
Simulation Procedures

Forward–in–time simulations

Forward–in–time simulations were ran using SLiM version 3.3 (Haller and Messer

2019). There exists N diploid individuals, each carrying a chromosome of length

100,000 nucleotides. The target locus carrying the derived allele is present at

the left-hand end of the haplotype, while the remaining loci can carry neutral

mutations only. Selected alleles have a homozygous selective advantage s and

dominance coefficient h. Mutation and recombination parameters are input as

population-level rates, which are subsequently scaled down to obtain per-locus

mutation rates, or a per-inter-base-pair recombination probability.

A ‘burn-in’ phase is first run to generate background neutral diversity, where

the population evolves without any beneficial alleles present for 20N generations;

this population was subsequently saved. The second phase acts differently de-

pending on whether the beneficial allele is instantly selected for (a hard sweep),

or whether it went through a neutral phase. If a hard sweep was simulated, then

the beneficial allele was introduced into a single individual as a heterozygote, and

tracked until it is fixed or lost. If the latter, the burn-in population is reloaded, the

random seed changed and the beneficial mutation reintroduced. The procedure is

repeated until the mutation has fixed.

If the derived mutation was initially neutral, then following the burn-in a neut-

ral allele is introduced into a random individual as a heterozygote, and tracked

until it is lost or it reaches a frequency p0. If it is lost then the burn-in population

is reloaded, the random seed changed and the derived allele is reintroduced. If the

mutation reaches the target frequency p0 then it is then converted into a selected
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mutation, and is tracked until fixation or loss. If the beneficial mutation is sub-

sequently lost then the simulation is stopped and restarted from scratch (i.e., the

burn-in population is also regenerated).

100 burn-in populations were generated for each parameter set. After the

beneficial allele has gone to fixation, we sampled 10 haplotypes 10 times from each

burn-in population to create 1,000 replicate simulations. Mutations are placed

in one of 10 bins depending on the distance from the sweep. Relevant statistics

(pairwise diversity, relative to neutral expectations; number of segregating sites;

site frequency spectrum) were calculated per bin. Mean values are calculated over

all 1,000 outputs. 95% confidence intervals were calculated by bootstrapping the

simulation results; specifically, simulation results were resampled with replacement

1,000 times, and the per–bin means were calculated from these values. The 2.5%

– 97.5% quantile of these resampled means was used to estimate the confidence

interval.

Coalescent simulations for outcrossing populations

In the forward-in-time simulations, the neutral population was tracked until the

segregating variant reached a frequency p0, then it became beneficial. However,

this procedure may not fully reflect the genetic history of a sweep from standing

variation, as it could have reached a frequency p0 several times during the standing

phase before it became selected for. To test whether this assumption introduces

any substantial inaccuracies, we also ran coalescent simulations for outcrossing

cases using msms (Ewing and Hermisson 2010), which is based on the exact history

of the derived allele.
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The gene genealogies of 10 alleles were simulated, where each haplotype con-

sisted of the derived allele at the left-hand of the genome, and neutral polymorph-

isms added using an infinite sites model (although we define a finite number of

sites). The same parameters were used, and summary statistics were calculated

as for the forward-in-time simulations. msms does not have an explicit model

for simulating sweeps from standing variation, so the derived allele trajectory was

generated first before being used as an input for coalescent simulations (using

the --Strace option). Given the derived allele at a frequency p0 when it started

to become selected for, initial genotypes were formed assuming Hardy-Weinberg

equilibrium. To form the selected allele trajectory, each generation the genotypes

frequencies were first changed by selection by wg/w, for wg the fitness of geno-

type g (either the ancestral or derived homozygote, or the heterozygote genotype).

