
exascaleproject.org

Overview of Best Practices in HPC
Software Development

David E. Bernholdt
Oak Ridge National Laboratory

Anshu Dubey, Katherine M. Riley
Argonne National Laboratory

Better Scientific Software Tutorial
ECP 4th Annual Meeting, Houston, Texas

See slide 2 for
license details

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Anshu Dubey, James M.

Willenbring, Better Scientific Software tutorial, in Exascale Computing Project Fourth Annual
Meeting, Houston, Texas. DOI: 10.6084/m9.figshare.11786868

• Individual modules may be cited as Module Authors, Module Title, in Better Scientific Software Tutorial…

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing

Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed managed by UChicago Argonne,
LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.11786868

3

The Success of Computational Science Creates
the Challenges of Computational Science
• Positive feedback loop

– More complex codes, simulations
and analysis

– More moving parts that need to interoperate
– Variety of expertise needed – the only tractable

development model is through separation of concerns
– It is more difficult to work on the same software in different roles without a software

engineering process

• Onset of higher platform heterogeneity
– Requirements are unfolding, not known a priori
– The only safeguard is investing in flexible design and robust software engineering

process

Better Scientific
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More Hardware
Resources

Supercomputers change fast
Especially now!

•

4

Lifecycle of a Scientific Application • Modeling
– Approximations
– Discretizations
– Numerics

• Convergence
• Stability

• Implementation
– Verification

• Expected behavior
– Validation

• Experiment/observation

Numerical
solvers

Validation

Physical World

Equations

Difference
equationsImplementation

Model

Discretize

Verify accuracy
stability

Model
fidelity

Model
fidelity

5

Challenges Developing a Scientific Application

Technical
• All parts of the cycle can be under research

• Requirements change throughout the lifecycle
as knowledge grows

• Verification complicated by floating point
representation

• Real world is messy, so is the software

Sociological
• Competing priorities and incentives

• Limited resources

• Perception of overhead without benefit

• Need for interdisciplinary interactions

6

Heroic Programming

Usually a pejorative term, is used to describe the expenditure of huge amounts of
(coding) effort by talented people to overcome shortcomings in process, project
management, scheduling, architecture or any other shortfalls in the execution of a
software development project in order to complete it. Heroic Programming is often the
only course of action left when poor planning, insufficient funds, and impractical
schedules leave a project stranded and unlikely to complete successfully.

From http://c2.com/cgi/wiki?HeroicProgramming

Science teams often employ heroic programming
Many do not see anything wrong with that approach

• •

http://c2.com/cgi/wiki?HeroicProgramming

7

Expertise Map

Numerical
solvers

Validation

Physical World

Equations

Mesh/particles
etcImplementation

Model

Discretize

Verify accuracy
stability

Model
fidelity

Model
fidelity

Domain
expert

Applied
Mathematician

Domain expert

Applied
Mathematician

Software
Engineer,
optimization
experts

Performance

Domain
expert

Each of these roles
require deeper
expertise as scientific
requirements grow
more complex.

It is no longer
possible for a single
person to take on all
these roles

• •

8

Good scientific process
requires

good software practices

Good software practices
increase

scientific productivity

9

You Can Mitigate Risk, But It Is Never Zero

• Quick and dirty development of particle capability in code
• Error in tracking particles resulted in duplicated tags from round-off
• Had to develop post-processing tools to correctly identify trajectories

– 6 months to process results

FLASH had a software process in place. It was tested regularly. This was one
instance when the full process could not be applied because of time constraints.

• Short notice availability of one of the biggest
machines of it’s time
– < 1month to get ready, run was 1.5 weeks

10

Why Be Concerned with Software Engineering?

Accretion leads to unmanageable software
• Increases cost of maintenance
• Parts of software may become unusable over time
• Inadequately verified software produces questionable results
• Increases ramp-on time for new developers
• Reduces software and science productivity due to technical debt

Consequences of Choices
“Quick and dirty” collects technical debt, which means more effort required to add features.

