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1. Some Definitions

Here we will give a brief description of some popular circular and spherical probability
distributions. We also included the definition of circular trimmed mean.

1.1 Circular and Spherical Distributions

The most popular symmetric unimodal distribution used for modeling circular data is the
circular normal distribution (a.k.a. von-Mises distribution) which has the probability

density function (p.d.f)

f(O; 1, ) 1 grestow gcpoon0< 1< 2m k>0
27ly(x)

where |,(x) is the modified Bessel function of order zero, the parameters p and k are
respectively called the mean direction and the concentration parameter. We will denote
this distribution as CMN(u, x). Besides circular normal distribution, another popular
symmetric unimodal distribution used for modeling circular data is the wrapped normal

distribution obtained by wrapping N(].,L, 02) on to the circle and having the p.d.f.



o0
f(e;u,p)zi{u 2zl(p)'02 COSp(O—},t)},O <0<2m0<p<2m0<p<l.
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The parameters p and pare respectively called the mean direction and the

concentration parameter. We will denote this distribution as WN(y, p).

One of the most popular symmetric distributions used for modeling spherical data is the

von-Mises-Fisher distribution. The random vector X is said to follow the von-Mises-

Fisher distribution M(@, «) if it has the following p.d.f

f((6,9); () )= 4Kz+: exp(coscos o + sinOsin(¢—B)) where
T K

X = (sin®cos ®,sin® sin®, cos ©)" , i = (sina.cos P, sinasinB,cosa) ,0< 6, a <,
0<@, B<2n and «>0. The parameters g and x are called ‘mean direction’ and

‘concentration parameter’ respectively.

1.2 The circular trimmed mean

Suppose O is a circular random variable with p.d.f f(e) and 0<y <05 is fixed. Let a,

B be two points on the unit circle satisfying

(i)Tf(e) do = 1-2y and
B

n
(i) dy(o,B) <dy(u,v) for all v satisfying J'f(e) de =1-2y where d;(¢,&) is the length of

the arc starting from & and ending at ¢ traversed in the anticlockwise direction. Then

1
(1-2y)

the y- circular timmed mean (y-CTM) is defined as p, = arg[ Jeief(e) de} where
B

vy is the trimming proportion.



2. Proofs of theorems and lemmas

Proof of Theorem 2.1: Let F, denote the CN(w, «) distribution and 5, denote the point
mass at X. Also let G, =(1-¢)Fy +edy. We note that, Eq e s (cos®)=yand

Ewor, 5, (SINO®)=gsinx. Using these we get

W(G,)=1y? +e?sin’x —y. .. (2.1)
Again, an easy computation yields W(Fp)z C. .. (2.2)

Now using (2.1) and (2.2) we have

s;*(W):inf{g >0:4/y2 +e2sin2x =y +c for some 0 < x < 271}.

Hence the theorem is established.

Proof of Theorem 2.2: Let F, and 6,be as in the proof of theorem 2.1. Also let

G, =(1-¢)F, +&dy. Itis easy to check from the definition of W(F) that

W(Gg ) = \/p2 (1- 8)2 + 2p8(1— S)COS(X —u)+ g2 — (p(1—€)cosp+eCcosX)
and W(F,) =0.Then straightforward calculations yield the PBF of W as

e, (W) =inf{e > 0: esinx + p(1- €)sinp = 0 for some x, 0 < x < 2x}.

sin
Since &sinx + p(1-¢)sinu =0 has a solution in x €[0,27n) if and only if M <g, we
1+ plsinp|
. p|sinp . . P
have, ¢,(W) = —————. Further, the PBP is ¢ =sup(e,(W))=—.
1+ p|sinp| " 1+p

Hence the theorem is established.



Proof of Theorem 3.1: Let F,, G, and 6,be as in the proof of theorem 2.1. It is

€

£sinXx
p(l—¢€)+ecosx

straightforward to check that W;(G, )= arctan*( ) and W;(F, )=u . Since

R [ . . . sin
arctan esinx =u has a solutionin x [0, Zn) if and only if M <g,we
p(1—€)+eCoOSX 1+ plsinyl
have the LBF of W, as ¢, (W) :—1 |sin | . The LBP of W, can be easily computed to
+p[sinu

*% *% p
be =su Wy)=—-.
& H|0(8u (W) Trp

Hence the theorem is established.