Reproduction then occurred by creating genotypes according to Hardy-Weinburg

expectations. 2N haplotypes were then sampled (equivalent to a diploid popula-

tion of size N under obligate outcrossing) using these new genotypes frequencies

to account for random drift. This procedure was repeated until the derived allele

reached fixation or was lost; if the latter then the entire selected allele trajectory

was recreated until the allele fixed. The neutral trajectory was then created by

randomly sampling genotypes from a multinomial distribution back in time from

a frequency p0 until the mutation was fixed or lost. If it fixed then the process

was repeated until loss occurred. The two trajectories were then pasted together

to create the entire allele trajectory. 1,000 trajectories were simulated, with each

one used as a basis for individual msms simulation runs.
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Additional analytical results

Deriving the ‘star-like’ approximation for E(πSV /π0); com-

paring against the full solution

It is possible to obtain more tractable analytical solutions by using a ‘separation-

of-timescales’ approximation, and assume that no coalescence occurs during the

sweep phase (Pennings and Hermisson 2006b; Berg and Coop 2015). Here we only

have to calculate the probability that no recombination occurs during the sweep

phase, which for a single lineage equals:

PNE,SL = exp
(
−
∫ p0

p=1

(Pr(p)/2)
dp/dt dp

)

= exp
(
−
∫ p0

p=1

reff (1− p)
dp/dt dp

)

= exp
(
−reff

Hls
log

[
Hl

Hh

(
1
p0

+ 1
)
− 1

])

=
[
Hl

Hh

(
1
p0

+ 1
)
− 1

]−reff /(Hls)

(1)

Pr is divided by 2 in Equation 1 as it only considers a single lineage. Also note

that the upper limit of the deterministic allele spread is p = 1. For the special case

σ = 0 and h = 1/2, Hl = Hh = 1/2 and Equation 1 reduces to (1/p0)−(2r/s), which

is equivalent to Equation 2 of Berg and Coop (2015) after scaling the selection

coefficient by 1/2 to include semidominance. Note that p0 has to generally be

set to a higher value than 1/2N for a hard sweep, to condition on the beneficial

allele going to fixation. This effect is considered in the section ‘Effective starting
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frequency for a de novo mutation’ in the main text. Equation 1 can be used to

derived an analytical solution for the relative diversity (Equation 10 in the main

text).

Figure A demonstrates how the ‘star-like’ approximation for E(πSV /π0) over-

estimates the diversity following a sweep, when compared to the solution that

considers coalescence during the sweep phase (Equation 9 in the main text). The

differences can be substantial for hard sweeps in outcrossers, especially where the

underlying adaptive mutation is recessive.

Figure A: Comparing the full solution against the star-like approxima-
tion. Plots of E(πSV /π0) as a function of the recombination rate scaled to pop-
ulation size 2Nr. Solid lines are the full analytical solutions (Equation 9 in the
main text), while dashed lines are the star-like approximation (Equation 10 in the
main text). N = 5, 000, s = 0.05, 4Nµ = 40, and dominance coefficient h = 0.1
(red lines), 0.5 (black lines), or 0.9 (blue lines).

5



Number of Segregating Sites

We next calculate the number of segregating sites, and the site frequency spectrum.

Both derivations are based on determining the number of lineages that are present

at the end of the sweep phase. Approximations can be more readily obtained if

using the star-like approximation, so the following results are likely to be most

accurate if applied to strongly-selected beneficial mutations.

We calculate the total time underlying the genealogy, E(Ttot), and therefore

the expected number of segregating sites E(S). We consider n samples of the

derived allele; looking back in time, i of these alleles fail to recombine away from

the derived background during the sweep. The probability of this event can be

drawn from a binomial distribution with probability PNE,SL (Equation 1). We

denote this value PNE(i|n) ∼ Bin(n, PNE,SL). Out of these i alleles, let k of them

recombine during the sweep phase to create different ancestral backgrounds of the

derived allele. Berg and Coop (2015) demonstrated how the number of lineages

that recombine away from the derived background can be determined using Ewens’

Sampling Formula:

PESF (k|i) = S(i, k)
Rk

p0∏i−1
l=1(Rp0 + l)

(2)

where Rp0 = 4Nrp0(1−p0) is the scaled recombination rate acting on the ancestral

background at frequency p0, and S(i, k) are non-negative Stirling numbers of the

first kind (Abramowitz and Stegun 1970; Pennings and Hermisson 2006b; Berg

and Coop 2015). Here, we use the rescaled version of Rp0 accounting for the

reduced effective recombination rate and effective population size caused by self-

fertilisation:
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PESF (k|i) = S(i, k) (2R(1− 2F + Φ)p0(1− p0)/(1 + F ))k∏i−1
l=1((2R(1− 2F + Φ)p0(1− p0)/(1 + F )) + l)

(3)

Finally, for the k neutral lineages created in the standing phase, along with

the n− i neutral lineages created in the sweep phase, the expected total time for

the genealogy for all of them, in units of 2Ne generations, equals ∑k+n−i−1
j=1 1/j

(Watterson 1975). The total time covered by the genealogy is the product of these

three terms, summed over all possible outcomes:

E(Ttot) =
n∑

i=0
PNE(i|n)

i∑
k=0

PESF (k|i)
k+n−i−1∑

j=1
1/j (4)

E(S) is θE(Ttot) where θ = 4Neµ is the population level mutation rate (Hudson

1990). Equivalent results for outcrossing populations are given by Pennings and

Hermisson (2006b, Equation 15) for adaptation from recurrent mutation, and Berg

and Coop (2015, Equation 10) for adaptation from standing variation. Both these

derivations assume k > 1 in the standing phase, as it was argued that E(Ttot) = 0

so no segregating polymorphisms exist. Since simulation results show that this

outcome is possible under low recombination rates, we do not include this condi-

tioning in Equation 4.

Figure B plots E(S) alongside simulation results. The analytical solution

provides a good fit but tends to overestimate simulations, especially for recess-

ive mutations in outcrossing populations. Overestimation was also observed by

Berg and Coop (2015), and likely arises as a consequence of not accounting for

coalescence during the sweep phase. Also note that fewer segregating sites are

present with partial selfing, due to a reduction in the net mutation rate θ = 4Neµ
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caused by lower Ne.

Figure B: Expected number of segregating sites following a selective
sweep. A plot of E(S), as a function of the recombination rate scaled to popula-
tion size 2Nr. Lines are analytical solutions (Equation 4 multiplied by θ), points
are simulation results. N = 5, 000, s = 0.05, 4Nµ = 40 (so θ = 4Neµ per bin is 4
for σ = 0, 3 for σ = 0.5, and 2.1 for σ = 0.95), and dominance coefficient h = 0.1
(red lines, points), 0.5 (black lines, points), or 0.9 (blue lines, points). Further
results are plotted in Section D of Supplementary File S1.

Deriving the Site Frequency Spectrum

The calculations for E(S) can be extended to determine the full site-frequency

spectrum (SFS) following a sweep; that is, the probability that out of n sampled

alleles, l = 1, 2 . . . n− 1 of them carry the derived mutation. Here we outline the

derivation, based on that used by Berg and Coop (2015, Equation 15).

The form of the SFS depends on how many of the n sampled lineages recombine
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away from the derived background during the sweep, which is determined by the

probability PNR(i|n). First look at the special case of i = 0. Here, all lineages

recombine onto the ancestral neutral background during the sweep. In this case

the frequency of allele counts l are determined by the neutral SFS:

p(l|n, i = 0) = q(l, n) (5)

= 1
lan

(6)

where an = ∑n−1
a=1(1/a) (Wakeley 2009).