•

11

Lifecycle: Software Engineering View

Requirements
gathering

Design

Implementation

Verification
Validation

model, framework
data, expectations
workflow

storage, curation, retrieval, analysis
approximations, numerics

steps in scientific process

convergence, order, correction

provenance
validation, observations

solvers, infrastructure
algorithms, data structures
tools, interfaces

12

Taking Stock of Your Situation

• Software architecture and process design is an overhead
• Value lies in avoiding technical debt (future saving)
• Worthwhile to understand the trade-off

• The goals of the software
• Proof-of-concept
• Verification
• Exploration of some

phenomenon
• Experiment design
• Analysis
• Other …

Cognizant of
resource

constraints

Dictate the rigor of
the design and

software process

• •

13

Reconcile Conflicting Requirements

• Separation of concerns
– Encapsulation of functionalities where possible
– Abstractions for encapsulations

• Offload complexity where possible

• Hard-nosed trade-offs
– Flexibility and composability vs raw performance
– Extensibility and developer productivity

13

14

Architecting Scientific Codes
Taming the Complexity: Separation of Concerns

Subject of
research

Model
Numerics

More Stable
Discretization

I/O
Parameters

Treat differently

Client Code
Mathematically

complex

Infrastructure
Data structures
and movement

Hide from one
another

Logically separable
functional units of

computation

Encode into framework

Differentiate between
private and public

Define interfaces
Applies to both kinds

15

Requirements

Software Architecture
API Design

Implement

Test

Maintain

Augment

Model

API

Design
Develop

Validate

Integrate

Infrastructure Capabilities

A Successful Model

16

Community Impact of Well Done Software

17

Software Process Best Practices

Baseline

• Invest in extensible code design

• Use version control and automated testing

• Institute a rigorous verification and validation
regime

• Define coding and testing standards

• Clear and well defined policies for
– Auditing and maintenance
– Distribution and contribution
– Documentation

Desirable

• Provenance and reproducibility

• Lifecycle management

• Open development and frequent releases

18

A Useful Resource

https://ideas-productivity.org/resources/howtos/

• ‘What Is’ docs: 2-page characterizations of important topics
for SW projects in computational science & engineering
(CSE)

• ‘How To’ docs: brief sketch of best practices
– Emphasis on ``bite-sized'' topics enables CSE software teams to

consider improvements at a small but impactful scale

• We welcome feedback from the community to help make
these documents more useful

https://ideas-productivity.org/resources/howtos/

19

Other Resources
http://www.software.ac.uk/

http://software-carpentry.org/

http://flash.uchicago.edu/cc2012/

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4375255

http://www.orau.gov/swproductivity2014/SoftwareProductivityWorkshopReport2014.pdf

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6171147

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
http://flash.uchicago.edu/cc2012/
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4375255
http://www.orau.gov/swproductivity2014/SoftwareProductivityWorkshopReport2014.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6171147

20

Summary

• Good software practices are needed for scientific productivity
• Science at extreme-scales is complex and requires multiple expertise
• Software process does need to address reality
• Open codes, community contribution, are a powerful tool

Science through computing is
at best

as credible as the software that produces it

•

21

Agenda
Time Module Topic Speaker

2:30pm-2:35pm 00 Introduction David E. Bernholdt, ORNL

2:35pm-3:00pm 01 Overview of Best Practices in HPC Software Development David E. Bernholdt, ORNL

3:00pm-3:30pm 02 Agile Methodologies and Useful GitHub Tools Jim Willenbring, SNL

3:30pm-4:00pm Break

4:00pm-4:30pm 03 Improving Reproducibility through Better Software
Practices

David E. Bernholdt, ORNL

4:30pm-5:15pm 04 Software Design and Testing Anshu Dubey, ANL

5:15pm-5:45pm 05 Git Workflows Jim Willenbring, SNL

5:45pm-6:00pm 06 Continuous Integration David E. Bernholdt, ORNL

	Overview of Best Practices in HPC Software Development
	License, Citation and Acknowledgements
	The Success of Computational Science Creates the Challenges of Computational Science
	Lifecycle of a Scientific Application
	Challenges Developing a Scientific Application
	Heroic Programming
	Expertise Map
	Slide Number 8
	You Can Mitigate Risk, But It Is Never Zero
	Why Be Concerned with Software Engineering?
	Lifecycle: Software Engineering View
	Taking Stock of Your Situation
	Reconcile Conflicting Requirements
	Architecting Scientific Codes
	A Successful Model
	Community Impact of Well Done Software
	Software Process Best Practices
	A Useful Resource
	Other Resources
	Summary
	Agenda

