Appendix A. List of abbreviations and select terms used in the manuscript in alphabetical order 4 AIC: Akaike Information Criterion 7 C: Celsius cm: centimeters commercial size trees: Development classes 3-5 definition from Norwegian NFI (Antón-Fernández and Astrup 2012). Younger, older, and mature productive forest with satisfactory stand density. Species proportions are reported according to volume in these harvest classes. complete crown: The function biomass combination from the current study of live crown (LC_{dh}) and dead branches (DB_d). DB_d: Dead branch biomass single-variable model dbh: Diameter at breast height (1.3 m) DW: Dry weight FW: Fresh weight H40: Height of tree at 40 years of age ha: hectare height-to-live-crown: distance from the ground to the base of the live crown, ignoring one time a single live branch if separated by more than two whorls from the next live branch. kg: kilogram LB_d: Live branch biomass single-variable model LB_{dh}: Live branch biomass two-variable model LCd: Live crown biomass single-variable model LC_{dh}: Live crown biomass two-variable model LF_d: Leaf biomass single-variable model m: meter m.a.s.l.: meters above sea level m.t.b.: million tons biomass

51 52	N: Number
52 53	N. Number
54 55	NFI: National Forest Inventory
56 57	NLME: Nonlinear mixed-effects model
58 59	NNFI: Norwegian National Forest Inventory
60 61	NNFI8: Norwegian National Forest Inventory 8th inventory (2000-2004)
62 63	NNFI9: Norwegian National Forest Inventory 9th inventory (2005-2009)
64 65 66 67	older stands: Development classes 4 and 5 definition from Norwegian NFI (Antón- Fernández and Astrup 2012). Older and mature productive forest with satisfactory stand density.
68 69	p: p-value
70 71	RMSE: Root Mean Square Error
72 73 74 75 76	sapling size trees: Development classes 1 and 2 definition from Norwegian NFI (Antón- Fernández and Astrup 2012). Young newly regenerating to satisfactorily dense forest. Species proportions are reported according to crown cover percentage in these harvest classes.
70 77 78	SB _d : Stem bark biomass single-variable model
79 80	SB _{dh} : Stem bark biomass two-variable model
81 82	std. error: Standard error
83 84	SW _d : Stemwood biomass single-variable model
85 86	SW _{dh} : Stemwood biomass two-variable model
87 88 89	TAG _B : Total aboveground biomass component combination from Bollandsås et al. (2009) using: over-bark ("Stem") + total crown ("Tree crown") biomass
90 91	$TAG_{combination \ 1} \text{: Total above ground component combination using: } TS_{dh} + LC_{dh} + DB_{d}$
92 93 94	$TAG_{combination2}$: Total above ground component combination using: $SW_{dh}+SB_d+LB_{dh}+LF_d+DB_d$
95 96 97	TAG _d : Total above ground biomass single-variable model (model fit with the $BM_{ts} + BM_{lc} + BM_{db}$ biomass estimates (Appendix B))
97 98 99	TAG _{dh} : Total aboveground biomass two-variable model (model fit with the BM_{ts} + BM_{lc} + BM_{db} biomass estimates (Appendix B))

101 TAG_M: Total aboveground biomass for Marklund using: stemwood (B-5) + stem bark 102 (B-8) + live branch (B-11) + dead branch (B-16) + leaves (where leaf biomass = B-5 * (0.011^a/0.52^b) (^a Factor currently applied by NNFI for UNFCCC reporting; ^b de Wit et 103 104 al. 2006) 105 TAGs: Total aboveground biomass component combination of the current study using: 106 107 $SW_{dh} + SB_d + LB_{dh} + DB_d + LF_d$ 108 total crown: Observed crown biomass of the mountain birch sample trees including the 109 live and dead branches (if present) (Bollandsås et al. 2009). 110 111 TS_d: Total stem biomass single-variable model 112 113 114 TS_{dh}: Total stem biomass two-variable model 115 UNFCCC: United Nations Framework Convention on Climate Change 116 117 Unprod.: Unproductive birch forest = potential yield $< 1 \text{ m}^3 \text{ ha}^{-1} \text{ yr}^{-1}$ 118 119 volume-weighted total stem biomass: The average stem biomass weighted by volume of 120 121 the stem section from which the sample disk was taken. 122 young stands: Development classes 1 and 2 definition from Norwegian NFI (Antón-123 124 Fernández and Astrup 2012). Young newly regenerating to satisfactorily dense forest. 125

