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Fire Risk Post-fire Recovery Validation Projections & Summary Next Steps

“Fires in fynbos are frequent, spectacular, and alarming”

2011 Kogelberg Fire near Cape Town

Booysen & Tainton (1984), Timelapse courtesy of Eric Nathan ( http://ericnathan.com/)



http://ericnathan.com/)


Fire Risk Post-fire Recovery Validation Projections & Summary Next Steps

Analysis of Historical Fire Data: 1980-2000

Data: Burned area from field & satellite with gridded daily weather
Model: Bayesian spatio-temporal survival analysis

Wilson, Latimer, Silander, Gelfand, & deKlerk Ecological Modelling (2010)

deKlerk, Wilson & Steenkamp. International Journal of Wildland Fire (2012)
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Fire Risk Post-fire Recovery Validation Projections & Summary Next Steps

Fire, Weather, &. . .

the Antarctic Ocean Oscillation (AAO)

• Estimate fire return times have decreased ≈4 years (17%) since
1950

• Increasing trend in AAO since mid-1970s due in part to ozone hole

Negative AAO
Subtropical Jet moves North
More Moisture Flux
Less fire

Positive AAO
Subtropical Jet moves South
Less Moisture Flux
More fire

Wilson, Latimer, Silander, Gelfand, & deKlerk Ecological Modelling (2010),

Arblaster & Meehl, 2006
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Fire Risk Post-fire Recovery Validation Projections & Summary Next Steps

AAO over the past 1000 years (via proxies)
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SAM reconstruction for the past millennium, as 7 yr moving average (thin grey

line) and 70 yr loess filter (thick black line), with 95% confidence interval

around the annual reconstruction (grey shading; with 70 yr loess smoothing),

Marshall (orange lines; AD 1957–2007) and Fogt (purple lines; AD 1905–2005)

SAM indices, relative to AD 1961–1990 mean (dashed black line).

Abram, et al. (2014) Nature Climate Change doi:10.1038/nclimate2235
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Fire risk is sensitive to climate variability,
but what about recovery?
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Can we learn about post-fire recovery from satellite?

Yes!

Data: LANDSAT & Field Biomass
Model: Bayesian multi-scale regression

(with uncertainties!)
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Wilson, Silander, Gelfand, & Glenn, International Journal of GIS (2011)
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Can we learn about post-fire recovery from satellite? Yes!

Data: LANDSAT & Field Biomass
Model: Bayesian multi-scale regression (with uncertainties!)
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Satellite Vegetation Index (MODIS NDVI)
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What drives the spatial variation in post-fire recovery?
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Fire Risk Post-fire Recovery Validation Projections & Summary Next Steps

Post-fire vegetation dynamics via MODIS

0 2 4 6 8 10
0.20

0.35

0.50

Age (time since fire)

N
D

V
I

NDV I(age) = ?

α+ γ ∗
(

1− e−(
age
λ
)
)

+

Aisin
(

2π × age +
[
φ+ π

6 (m− 1)
])

+ ε

α: Post-fire NDVI at time zero
α+ γ: Potential NDVI
λ: Recovery rate

φ: Accounts for month of fire
A: Seasonal amplitude
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Post-fire vegetation dynamics via MODIS
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Coefficients between environment/climate and recovery
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Fire Risk Post-fire Recovery Validation Projections & Summary Next Steps

λ: “Recovery Rate”

• Soil Fertility

• Summer Precipitation

• Warm Winter Temps
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Can it predict recovery in new areas?
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Spatial distribution of predicted recovery time (years)
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Is ”Recovery Time” meaningful?
A comparison with CapeNature fire records

• Bias towards shorter observed intervals

• Must account for censored observations...
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Is ”Recovery Time” meaningful?
A comparison with CapeNature fire records
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Projected climate change: multimodel mean change

Mean Change across variables (future−current)

Stippling indicates at least 8 out of 11 models agree on the sign of the change
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Stippling indicates ≥8 out of 11 models agree
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Projected change in recovery time (years)
Mean Recovery Change across models (future−current)
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Projected change in recovery time (years)
Projected changes (future−current) in ages

Years
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CMIP5 GCM RCP8.5 2081–2100 multi-model mean (n=11)
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Summary

• Satellite data ⇒ archive of ecosystem properties

• Strong ’recovery gradients’ associated with climate

• Future climate ⇒ faster recovery, but dependent on m precip

• Potential for near real-time monitoring of recovery trajectories

• High spatio-temporal resolution, but low ecological resolution.

Measuring biomass in the Kogelberg Mountains
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Kick-starting a unified research programme...

Integrating vegetation composition, structure and function.

Vegetation survey on Cape Point
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Thank you!

adam.wilson@yale.edu

Cape mountain zebra (Equus zebra zebra), Cape Point, South Africa



Spatio-temporal Survival Analysis

i ∈ 1 : I (location)

t ∈ 1 : T (time)

Zi = time since last fire in location i

pi,t = P (Zi > t|Zi > t− 1) Survival (no-fire) Probability

pi,t = Φ(Xi,tβ) probit regression

P (Zi ∈ {t− 1 < Zi ≤ t}) = (1− pi,t)pi,t−1 . . . pi,1 and missing data...

Wilson, Latimer, Silander, Gelfand, & deKlerk Ecological Modelling (2010)



Hierarchical Scaling Model Framework
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I    Intercepted PAR    
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p   plot
q   quad
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Some Bp,q are 
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imputed

Wilson, Silander, Gelfand, & Glenn, International Journal of GIS (2011)



Post-fire Recovery Model Framework

Recovery Trajectory i ∈ 1 : I (space) t ∈ 1 : T (time)
NDVIi,t ∼ N

(
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Regressions ξ ∈ {γ, λ,A} (Recovery Parameters)

ξi ∼ lnN
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Priors p∈ 1 : P (# Covariates)
βξ,p ∼ N (0, 10)
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1√
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Fitting and Prediction Environmental Space
Distributions of environmental data

Densities are plotted with transparency to show overlap
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Fitting and Prediction Environmental Space



Spatial distribution of estimated recovery parameters

Parameters predicted for full fynbos
biome including transformed areas.



Spatial Effects?
Patchy observations (and large n) suggest predictive process

possible in JAGS:
W ∗ ∼ MVN(0,Σ∗)
Σ∗i,j = σH(δi,j) = σe−φδi,j i, j ∈ 1, ..., n

W=Σ′W,W ∗Σ∗−1W ∗

NDVIi,t = curve + seasonality +W (from Latimer,et.al 2009)



Estimating fire intervals using ”recovery time”
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Estimating fire intervals using ”recovery time”

Recovery Time (years)
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Estimating fire intervals using ”recovery time”

Years to p(fire)=50%
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Estimating fire intervals using ”recovery time”
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Estimating fire intervals using ”recovery time”

Weibull Scale parameter
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