
exascaleproject.org

Software Design and Testing

Anshu Dubey
Argonne National Laboratory

Better Scientific Software Tutorial
ECP 4th Annual Meeting, Houston, Texas

See slide 2 for
license details

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, James M.

Willenbring, Better Scientific Software tutorial, in Exascale Computing Project Fourth Annual
Meeting, Houston, Texas. DOI: 10.6084/m9.figshare.11786868

• Individual modules may be cited as Module Authors, Module Title, in Better Scientific Software Tutorial…

Acknowledgements
• Additional contributors to this this tutorial include: Alicia Klinvex, Katherine Riley, and James Willenbring
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing

Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed managed by UChicago Argonne,
LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.11786868

3

Architecting scientific codes

Desirable Characteristics

Maintainability and
Verifiability
Clean code

Documentation
Comprehensive testing

Performance
Spatial and temporal

locality of data
Minimizing data movement

Maximizing scalability

Extensibility
Well defined structure and

modules
Encapsulation of

functionalities

Portability
General solutions that

work without significant
manual intervention across

platforms

4

Architecting scientific codes

Maintainability and
Verifiability
Clean code

Documentation
Comprehensive testing

Performance
Spatial and temporal

locality of data
Minimizing data movement

Maximizing scalability

Extensibility
Well defined structure and

modules
Encapsulation of

functionalities

Portability
General solutions that

work without significant
manual intervention across

platforms

Why it is challenging

5

Architecting scientific codes

Maintainability and
Verifiability
Clean code

Documentation
Comprehensive testing

Performance
Spatial and temporal

locality of data
Minimizing data movement

Maximizing scalability

Extensibility
Same data layout not good
for all solvers. Many corner
cases. Necessary lateral

interactions

Portability
General solutions that

work without significant
manual intervention across

platforms

Why it is challenging

6

Architecting scientific codes

Maintainability and
Verifiability
Clean code

Documentation
Comprehensive testing

Performance
Spatial and temporal

locality of data
Minimizing data movement

Maximizing scalability

Extensibility
Same data layout not good
for all solvers. Many corner
cases. Necessary lateral

interactions

Portability
Tremendous platform

heterogeneity
A version for each class of
device => combinatorial

explosion

Why it is challenging

7

Architecting scientific codes

Maintainability and
Verifiability
Clean code

Documentation
Comprehensive testing

Performance
Low arithmetic intensity

solvers with hard
dependencies. Proximity
and work distribution at

cross purposes

Extensibility
Same data layout not good
for all solvers. Many corner
cases. Necessary lateral

interactions

Portability
Tremendous platform

heterogeneity
A version for each class of
device => combinatorial

explosion

Why it is challenging

8

Architecting scientific codes

Maintainability and
Verifiability

Wrong incentives
Designing good tests is

hard

Performance
Low arithmetic intensity

solvers with hard
dependencies. Proximity
and work distribution at

cross purposes

Extensibility
Same data layout not good
for all solvers. Many corner
cases. Necessary lateral

interactions

Portability
Tremendous platform

heterogeneity
A version for each class of
device => combinatorial

explosion

Why it is challenging

9

Architecting scientific codes

Taming the Complexity: Separation of Concerns

Subject of
research

Model
Numerics

More Stable
Discretization

I/O
Parameters

Treat differently

Client Code
Mathematically

complex

Infrastructure
Data structures
and movement

Hide from one
another

logically separable
functional units of

computation

Encode into framework

Differentiate between
private and public

Define interfaces

Applies to both kind

10

Requirements

Software Architecture
API Design

Implement

Test

Maintain

Augment

Model

API

Design
Develop

Validate

Integrate

Infrastructure Capabilities

A successful model

11

Preparing for future

• Much larger codes
– Transition time much longer than before
– Platform life <<< code lifecycle
– Platform life ~= transition time
– Same generation has different platforms

• No single machine model to program to
• Need to deepen parallel hierarchy and lift abstraction

– Let abstraction and middle layers do the heavy lifting for portability
– Many ideas, little convergence.

12

Things to Consider
• Leverage existing software

– Libraries may have better solvers
• Off-load expertise and maintenance

– Examine the interoperability constraints
• Many times the cost is justified even if there is more data movement

• More available packages are attempting to achieve
interoperability
– See if a combination meets your requirements

• May be worthwhile to let the library dictate data layout if
the corresponding operations dominate

Institute an extremely rigorous
verification regime at the outset

13

Design Approach

• Composing tasks
– Components or kernels

• Task orchestration
– Mapping tasks to devices

• CPU, accelerators, specialized devices
– Managing data movement between devices