126 Appendix B. Detailed methods for the aboveground biomass dataset

Total stem biomass estimate 127

(1) DW: $FW_{disk_i} = \frac{DW_{disk_i}}{FW_{disk_i}}$ 128

(2) $V_{s_i} = \frac{l_{s_i}(g_{1_i} + g_{2_i})}{2}$ (Smalian's formula) (3) $V_{t_j} = \sum_{i=1}^{2} V_{s_i}$ 129

130 (3)
$$V_{t_j} = \sum_{i=1}^{N} V_{t_i}$$

131 (4) DW:
$$FW_{vw_j} = \sum_{i=1} \left(DW: FW_{disk_i} \left(\frac{v_{s_i}}{v_{t_j}} \right)_i \right)$$

132 (5) $BM_{ts_j} = DW: FW_{vw_j} * FW_{stem_j}$

133 where:

steps (1), (2), (3), (4), and (5) correspond to the written steps in the manuscript 134

- 135 DW: FW_{disk_i} = Dry weight to fresh weight ratio of stem disk *i* with bark
- $DW_{disk_i} = Dry$ weight of stem disk *i* with bark (g) 136

 FW_{disk_i} = Fresh weight of stem disk *i* with bark (g) 137

- V_{s_i} = Volume of stem section *i* by Smalian's formula (m³) 138
- 139 l_{s_i} = Length of stem section *i* (cm)
- g_{1i} = Lower surface's cross sectional area of an ellipse of section *i* (mm²) 140
- g_{2i} = Upper surface's cross sectional area of an ellipse of section *i* (mm²) 141

g = Cross sectional area of an ellipse = $\frac{\pi}{4}$ (d₁ * d₂) 142

 $d_1 = Maximum diameter (mm)$ 143

Commented [AS1]: mulitplication

- 144 d₂ = Minimum diameter (mm)
- 145 V_{t_i} = Total stem volume of tree *j* (m³)
- 146 DW: FW_{vw_i} = Volume-weighted dry weight fresh weight ratio of the stem of tree j
- $FW_{stem_{j}} = Fresh$ weight of the stem of tree j (total fresh weight of disks + the rest of the 147
- 148 stem of tree *j*)(kg)
- BM_{ts_i} = The volume-weighted total stem biomass of tree *j* (kg) 149
- 150
- 151 Stemwood biomass estimate

152 (6)
$$A_{ob_i} \& A_{sw_i} = \frac{\pi}{4} (d_{1_i} * d_{2_i})$$

153 (7)
$$P_{sw_i} = \frac{aw_i}{A_{ob_i}}$$

154 (8)
$$P_{sv_i} = \frac{v_i}{v_{t_i}}$$

(9) $P_{sws_i} = P_{sw_i} * P_{sv_i}$ 155

156 (10)
$$P_{vwsw_j} = \sum_{i=1}^{j} P_{sws_i}$$

157 (11)
$$BM_{sw_j} = P_{vwsw_j} * BM_{ts_j}$$

159 steps (6), (7), (8), (9), (10), and (11) correspond to the written steps in the manuscript

- 160 A_{ob_i} = Cross sectional elliptical over-bark area of stem disk *i* (mm²)
- 161 A_{sw_i} = Cross sectional elliptical stemwood area of stem disk *i* (mm²)
- 162 d_{1_i} = Maximum diameter of stem disk *i* (mm)
- d_{2_i} = Minimum diameter of stem disk *i* (mm) 163
- 164 P_{sw_i} = Proportion of stemwood cross sectional area of stem disk *i* assigned to its
- corresponding stem section 165
- 166 P_{sv_i} = Proportion of the total stem volume that stem section *i* represents
- 167 V_{s_i} = Volume of stem section *i* by Smalian's formula (m³)
- 168 V_{t_i} = Total stem volume of tree j (m³)
- 169 P_{sws_i} = Proportion of the stemwood in stem section *i*
- P_{vwsw_i} = Volume-weighted proportion of stemwood in the stem of tree *j* 170
- 171 BM_{ts_i} = The volume-weighted total stem biomass of tree *j* (kg)
- 172 BM_{sw_i} = The volume-weighted stemwood biomass of tree *j* (kg)
- 173
- 174 Stem bark biomass estimate

