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This document describes how the general modeling framework, described in the Methods section of
the main document is used to run computer simulations of the interaction experiments. The purpose
of simulations is to characterise scenarios in which each partner autonomously determines his/her actions,
based on a variety of assumptions about his/her knowledge about the dyad, the task and the partner. When
using the model we focus on two separate objectives. First, we use the general game-theoretic framework
to predict optimal dyad behaviours. Second, we use fictitious play to model how the players develop joint
coordination as a result of repeated task performance. We use this model to assess how lack of information
about the partner affects the learned strategy.

1 Model summary

We modelled plant behavior and task as a differential non-cooperative game with Gaussian noise and
quadratic costs. We also assumed that each player has a state observer which also predicts the partner’s
actions. Model formulation is described in the main text and is summarized by the following equations:

Plant dynamics: x(t+ 1) = A · x(t) +B1 · [u1(t) + η1(t)] +B2 · [u2(t) + η2(t)]

and, for each player (i = 1, 2):

Sensory system: yi(t) = Hi · x(t) + vi(t)

Cost function(s): Ji [ui, u−i] =
∑T−1

t=1

[
x(t)T ·Qi(t) · x(t) + ui(t)

T ·Ri(t) · ui(t)
]

+ x(T )T ·Qi(T ) · x(T )

Optimal controller(s): ui(t) = −Li(t) · x(t)

State observer(s): x̂+i (t+ 1) = x̂−i (t+ 1) +Ki(t+ 1) · [yi(t+ 1)−Hi · x̂−i (t+ 1)]

2 Model implementation

To study how joint coordination is influenced by uncertainty about the goals and actions of their partner,
we applied the general computational framework, described in the main paper, to a sensorimotor version
of classic battle of sexes game. Partners were mechanically connected through a compliant virtual spring
and they have partly conflicting goals – reaching the same target through different via-points.
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2.1 Dyad dynamics

In our simulated dyad movements, we approximated each player’s upper limb and robot dynamics as a
point mass mi, i = 1, 2:

mi p̈i = fi + k · (p−i − pi)− b · ṗi +mig (1)

where pi(t) and p−i(t) are the hand position vectors of, respectively, player i and his/her partner −i; mi is
the player’s mass, fi(t) is the muscle-generated force vector. We also assumed that each player is subjected
to gravity and to a small viscous force accounting for the damping caused by muscles and soft tissue. In
all simulations, consistent with the actual experiments – see the main paper – we took m1 = m2 = 2 kg,
b = 10 N s/m and k = 150 N/m.

As in [1], we modelled the dynamics of muscle force generation as a second order system:

τ2f̈i + 2τ ḟi + fi = ui (2)

where ui(t) is the activation vector, which is taken as system’s input, and τ is the activation time constant,
which we set to τ = 40 ms. By defining the overall state vector as x = [pT1 , ṗ

T
1 , f

T
1 , ḟ

T
1 p

T
2 , ṗ

T
2 , f

T
2 , ḟ

T
2 ]T , the

dyad dynamics can be rewritten in state-space form:

ẋ = Ac · x+Bc1 · (u1 + η1) +Bc2 · (u2 + η2) + cc (3)

where

Ac =



02 I2 02 02 02 02 02 02
−k/m1 −b/m1 1/m1 02 k/m1 02 02 02

02 02 02 I2 02 02 02 02
02 02 −I2/τ2 −2I2/τ 02 02 02 02
02 02 02 02 02 I2 02 02

k/m2 02 02 02 −k/m2 −b/m2 1/m2 02
02 02 02 02 02 02 02 I2
02 02 02 02 02 02 −I2/τ2 −2I2/τ



[Bc1|Bc2] =



02 02
02 02
02 02

I2/τ
2 02

02 02
02 02
02 02
02 I2/τ

2



cc =


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0
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02
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02
0
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02
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
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where we defined I2 =

[
1 0
0 1

]
and 02 =

[
0 0
0 0

]
.

If η1 and η2 are process noise sources (one per player), assumed to be Gaussian with covariance Ση
i , Eq.

3 can be rewritten as:

ẋ = Ac · x+Bc1 · u1 +Bc2 · u2 + cc + w1 + w2 (4)

where wi = Biηi, with variance Σw
i = BiΣ

η
iB

T
i .