14

Real view : A
whole domain
with many
operators

Functional
decomposition

Virtual view :
domain sections
as stand-alone
computation unit

Virtual view
collection of
components

Memory
access and
compute
optimization

Parallelization
and scaling
optimization

Spatial
decomposition

Example: PDE’s

Abstraction at
solver level

code
transformation

Fusing
Functions

Dynamic
Scheduling

15

Real view : A
whole domain
with many
operators

Virtual view :
domain sections
as stand-alone
computation unit

Parallelization
and scaling

Spatial
Decomposition
Blocks/tiles

Components in play: infrastructure

Scheduling

Load Distribution

Framework

 AMR infrastructure: refinement, load balancing, work
redistribution

 Scheduling and data movement at block and operator
level

16

Real view : A
whole domain
with many
operators

Functional
decomposition

Virtual view
collection of
components

Memory
access and
compute

Components in Play: operators

Abstraction at
solver level

code
transformation

Fusing/inlining
Functions

Framework
 Abstractions for performance

portability
 Data orchestration for

memory hierarchy

17

TESTING AND VERIFICATION

18

Verification

• Code verification uses tests
– It is much more than a collection of tests

• It is the holistic process through which you ensure that
– Your implementation shows expected behavior,
– Your implementation is consistent with your model,
– Science you are trying to do with the code can be done.

19

Stages and types of verification

• During initial code development
– Accuracy and stability
– Matching the algorithm to the model
– Interoperability of algorithms

• In later stages
– While adding new major capabilities or modifying existing capabilities
– Ongoing maintenance
– Preparing for production

20

Verification Challenges

• Functionality coverage
• Particularly true of codes that allow composability in their configuration
• Codes may incorporate some legacy components

– Its own set of challenges
• No existing tests at any granularity

• Examples – multiphysics application codes that support multiple domains

21

Components of Verification

• Testing at various granularity
– Individual components
– Interoperability of components
– Convergence, stability and accuracy

• Validation of individual components
• Testing practices
• Error bars

– Necessary for differentiating between drift and round-off

• Selection of tests for coverage

22

Good Testing Practices

• Must have consistent policy on dealing with failed tests
– Issue tracking

• How quickly does it need to be fixed?
• Who is responsible for fixing it?

• Someone should be watching the test suite
• When refactoring or adding new features, run a regression suite before check in

– Add new regression tests or modify existing ones for the new features

• Code review before releasing test suite is useful
– Another person may spot issues you didn’t
– Incredibly cost-effective

23

Test Development
• Development of tests and diagnostics goes hand-in-hand with code development

– Non-trivial to devise good tests, but extremely important
– Compare against simpler analytical or semi-analytical solutions

• When faced with legacy codes with no existing tests
– Isolate a small area of the code
– Dump a useful state snapshot
– Build a test driver

• Start with only the files in the area
• Link in dependencies

• Copy if any customizations needed

– Read in the state snapshot
– Verify correctness

• Always inject errors to verify that the test is working

24

Challenges with legacy codes

• Legacy codes can have many gotchas
– Dead code
– Redundant branches

• Interactions between sections of the code may be
unknown

• Can be difficult to differentiate between just bad code, or
bad code for a good reason
– Nested conditionals

Checking for coverage

Code coverage tools are of limited help

25

Example from E3SM

• Isolate a small area of the code
• Dump a useful state snapshot
• Build a test driver

– Start with only the files in the area
– Link in dependencies

– Copy if any customizations needed

• Read in the state snapshot
• Restart from the saved state

state

driver

26

Workarounds for Granularity

• Approach the problem sideways
– Components can be exercised against

known simpler applications
– Same applies to combination of

components

• Build a scaffolding of verification
tests to gain confidence

Unit test

Unit test

Mocked up
dependency

Real dependency

Unit test

27

Example from FLASH

Unit test for Grid
• Verification of guard cell fill
• Use two variables A & B
• Initialize A in all cells and B only

in the interior cells (red)
• Apply guard cell fill to B

Unit test

28

Example from Flash

Unit test for Equation of State (EOS)
• Three modes for invoking EOS

– MODE1: Pressure and density as input, internal energy and temperature as output
– MODE2: Internal energy and density as input temperature and pressure as output
– MODE3: Temperature and density as input pressure and internal energy as output

• Use initial conditions from a known problem, initialize pressure and density

• Apply EOS in MODE1

• Using internal energy generated in the previous step apply EOS in MODE2

• Using temperature generated in the previous step apply EOS in MODE3

• At the end all variables should be consistent within tolerance

Unit test

29

Example from FLASH

Unit test for Hydrodynamics
• Sedov blast wave
• High pressure at the center
• Shock moves out spherically
• FLASH with AMR and hydro
• Known analytical solution

Though it exercises mesh, hydro and eos, if mesh and
eos are verified first, then this test verifies hydro

Unit test Unit test

Unit test

More testing needed for Grid using AMR
Flux correction and regridding

30

Example from FLASH

Reason about correctness for testing Flux correction and
regridding
IF Guardcell fill and EOS unit tests passed
• Run Hydro without AMR

– If failed fault is in Hydro

• Run Hydro with AMR, but no dynamic refinement
– If failed fault is in flux correction

• Run Hydro with AMR and dynamic refinement
– If failed fault is in regridding

31

Selection of tests

• Two purposes
– Regression testing

• May be long running
• Provide comprehensive coverage

– Continuous integration
• Quick diagnosis of error

• A mix of different granularities works well
– Unit tests for isolating component or sub-component level faults
– Integration tests with simple to complex configuration and system

level
– Restart tests

• Rules of thumb
– Simple
– Enable quick pin-pointing

32

Why not always use the most stringent testing?
• Effort spent in devising tests and testing regime are a tax on team resources
• When the tax is too high…