175 (12)
$$P_{sb_i} = 1 - P_{sw}$$

- 176 (13)
- $P_{sbs_i} = P_{sb_i} * P_{sv_i}$ $P_{vwsb_j} = \sum_{i=1}^{N_{sbs_i}} P_{sbs_i}$ (14)177
- $BM_{sb_i} = P_{vwsb_i} * BM_{ts_i}$ 178 (15)
- 179 where:
- steps (12), (13), (14), and (15) correspond to written steps in the manuscript 180
- P_{sb_i} = Proportion of stem bark of stem disk *i* 181
- P_{sw_i} = Proportion of stemwood cross sectional area of stem disk *i* assigned to its 182
- 183 corresponding stem section
- P_{sbs_i} = Proportion of stem bark of section *i* 184
- 185 P_{sv_i} = Proportion of the total stem volume that stem section *i* represents

186 P_{vwsb_i} = Volume-weighted proportion of stem bark of tree *j* BM_{ts_i} = The volume-weighted total stem biomass of tree *j* (kg) 187 BM_{sb_i} = The volume-weighted stem bark biomass of tree *j* (kg) 188 189 Live crown biomass estimate 190 $DW_{lsb_i} = \sum_{i=1} (DW_{lb_i} + DW_{leaf_i} + DW_{catkins_i})$ 191 (16) $FW_{lsb_i} = \sum_{i=1} (FW_{lsb_i})$ 192 (17) $DW: FW_{lsb_j} = \frac{DW_{lsb_j}}{FW_{lsb_j}}$ (18)193 $BM_{lc_i} = DW: FW_{lsb_j} * FW_{tlc_j}$ 194 (19)195 where: 196 steps (16), (17), (18), and (19) correspond to the written steps in the manuscript 197 $DW_{lsb_i} = Sum of the dry weights of live sample branches of tree j (kg)$ $DW_{lb_i} = Dry$ weight of the woody material of live sample branch *i* (kg) 198 199 $DW_{leaf_i} = Dry$ weight of the leaves of live sample branch *i* (kg) 200 $DW_{catkins_i} = Dry$ weight of the catkins of live sample branch *i* (kg) 201 $FW_{lsb_i} = Sum of the fresh weights of the live sample branches of tree j (kg)$ 202 FW_{lsb_i} = Fresh weight of live sample branch *i* (kg) 203 DW: $FW_{lsb_i} = Dry$ weight to fresh weight ratio of the live sample branches of tree j FW_{tlc_i} = Total fresh weight of the live crown of tree *j* (FW_{lsb_j} + the rest of the live 204 205 crown)(kg) 206 BM_{lc_i} = The biomass of the live crown of tree *j* (kg) 207 208 Live branch biomass estimate 209 $DW_{lb_i} = \sum_{i=1} DW_{lb_i}$ (20) $DW_{lsb_{j}} = \sum_{i=1}^{N_{l}} (DW_{lb_{i}} + DW_{leaf_{i}} + DW_{catkins_{i}})$ $BM_{lb_{j}} = \frac{DW_{lb_{j}}}{DW_{lsb_{j}}} * BM_{lc_{j}}$ 210 (21)211 (22)212 where: 213 steps (20), (21), and (22) correspond to the written steps in the manuscript 214 $DW_{lb_i} = Sum of the dry weight of the woody material of live sample branches of tree j$ 215 (kg) 216 $DW_{lb_i} = Dry$ weight of the woody material of live sample branch *i* (kg) 217 $DW_{lsb_i} = Sum of the dry weight of live sample branches of tree j (kg)$ 218 $DW_{leaf_i} = Dry$ weight of the leaves of live sample branch *i* (kg) 219 $DW_{catkins_i} = Dry$ weight of the catkins (if present) of live sample branch *i* (kg) 220 BM_{lc_i} = The biomass of the live crown of tree *j* (kg) 221 BM_{lb_i} = The biomass of live branches of tree *j* (kg) 222 Leaf biomass estimate 223 224 (23) $DW_{leaf_i} = \sum_{i=1} DW_{leaf_i}$ $DW_{leaf+catkins_{j}} = DW_{leaf_{j}} + DW_{catkins_{j}}$ $BM_{leaf_{j}} = \frac{DW_{leaf+catkins_{j}}}{DW_{lsb_{j}}} * BM_{lc_{j}}$ 225 (24)(25) 226

227 where:

- 228 steps (23), (24), and (25) correspond to the written steps in the manuscript
- 229 DW_{leaf_i} = Sum of the dry weight of leaves of the live sample branches of tree *j* (kg)
- $DW_{leaf_i} = Dry$ weight of the leaves of live sample branch *i* (kg) 230
- 231 $DW_{leaf+catkins_i} = Dry$ weight of leaves and catkins (if present) of tree j (kg)
- 232 $DW_{catkins_i} = Dry$ weight of the catkins (if present) of tree *j* (kg)
- 233 $DW_{lsb_i} = Sum of the dry weight of live sample branches of tree j (kg)$
- 234 BM_{lc_i} = The biomass of the live crown of tree *j* (kg)

 BM_{leaf_i} = The biomass of the leaves and catkins (if present) of tree j (kg) 235

236

248

237

Dead branch biomass estimate DW: $FW_{sdb_j} = \frac{DW_{sd}}{FW_{sd}}$ 238 (26)

$$BM_{db_i} = DW; FW_{cdb_i} *$$

239 (27)
$$BM_{db_j} = DW: FW_{sdb_j} * FW_{tdb}$$

240 where:

241 steps (26) and (27) correspond to the written steps in the manuscript

242 DW: FW_{sdb_i} = Dry weight to fresh weight ratio of sampled dead branches of tree *j*

243 $DW_{sdb_i} = Dry$ weight of sampled dead branches of tree *j* (kg)

- 244 FW_{sdb_i} = Fresh weight of sampled dead branches of tree *j* (kg)
- 245 FW_{tdb_i} = Total fresh weight of all dead branches in the crown of tree j (FW_{sdb_i} + the
- 246 rest of the dead branches in the crown of tree *j*)(kg)
- 247 BM_{db_i} = The biomass of dead branches (if present) of tree j (kg)

249 Total aboveground biomass estimate

- 250 $BM_{tag_i} = BM_{ts_i} + BM_{lc_i} + BM_{db_i}$ (28)
- 251 where:
- step (28) corresponds to the written step in the manuscript 252
- 253 BM_{ts_i} = The volume-weighted total stem biomass of tree *j* (kg)
- 254 BM_{lc_i} = The biomass of the live crown of tree *j* (kg)
- BM_{db_i} = The biomass of the dead branches of tree *j* (kg) 255
- 256 BM_{tag_i} = The total aboveground biomass of tree *j* (kg)
- 257

258 Appendix C. Covariance matrices for single- and two-variable functions

Table A.C.1. Parameter covariance matrix (Ψ_f) of the single-variable biomass 259

function for total aboveground biomass (TAGd). 260

	β_0	β_d
β_0	0.00011	
β_d	-0.00044	0.00195

262 **Table A.C.2. Parameter covariance matrix** (Ψ_f) of the single-variable biomass

263 function for total stem biomass (TS_d).

$$\begin{array}{c|c} & \beta_0 & \beta_d \\ \hline \beta_0 & 0.00012 \\ \beta_d & -0.00055 & 0.00291 \end{array}$$

264

265 Table A.C.3. Parameter covariance matrix (Ψ_f) of the single-variable biomass

266 function for stemwood biomass (SWd).

$$\begin{array}{c|c} \hline \beta_0 & \beta_d \\ \hline \beta_0 & 0.00009 \\ \hline \beta_d & -0.00049 & 0.00310 \\ \hline \end{array}$$

267

268 Table A.C.4. Parameter covariance matrix (Ψ_f) of the single-variable biomass

269 function for stem bark biomass (SBd).

$$\begin{array}{c|c} \beta_0 & \beta_d \\ \hline \beta_0 & 7.53085 \ [10^{-6}] \\ \beta_d & -0.00020 & 0.00590 \end{array}$$

270

271 Table A.C.5. Parameter covariance matrix (Ψ_f) of the single-variable biomass

272 function for live crown biomass (LC_d).

$$\begin{array}{c|c} & \beta_0 & \beta_d \\ \hline \beta_0 & 0.00003 \\ \hline \beta_d & -0.00050 & 0.01042 \\ \end{array}$$

273

274 Table A.C.6. Parameter covariance matrix (Ψ_f) of the single-variable biomass

275 function for live branch biomass (LB_d).