From Eq. 5 it is possible to calculate the state vector xeq and the control inputs ueq1 and ueq2 which
balance gravity forces:

Ac · xeq +Bc1 · ueq1 +Bc2 · ueq2 = −cc (5)

We then set x = x− xeq, u1 = u1 − ueq1 and u2 = u2 − ueq2 , so that the term cc disappears from the model.
For simulation purposes, the model equations were discretised by using a first-order hold method, with

a sampling rate ∆t = 1 ms over a movement duration of T = 2 s. We then obtained:

x(t+ 1) = A · x+B1 · u1 +B2 · u2 + w1 + w2 (6)

After model discretisation, we added three extra state variables to store information about the position
of the target xT and of the two via-points, xV P 1 and xV P2 so that the new state is: X = [x, xT , xV P 1 , xV P 2 ]T

– a 22-dimensional vector.
In all simulations we took Σu

i = diag(1, 1)N2, identical for both players.

2.2 Task and cost functionals

The task (reaching a target through a via-point) was specified in terms of the following cost functionals
(i = 1, 2):

Ji[u1, u2] =wp · ‖xT − xi(T )‖2+
wv · ‖ẋi(T )‖2+
wvp · ‖xV P i − xi(tci)‖2+

wf ·
1

T

T∑
t=1

‖x−i(t)− xi(t)‖2+

r · wu ·
1

T

T∑
t=1

ui(t)
2

(7)

The cost functional has five terms. The first two terms enforce stopping on target at the end of the
movement (small endpoint error, small endpoint velocity). The third term reflects the requirement to pass
through the via-point (small via-point distance). The fourth term accounts for keeping the interaction force
(proportional to the distance between players) low throughout the movement. The last term penalises the
effort incurred during the movement.

The weight coefficients determine the relative importance of the corresponding constraint. We set these
weights by assuming (Bryson’s rule) a maximum acceptable displacement (in the via-point and in the
final target) equal to, respectively, the radius of the via-point (xmaxV P = 2.5 mm) and that of the target
(xmaxT = 5 mm). We then set wvp = 1/(xmaxV P )2 and wp = 1/(xmaxT )2. We made similar normalisations for
the ‘velocity’ weight, wv – calculated by assuming a maximum acceptable speed at the target of 5 mm/s –
for the maximum inter-player distance (25 mm) and the maximum activation (15 N).
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The scalar coefficient r – the only free parameter in the model – specifies the trade-off between task-
related accuracy and effort. With r � 1, the optimal strategy is not moving at all. With r � 1, the
optimal strategy pays little attention to effort requirements. In all simulations we used r=1.

The cost functional reflects all the instructions that we gave to the participants, including those that
were not included in the score displayed to participants during the experiments – for instance, reaching
the target and stopping there. The cost functional also includes an additional essential requirement –
minimizing the effort – which is biologically motivated and is implicit in any motor task. Both the score
displayed during the experiment and the cost functional include a term related to via-point distance and
another related to average inter-player distance, but with some differences. First, the cost functional is
a quadratic form and the score function is a sigmoid. In the cost functional these terms are expressed
as square errors, whereas in the score they are expressed as absolute errors (also the sigmoid shape) The
relative weights of these terms are also different. In the score we set the ratio interaction error/via-point
error= 0.5, whereas in the cost functional the ratio is much lower (interaction error/via-point error = 0.01).
However, the effort minimization term also indirectly contributes to reducing the inter-player distance.
Therefore, the cost functional used in simulation can be considered as functionally equivalent to the score
function used in the experiments.

2.2.1 Calculation of optimal via-point crossing times

In the cost functional of Eq. 7, the times of crossing of the via-points, tc1 and tc2 are themselves part of the
optimization. To calculate the optimal crossing times, we systematically varied tc1 and tc2 (between 10%
and 90% of total duration – set to 2 s in all simulations) over a square grid. For each crossing time pair,
we calculated the average magnitude of the optimal cost for both players in the dyad, J1 and J2. We then
smoothed both the J1 and J2 mappings using a radial basis functions approximation. In all subsequent
simulations, as the optimal via-point crossing times tci we then took the values that corresponded to the
Nash equilibrium (intersection of the reaction lines) calculated in the smoothed pair of cost functionals; see
Figure A.

The Figure clearly indicates that there are indeed two cost function minima, corresponding to crossing
V P1 first and then V P2 (tc1 < tc2) and vice versa. Given that V P1 is closer to the start position than V P2,
the first solution requires less effort and is therefore the global optimum.