Now look at the opposite extreme where i = n, so none of the n lineages

recombine away from the derived background. In this case the probability that

the n lineages recombine into k different ancestral backgrounds is given by PESF

(Equation 3). If k > 1 and j of these k backgrounds carry the derived allele,

we can obtain the probability that l of n alleles carry the derived mutation by

partitioning the j derived background amongst the l sampled backgrounds, as also

used by Pennings and Hermisson (2006b, Equation 15) and Berg and Coop (2015,

Equation 11):

panc(l|j, k, n) =

(
n
l

)
(

k
j

) S(l, j)S(n− l, k − j)
S(n, k) (7)

where S(i, j) represents Stirling numbers of the first kind (Abramowitz and Stegun

1970). Of these j derived backgrounds, the relative frequency of each is given by

q(j, k) as defined by Equation 5. By summing over k > 1 one obtains the expression

for the frequency spectrum, following Berg and Coop (2015, Equation 14):
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p(l|n, i = n, k > 1) =
i∑

k=2
PESF (k|Rp0,F , n)

k−1∑
j=1

panc(l|j, k, n)q(j, k) (8)

Rp0,F = 2R(1−2F +Φ)p0(1−p0)/(1+F ) is the rescaled Ewens’ Sampling Formula

parameter for the probability of recombination.

If k = 1 then Equation 7 becomes invalid since it evaluates to zero, so we

have to consider this case separately. Simulation results (Figure 5 in the main

text) suggest that a large number of low-frequency variants are created by private

polymorphisms appearing on each haplotype during the sweep phase. We hence

update Equation 8 to account for these new polymorphisms (Berg and Coop 2015):

p(l|n, i = n) = PESF (1|Rp0,F , n) · qnew(l|i = n) + p(l|n, i = n, k > 1) (9)

where qnew(l) accounts for new mutations arising during the sweep:

qnew(l|i = n) = θ
(
p0

l
+ 11(l) · n2 τp0

)
(10)

where θ is the population-level neutral mutation rate for the region of interest, and

11(l) is an indicator function, equal to 1 at l = 1 and zero for all other values. τp0

is the fixation time of the sweep from initial frequency p0; we use Glémin (2012,

Equation 21), scaling results by 2Ne = 2N/(1 + F ) so they are on the coalescent

timescale.

Finally, we consider the general case 0 < i < n. Here we consider the probab-

ility that n − i recombinant backgrounds were created during the sweep, with k

more created in the standing phase. j of these k+n− i recombinant backgrounds
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carry the derived allele; we then further partition which g of these j alleles lie on

recombinant backgrounds created during the sweep. The full partition is given by

Berg and Coop (2015, Equations 15–16):

p(l|n, 0 < i < n) =
i∑

k=1
PESF (k|Rp0,F , i) (11)

×
Min(k+n−i−1,l)∑

j=1
q(j, k + n− i)

×
Min(j,l,n−i)∑

g=Max(j−k,l−i)
H(g|j, k, n− i)panc(l − g|j − g, k, i)

where H is the partitioning function:

H(g|j, k, n− i) =

(
n−i

g

)(
k

j−g

)
(

k+n−i
j

) (12)

Note that Equation 11 corrects a couple of errors present in Equation 15 of Berg

and Coop (2015). First, PESF takes i as an input as opposed to n − i that Berg

and Coop (2015) use. This is because we wish to determine the probability that k

recombinant lineages form from i lineages that did not recombine during the sweep

phase. Second, the lower bound of the sum over g depends on Max(j − k, l − i),

while Berg and Coop (2015) use Max(j−k, 0). Since j−g of the derived alleles are

on the k recombinant backgrounds created during the standing phase, g ≥ j − k,

hence the inclusion of this term in the sum’s lower bound. However, l − g of the

derived alleles are on the i recombinant backgrounds created during the sweep

phase, implying that g ≥ l− i as well. Finally, if i = 1 then Equation 11 collapses

to the same result as for i = 0.
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Putting all this information together, the site frequency spectrum equals:

p(l|n) =
n∑

i=0
PNR(i|n) (13)

× [p(l|n, i = 0)10(i)

+ p(l|n, 0 < i < n)10<i<n(i)

+ p(l|n, i = n)1n(i)]

where 1A(i) equals 1 for i ∈ A and is otherwise zero. Equation 13 needs to

be normalised, due to the addition of the new polymorphism terms (Equation 9).