– Team cannot meet code-use objectives

• When is the tax is too low…
– Necessary oversight not provided
– Defects in code sneak through

• Evaluate project needs
– Objectives: expected use of the code
– Team: size and degree of heterogeneity
– Lifecycle stage: new or production or refactoring
– Lifetime: one off or ongoing production
– Complexity: modules and their interactions

33

Test Selection

• First line of defense
– code coverage
tools (demo later)

• Necessary but not
sufficient – don’t
give any
information about
interoperability

• Build a matrix
– Physics along rows
– Infrastructure along columns
– Alternative implementations, dimensions, geometry

• Mark <i,j> if test covers corresponding features
• Follow the order

– All unit tests – including full module tests
– Tests representing ongoing productions
– Tests sensitive to perturbations
– Most stringent tests for solvers
– Least complex test to cover remaining spots

34

Tests Symbol
Sedov SV
Cellular CL
Poisson PT
White Dwarf WD

Example

• A test on the same row indicates
interoperability between corresponding
physics

• Similar logic would apply to tests on the
same column for infrastructure

• More goes on, but this is the primary
methodology

35

TAKEAWAYS
• UNDERSTAND YOUR NEEDS
• DO THE COST-BENEFIT ANALYSIS
• ADOPT WHAT WORKS FOR YOU WITHOUT INCURRING

TECHNICAL DEBT
• DESIGN WITH PORTABILITY, EXTENSIBILITY, REPRODUCIBILITY

AND MAINTAINABILITY IN MIND
• VERIFY … VERIFY … VERIFY
…….QUESTIONS ?

36

Some available Options

• Many efforts to provide tools to application
developers
– KoKKOs : Integrated Option with polymorphic arrays
– Raja :
– TiDA, HTA : managing tiling abstractions
– GridTools : comprehensive solution from CSCS-ETH
– Dash : managing multilevel locality
– Task based processing – OCR, charm++, HPX,

Quark etc
– Language based solutions – Julia, Chapel, UPC++

etc
– Domain specific languages

37

Example From FLASH:
EOS interface Design
• Hierarchy in complexity of interfaces

– For collection of points
– For sections of a block

• Different levels in the hierarchy give different
degrees of control to the client routines

– Most of the complexity is completely hidden from casual
users

– More sophisticated users can bypass the wrappers for
greater control

• Done with elaborate machinery of masks and
defined constants

http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p6/home.py?submit=docs/source/physics/Eos/Eos_F90.html#robo395
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p6/home.py?submit=docs/source/physics/Eos/Eos_wrapped_F90.html#robo408
http://flash.uchicago.edu/site/flashcode/user_support/robodoc-FLASH4_4p6/home.py?submit=docs/source/physics/Eos/Eos_getData_F90.html#robo398

38

Regular Testing

• Essential for large code
– Set up and run tests
– Evaluate test results

• Easy to execute a logical subset of tests
– Pre-push
– Nightly

• Automation of test harness is critical for
– Long-running test suites
– Projects that support many platforms

Jenkins
C-dash
Custom
(FlashTest)

• Part of ongoing verification
• Automating is helpful
• Can be just a script
• Or a testing harness

39

Commonalities

• Unit testing is always good
– It is never sufficient

• Verification of expected behavior
• Understanding the range of validity and applicability is always important

– Especially for individual solvers

40

Agenda
Time Module Topic Speaker

2:30pm-2:35pm 00 Introduction David E. Bernholdt, ORNL

2:35pm-3:00pm 01 Overview of Best Practices in HPC Software Development David E. Bernholdt, ORNL

3:00pm-3:30pm 02 Agile Methodologies and Useful GitHub Tools Jim Willenbring, SNL

3:30pm-4:00pm Break

4:00pm-4:30pm 03 Improving Reproducibility through Better Software
Practices

David E. Bernholdt, ORNL

4:30pm-5:15pm 04 Software Design and Testing Anshu Dubey, ANL

5:15pm-5:45pm 05 Git Workflows Jim Willenbring, SNL

5:45pm-6:00pm 06 Continuous Integration David E. Bernholdt, ORNL

	Software Design and Testing
	License, Citation and Acknowledgements
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	Architecting scientific codes
	A successful model
	Preparing for future
	Things to Consider
	Design Approach
	Example: PDE’s
	Components in play: infrastructure
	Components in Play: operators
	Slide Number 17
	Verification
	Stages and types of verification
	Verification Challenges
	Components of Verification
	Good Testing Practices
	Test Development
	Challenges with legacy codes
	Example from E3SM
	Workarounds for Granularity
	Example from FLASH
	Example from Flash
	Example from FLASH
	Example from FLASH
	Selection of tests
	Why not always use the most stringent testing?
	Test Selection
	Example
	Slide Number 35
	Some available Options
	Example From FLASH:�EOS interface Design
	Regular Testing
	Commonalities
	Agenda

