBucket for more information
• “Simple” to learn and “easy” to use
• Leverages local vs. remote repo dimension

– Integration in local repo when local repos interact with remote repo

• What if you have many team members?
• What if developers only push once a month?

– Lengthy development efforts without integrating
– Occasional contributors

• What if team members works on different parts of the code?
• Working directly on master

https://www.atlassian.com/git/tutorials/comparing-workflows

8

Branches
Branches are independent lines of development
• Use branches to protect master branch
• Feature branches

– Organize a new feature as a sequence of related
commits in a branch

• Branches are usually combined or merged
• Develop on a branch, test on the branch, and

merge into master
• Integration occurs at merge commits

9

Control Branch Complexity

Workflow policy is needed
– Descriptive names or linked to issue tracking system
– Where do branches start and end?
– Can multiple people work on one branch?

10

Feature Branches

Extend Centralized Workflow

• Remote repo has commits A & B

• Bob pulls remote to synchronize local repo to remote

• Bob creates local feature branch based on commit B

• Commit C pushed to remote repo

• Alice pulls remote to synchronize local repo to remote

• Alice creates local feature branch based on commit C

• Both develop independently on local feature branches

11

Feature Branch Divergence

Alice integrates first without issue
• Alice does fast-forward merge to local master
• Alice deletes local feature branch
• Alice pushes master to remote
• Meanwhile, Bob pulls master from remote and

finds Alice’s changes
• Merge conflict between commits D and E

12

Feature Race Condition

Integration occurs on Bob’s local repo

• Bob laments not having fast-forward merge

• Bob rebases local feature branch to latest commit on master
– E based off of commit B
– E’ based off of Alice’s commit I
– E’ is E integrated with commits C, D, F, G, I

• Merge conflict resolved by Bob & Alice on Bob’s local branch
when converting commit E into E’

• Can test on feature branch and merge easily and cleanly

13

Feature Branches Summary
• Multiple, parallel lines of development possible on single local repo

• Easily maintain local master up-to-date and useable

• Integration with rebase on local repo is safe and can be aborted

• Testing before updating local and remote master branches

• Rebase is advanced Git command
– Rebase can cause complications and should be used carefully.

• Hide actual workflow
– History in repo does not represent actual development history
– Less communication
– Fewer back-ups using remote repo

• Does it scale with team size? What if team integrates frequently?

• Commits on master can be broken

• See Atlassian/BitBucket for a richer Feature Branch Workflow

https://git-scm.com/book/en/v2/Git-Branching-Rebasing
https://www.atlassian.com/git/tutorials/comparing-workflows

14

More Branches
Branches with infinite lifetime
• Base off of master branch
• Exist in all copies of a repository
• Each provides a distinct environment

– Development vs. pre-production

15

Current Trilinos Workflow

Test-driven workflow

• Feature branches start and end with develop

• All changes to develop must come from GitHub
pull requests

• Feature branches are merged into develop only
after passing pull request test suite

• Change sets from develop are tested daily for
integration into master

Workflow designed so that

• All commits in master are in
develop

• Merge conflicts exposed when
integrating into develop

• Merge conflicts never occur
when promoting to master

develop

master

Issue 1 Issue 2

develop -> master testing

Pull request testing

16

Git Flow
• Full-featured workflow
• Increased complexity
• Designed for SW with official releases
• Feature branches based off of develop
• Git extensions to enforce policy
• How are develop and master

synchronized?
• Where do merge conflicts occur and how

are they resolved?

https://github.com/nvie/gitflow

17

GitHub Flow

http://scottchacon.com/2011/08/31/github-flow.html
– Published as viable alternative to Git Flow
– No structured release schedule
– Continuous deployment & continuous integration allows for simpler workflow

Main Ideas
1. All commits in master are deployable
2. Base feature branches off of master

3. Push local repository to remote constantly

4. Open Pull Requests early to start dialogue

5. Merge into master after Pull Request review

http://scottchacon.com/2011/08/31/github-flow.html

18

GitLab Flow

https://docs.gitlab.com/ee/workflow/gitlab_flow.html
– Published as viable alternative to Git Flow & GitHub Flow
– Semi-structured release schedule
– Workflow that simplifies difficulties and common failures in synchronizing infinite

lifetime branches

Main Ideas
• Master branch is staging area

• Mature code in master flows downstream into pre-production & production infinite
lifetime branches

• Allow for release branches with downstream flow
– Fixes made upstream & merged into master.
– Fixes cherry picked into release branch

https://docs.gitlab.com/ee/workflow/gitlab_flow.html

19

Considerations for Choosing a Git Workflow

Want to establish a clear set of polices that

• results in correct code on a particular branch (usually master),

• ensures that a team can develop in parallel and communicate well,

• minimizes difficulties associated with parallel and distributed work, and

• minimizes overhead associated with learning, following, and enforcing policies.

Adopt what is good for your team

• Consider team culture and project challenges

• Assess what is and isn’t feasible/acceptable

• Start with simplest and add complexity where and when necessary

20

Agenda
Time Module Topic Speaker

2:30pm-2:35pm 00 Introduction David E. Bernholdt, ORNL

2:35pm-3:00pm 01 Overview of Best Practices in HPC Software Development David E. Bernholdt, ORNL

3:00pm-3:30pm 02 Agile Methodologies and Useful GitHub Tools Jim Willenbring, SNL

3:30pm-4:00pm Break

4:00pm-4:30pm 03 Improving Reproducibility through Better Software
Practices

David E. Bernholdt, ORNL

4:30pm-5:15pm 04 Software Design and Testing Anshu Dubey, ANL

5:15pm-5:45pm 05 Git Workflows Jim Willenbring, SNL

5:45pm-6:00pm 06 Continuous Integration David E. Bernholdt, ORNL

	Git Workflows
	License, Citation and Acknowledgements
	Goals
	Distributed Version Control System (DVCS)
	DVCS Race Condition
	Integration Conflicts Happen
	Our First Workflow
	Branches
	Control Branch Complexity
	Feature Branches
	Feature Branch Divergence
	Feature Race Condition
	Feature Branches Summary
	More Branches
	Current Trilinos Workflow
	Git Flow
	GitHub Flow
	GitLab Flow
	Considerations for Choosing a Git Workflow
	Agenda