We ended up with crossing time values of, respectively, 36% and 71% of the total movement duration
(Nash condition) and 28% and 64% (No-partner condition). Hence the optimal crossing time values are
slightly different in both via-points in the two extreme conditions (Nash and No-partner). To simplify
calculations, in the subsequent fictitious playing simulations we used constant crossing time values (those
corresponding to the Nash condition), which is indeed sub-optimal as they are expected to change at each
iteration. To test the impact of this simplifying assumption, we ran additional simulations using the optimal
crossing times corresponding to the no-partner conditions. We found slightly different values of the final
minimum distance, interaction forces and leadership indices, but the main prediction (when information
increases the learned strategy comes closer to Nash equilibrium) did not change.

2.3 Feedback controllers

2.3.1 Nash controllers

The optimal Nash feedback controllers can be determined through the following iterative algorithm [2]:
Zi(T )← Qi(T )
for t← (T − 1), 0 do

solve for i = 1, 2:[
Ri(t) +BT

i · Zi(t+ 1) ·Bi
]
· Li(t) +

[
BT
i · Zi(t+ 1) ·B−i

]
· L−i(t) = BT

i · Zi(t+ 1) ·A
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Figure A: Crossing time pairs calculated for the partners’ smoothed cost functions J1, J2. Optimal pairs
for each cost function (cyan) and Nash equilibria (green)

F (t)← −B1 · L1(t)−B2 · L2(t)
Zi(t)← Qi(t) + F (t)T · Zi(t+ 1) · F (t) + Li(t)

T ·Ri(t) · Li(t)
end for

In the above equation and in all the following, i denotes a player and −i denotes his/her partner.

2.3.2 Optimal ‘no-partner’ controllers

A second (sub-optimal) scenario is represented a the situation in which each player assumes that his/her
partner is inactive, i.e. u−i(t) = 0.

In this case, the optimal controllers are calculated independently, as two separate LQG optimal control
problems:
Zi(T )← Qi(T )
for t← (T − 1), 0 do

Li(t) =
[
Ri(t) +BT

i · Zi(t+ 1) ·Bi
]−1

BT
i · Zi(t+ 1) ·A

Zi(t)← Qi(t) + Li(t)
T ·Ri(t) · Li(t) + [A−Bi · Li(t)]T · Zi(t+ 1) · [A−Bi · Li(t)]

end for
The above algorithm is separately applied to both players, i.e. for i = 1, 2.

2.4 Sensory systems

Each player has his/her own sensory system yi(t), which provides information about the dyad state. Reli-
ability of the sensory information is determined by the magnitude of the sensory noise, vi(t), assumed to
be Gaussian. The sensory system of each player is described by:

yi(t) = Hi · x(t) + vi(t) (8)

The structure of the Hi matrix depends on the available sensory information. In the H and V H groups
(see the main paper) the sensory information is defined as yi = [pi, ṗi, k(p−i − pi), xT , xV Pi ]

T . For Player 1
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we have:

H1 =


I2 02 02 02 02 02 02 02 02 02 02
02 I2 02 02 02 02 02 02 02 02 02
−k · I2 02 02 02 k · I2 02 02 02 02 02 02

02 02 02 02 02 02 02 02 I2 02 02
02 02 02 02 02 02 02 02 02 I2 02

 (9)

A similar expression is found for H2.
The participants in the PV group are assumed to also see their partner’s position so that the sensory

information is defined as yi = [pi, ṗi, p−i, ṗ−i, k(p−i−pi), xT , xV Pi ]
T andH1 andH2 are modified accordingly.

The measurement noise is assumed to be Gaussian with variance:

Σv
i = diag(σ2x, σ

2
x, σ

2
xd, σ

2
xd, σ

2
f , σ

2
f , σ

2
x, σ

2
x, σ

2
x, σ

2
x) (10)

We set σ2x = 1.72mm2, σ2xd = 352mm2/s2. For the H and VH group, we respectively set σ2f = 22N2 and
σ2f = 0.052N2.

2.5 Partner model

Partner’s control input was estimated as part of the state observer. We made the prior assumption that
partner input is described by a low-pass filtered white noise:

u−i(t+ 1) = Au · u−i(t) + ε−i(t) (11)

In all simulations, we set Au = 1 and Σε
−i = 1 N2.
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