Proof of Theorem 3.2: Let F, and 3, be as in the proof of theorem 2.1. Let G, be as in

the proof of theorem 2.2. Note that it is straightforward to check that

p(l—¢g)sinu+esinx
p(l—¢g)cosp+eCcos X

W (G, )= arctan*( J and W,(F,)=0.

p(1—¢€)sinp+esinx
p(l—¢€)cosp + £COSX

Since arctan*[ J:O has a solution in x€[0,2n) if and only if

p|Sin u|
1+ p|siny|

plsiny|

—E—L_ <&, we have the PBF of W,as &,(W,)=
1+plsinp

Further, the PBP is
* _ * _ p
e =sup(e, (W) =—.
u 1+ P
Hence the theorem is established.

Proof of Theorem 4.1: a) Let F, and 3, be as in the proof of theorem 2.1. Let

G, =(1-¢)F, +&d,, Xe[-mm)and 0 <y <0.5. Then we can write



Gg(9)={ (1-¢e)F,(0) ilf-n£9<x
(I-e)F,(0)+e fO<Xx<m

1 0
where F. (0)= e °do . Suppose 0, =F Y | 0, =FY1-—" |and also
0(0) =3 |O(K)J; ¢. Supp 1=Fo (1—3} 2 =Fo7|1-7

—&

note that since F;is symmetric about zero we have 0, =-0,.

Case 1: When 6, <X <0,

In this case we have, E, 1 .5 (SIN©®) = ((1 —¢) .[smedFo — sinxand
" Y
E )= -1=¢) 0 dF he ab d af
v, (be)F,+e5, (COS O) = 12 jcos 0 +1 2 cosXx. Using the above and after some

simplifications we get

i 9, 0l-g)tanp o +esinx
WY(GS)zarctan{ rold=e)tan, }

8, o(1-¢)+ecosx

Let &<min(y,1-v) A= Fo‘l(?j, and y = Fo‘lﬁ ] We define the following,
— & —&

E,r (sin@)= J.smedFO and E, ¢ (sin®)= jsmedF0

_yx _ye

Case 2: When X <0,

In this case we have, E, ; ¢ ., (SiN®)=(1-¢)E,  (sin®)= jsm 0dF, and

l—yk

E, @ oF, s, (cos®)=(1- g)lﬁéy’FO (cos®)=

IcosedF .Therefore, we get
1-2y o



.| E,¢ (sin®
W, (G, )= arctan ﬂ :
E,r (cos©)

Case 3: When x>0,

v
In this case we have, E, q . (SiN®)=(1-¢)E,f (sin®)= 17¢ _[sin 6dF, and
’ 0 X 70 1_ 2,Y el
v
E, @ of, s, (C0SO)=(1-¢)E, ¢ (COsO)= 11_28 [ cos6dF, . Therefore, we get
X 0 -2y 5,

.| E g (sin®
W, (G, )=arctan m :
E,r, (cos®)

Combining the above three cases we have

« 9, p(l—¢)tan +€SinX
arctan nol=)tan iyo ,0; <X <0,
8, 0(1—¢)+ecosx
| E, - (sin®
W, (G,) = arctan M X <0,
E.,r (cos®)
| E.c(sin®
arctan M X >0,
E,r (cos®)
Using Lemma 1 and Lemma 2 we get
e, (W,)=infle>0: W, (G,)=p for some x e [-x,)}
= inf{g >0: 5 (1Szl)n:(gcosx =tanpu for some x e (61,92)} ... (4.2)
7,0\

8, 0(1—¢)sinp

:inf{s>0:a:

: —— for some x €(04,05) .
sin(x—p)+ 8, g sinp

9,0lsinp|
1+ 38, o |sinu|

Since sin(x —p)<1, we have ¢, (W,)> for 0<p<n.

6



b) Now, from (4.1) we get X =p+sin""(A) where A=¢"9, ,(1-¢)sinu has a solution in
x (01,0, ) ifand only if | A |<1. We define the following quantities:

Ky(1,€) = Sup{sin(x — ) : x € (0,,0,)} <1 and k,(u,g) =inf{sin(x —u): x € (6,,0,)}> -1 such

that K, (u,€) <ki(u€). Let 1y =k;(1,8) + 9, o | sinp| and 1, =Kk, (w,e) + 9, o [ Sinp|.