Hence the normalised SFS is given by dividing each allele entry p(l|n) by ∑l p(l|n).

The SFS with recurrent mutation

Equation 13 can be modified to account for sweeps from recurrent mutation. Pen-

nings and Hermisson (2006a) demonstrated that after the sweep phase, the number

of ancestral haplotypes created in the standing phase is given by Ewens’ Sampling

Formula; i.e., Equation 2 but with parameter 4Neµb = 2Θb/(1+F ), instead of Rp0 .

We also set p0 = p0,A in PNE. Figure C compares SFS from standing variation

or recurrent mutation. For R < RLim (Equation 16 in the main text), sweeps

from recurrent mutation show more intermediate-frequency variants, which is a

typical soft sweep signature. Conversely sweeps from standing variation display

more intermediate-frequency variants once R > RLim.
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Figure C: Comparing SFS for soft sweeps from standing variation (p0 = 0.05,
black lines) against those from recurrent mutation (Θ = 0.2, red lines). Neutral
expectations are also shown for comparison (gray dashed lines). N = 5, 000,
s = 0.05, h = 1/2. Note that for these parameters, RLim = 4 under σ = 0, or
RLim = 42 with σ = 0.95.
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Comparing forward-in-time simulations against coalescent

simulations

We compared the three main analytical results (for expected relative diversity

in Figure D; for the number of segregating sites in Figure E; and the SFS in

Figure F) to both sets of simulation results. As expected, for a hard sweep (p0 =

1/2N) the two approaches give equivalent results. For higher p0 the approaches are

similar for higher recombination rates, however for lower recombination rates the

forward-in-time simulation yields higher estimates of both E(πSV /π0) and E(S). In

addition, forward-in-time simulations predict a visibly higher number of singletons

in the SFS than the coalescent approaches. Overall it seems that forward-in-time

simulations accurately captures the behaviour of a sweep from standing variation,

but caution must be used when simulating results with low recombination rates,

especially if investigating the site frequency spectrum.
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Figure D: Comparing SLiM forward-in-time simulations with MSMS co-
alescent simulations, for E(πSV /π0). Plots are as a function of the recom-
bination rate scaled to population size 2Nr. Solid lines are the full analytical
solutions (Equation 9 in main text), while dashed lines are the star-like approx-
imation (Equation 10 in the main text). Points are the simulation results, with
different colours representing different simulation approaches, as denoted in the
figure headings. N = 5, 000, s = 0.05, 4Nµ = 40. Rate of self-fertilisation equals
0. Values for the dominance coefficients and starting frequencies are listed in the
figure.
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Figure E: Comparing SLiM forward-in-time simulations with MSMS co-
alescent simulations, for number of segregating sites. Plots are as a func-
tion of the recombination rate scaled to population size 2Nr. Solid lines are the
analytical solutions (Equation 4 multiplied by θ). Points are the simulation results,
with different colours representing different simulation approaches, as denoted in
the figure headings. N = 5, 000, s = 0.05, 4Nµ = 40. Rate of self-fertilisation
equals 0.Values for the dominance coefficients and starting frequencies are listed
in the figure.
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Figure F: Comparing SLiM forward-in-time simulations with MSMS co-
alescent simulations, for SFS. Lines are analytical solutions (Equation 13),
points are different simulation results as indicated above the plots. N = 5, 000,
s = 0.05, 4Nµ = 40, and dominance coefficient h = 0.1 (red lines, points), 0.5
(black lines, points), or 0.9 (blue lines, points). The neutral SFS is also included
for comparisons (grey dashed line). Rate of self-fertilisation σ = 0.
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