	β_0	β_d
β_0	7.72835 [10-6]	
β_d	-0.00026	0.00938

277 Table A.C.7. Parameter covariance matrix (Ψ_f) of the single-variable biomass

278 function for leaf biomass (LF_d).

$$\begin{array}{c|c} \hline \beta_0 & \beta_d \\ \hline \beta_0 & 5.95136 \, [10^{-6}] \\ \beta_d & -0.00030 & 0.01888 \end{array}$$

279

280 Table A.C.8. Parameter covariance matrix (Ψ_f) of the single-variable biomass

281 function for dead branch biomass (DB_d).

$$\begin{array}{c|c} \hline \beta_0 & \beta_d \\ \hline \beta_0 & 5.21287 \ [10^{-6}] \\ \hline \beta_d & -0.00063 & 0.08046 \end{array}$$

282

283 Table A.C.9. Parameter covariance matrix (Ψ_f) of the two-variable biomass

284 function for total aboveground biomass (TAG_{dh}).

	β_0	β_d	β_h
β_0	0.00006		
β_d	0.00020	0.00489	
β_h	-0.00070	-0.00673	0.01279

285

286 Table A.C.10. Parameter covariance matrix (Ψ_f) of the two-variable biomass

287 function for total stem biomass (TS_{dh}).

	β_0	β_d	β_h
β_0	7.63909 [10 ⁻⁶]		
β_d	0.00005	0.00333	
β_h	-0.00019	-0.00440	0.00799

288

289 **Table A.C.11. Parameter covariance matrix** (Ψ_f) of the two-variable biomass

290 function for stemwood biomass (SW_{dh}).

	β_0	β_d	β_h
β_0	4.30251 [10 ⁻⁶]		
β_d	0.00004	0.00332	
β_h	-0.00014	-0.00438	0.00782

292 Table A.C.12. Parameter covariance matrix (Ψ_f) of the two-variable biomass

293 function for stem bark biomass (SB_{dh}).

	β_0	β_d	β_h
β_0	2.55211 [10-6]		
β_d	0.00008	0.01434	
β_h	-0.00029	-0.02115	0.04571

294

295 Table A.C.13. Parameter covariance matrix (Ψ_f) of the two-variable biomass

296 function for live crown biomass (LC_{dh}).

$\begin{array}{ccc} \beta_0 & 0.00049 \\ \beta_d & 0.00148 & 0.03068 \end{array}$		β_h	β_d	β_0	
β_d 0.00148 0.03068				0.00049	β_0
			0.03068	0.00148	β_d
β_h -0.00542 -0.04366 0.089	34	0.0893	-0.04366	-0.00542	β_h

297

298 Table A.C.14. Parameter covariance matrix (Ψ_f) of the two-variable biomass

299 function for live branch biomass (LB_{dh}).

	β_0	β_d	β_h
β_0	0.00011		
β_d	0.00069	0.03005	
β_h	-0.00237	-0.04188	0.08060

301 A.C.15. Residual covariance matrix \sum for single-variable biomass functions.

	Res. TAG _d	Res. TS _d	Res. SW _d	Res. SB _d	Res. LC _d	Res. LB _d	Res. LF _d	Res. DB _d
Res. TAG _d	456.92051							
Res. TS _d	357.45628	488.03138						
Res. SW _d	255.96758	331.84240	244.35479					
Res. SB _d	90.75776	134.78428	75.04395	52.84070				
Res. LCd	107.11887	-94.82201	-60.62131	-28.14675	190.72404			
Res. LB _d	133.43144	-46.20378	-33.96514	-9.53215	176.88983	172.50598		
Res. LF _d	0.29437	-7.36793	-4.88840	-1.90201	7.30314	5.79553	1.55523	
Res. DB _d	1.80268	5.30791	3.43170	1.50237	-2.67981	-1.79410	-0.28645	0.42875

303 A.C.16. Residual covariance matrix $\boldsymbol{\Sigma}$ for two-variable biomass functions.

	Res. TAG _{dh}	Res. TS _{dh}	Res. SW _{dh}	Res. SB _{dh}	Res. LC _{dh}	Res. LB _{dh}
Res. TAG _{dh}	480.29573					
Res. TS _{dh}	296.22257	261.88310				
Res. SW _{dh}	243.53965	195.76021	182.12349			
Res. SB _{dh}	61.66899	71.02619	19.03552	52.66629		
Res. LC _{dh}	195.01797	42.66572	63.31380	-15.55137	160.62961	
Res. LB _{dh}	207.77599	60.74303	69.85139	-3.73878	153.77029	151.42379