Then x =p+sin" (A) has a solution in x € (6,,0, )if and only if

9, 4|sin 9, 5 |sin
M<8<Mwhen T1, To >0 ,
T T

9., o |sin -9, 4/sin

when 1, >0,1, <0 and
T1 T2

9., ]sin 9. ]sin
M<S<M when 1,1, <0.
Ty T1
8y,O | Sin“ |
Ky(n) + 9,0 [sinp]

Therefore, ¢, (W,) >

** 8
c) Further, the LBP of W, satisfies ¢ > —2%
! 1+9,,

Hence the theorem is established.

Proof of Theorem 4.2: Let F, and 5,be as in the proof of theorem 2.1. Further, for

0<y<O0.5let G, =(1-¢)F, +&dy, Xe[u—mp+mn). Then

(1-e)F,(0) fp-n<O<Xx

Gs(e):{(l_g)Fu(9)+8 fO<Xx<p+m



0

! [e"°°%%dg = Fy (6 —1). Now, when ¢4(u1) < x <c,(u), we have
2TE|0(K) e

where F,(6) =

E, ¢, (sin®)

W, (G.) = arctan*
+(G.) = arctan {EY’GE(cos(D)

} and W, (F,)=p.

Note that p =0 under H, givingW, (F;) =0 and hence

c,(n)
W,(G,)=0= [sin0dG,(6)=0= (1-¢)S, +&sinx=0
Cl(”)

¢, (w)

where S, = |[sin6f, (0)do = cosu'fsmvf0 v)dv+S|nuICOSvfo(v)dv v=0-pu,

Cl(“) Vi Vi
vi =Fot(y) and v, =FRy*(1-7). Since f, is symmetric about zero, v, =-v,, and sin® is
odd function we have

A/
S, = Zsinpjcosv fo(v)dv=2C, sinp=2,,.

By Lemma 3 we haveC, >0. Therefore, we get

e, (W, )=infle>0:W, (G, )=0for some x & (cq (), ¢ (W)}
—infle>0:(1- gk, +esinx =0 for some x e (c4(n), M)

-
Now, (1-g)r, +esinx=0=>x = sin'l(M] =sin"}(A) where A =

—h,([1-¢)

€

. Then
e

the equation has a solution in x if and only if v, <A<¢,. This yield:
max(0, min{¢,,1f)<e<m (o minf,, 1) if A, —¢, >0

<eg
min(L, max{c,,&,,0} )<e if &, —¢, <0 and A, —y, >0
max(O, min{au,l})SSS (O mln{(; 1}) if A, —y<0.



Now, when x <c;(n) and x >c,(n), we have W, (G,)=(1-¢M, =0. Since W, does

not involve x, for any &, there exist no solution for which x <c; () and x > ¢, (u).

Noting that —2C, <, <2C,, we have

max(0, minf,, 1)) if 2C,>%, >,

e, (W, )=min(t, max{¢,.£,.0) if v, <k, <

Y m

max(O, min{gu,l}) if —2C, <X, <y,.

Hence the theorem is established.

Proof of Theorem 6.1: a) Let F, denote the WN(u,p) distribution and 5, denote the
point mass at x. Let G, be as in the proof of theorem 2.1. We note that,

E o, e, (€05O©) =y and Eq o .5 (SiN®)=esinx. Using these we get

W(G,)=+y? +e?sin®x —y.

Again, an easy computation yields W(FH)= c . The rest of the proof is similar to theorem

2.1.

b) Let F, and 5, be as in the proof of theorem 6.1. Let G, be as in the proof of theorem

2.2. It is easy to check from the definition of W(F) that

W(GS ) = \/p2 (1- 8)2 + 2p8(1— S)COS(X —u)+ g2 — (p(L—¢€)cosp+ecosx)

and W(F,) =0.The rest of the proof is similar to theorem 2.2.

Proof of Theorem 6.2: a) Let F, and 3, be as in the proof of theorem 6.1. Let G, be

as in the proof of theorem 2.1. It is straightforward to check that



