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Application of fluorescence in microscopy led to a considerable breakthrough in biochemical 

sciences by facilitating a new way of observing complex biological processes, structures and 

interactions and locating them in particular parts of the cell. Today, fluorescent imaging is 

widely applied in published literature to confirm  research hypotheses. However, about only 

one of ten publications provides supporting information for the observations based on 

fluorescence through a computational analysis of the acquired images. 

 “One picture is worth ten thousand words” was once stated by Frederic R. Bernard, 

however, images alone may not be enough to provide reliable information. For example, 

given population diversity, it is very likely that a selected cell ( ‘the cell’ ) will be found that 

confirms a particular theory, while most others will refute it. In addition the validity of 

observations conducted on cell cultures may be disputable, as these are usually cancer or 

immortalized cells and therefore differ significantly from the original tissue. It is known, for 

example that cultured cancer cells easily evolve into a variety of clones that may not differ 

morphologically, but when stimulated to undergo differentiation or cell death they tend to 

react differently to normal cells at the biomolecular level. While cellular analysis requires a 

great deal of caution, descriptive tissue analysis is even more subjective and interpretations 

are highly dependent on personal experience of the observer. Baak, in his article [Baak 2002] 

addressed difficulties in qualitative assessment of microscopic samples in pathology. The 

reliability was acceptable when an observation was assessed by at least three specialists, but 

consistency was low especially in more complex analysis. Comparison of the data between 
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different laboratories is also difficult considering the simplicity of observations made and the 

complexity of the pathological processes.  

Modern imaging methods which use charged-coupled devices (CCDs) or 

photomultipliers (PMTs) provide a possibility to capture the visual observations in a 

numerical, digitalized form. In this format reliable quantitative data can be extracted which 

open new ways of understanding and supporting an observation process. In this chapter, 

various methods of quantitative analysis will be presented and discussed, applicable to studies 

of a single cell as well as  whole populations and tissues.  

 

Advantages of quantitative analysis 

Descriptive microscopy is able to provide limited information only, such as for 

example on the presence or absence and localization of a particular process or phenomenon. 

This relative quantification, often expressed as –/+/++ (as accepted in pathology) can be 

easily improved through quantitative analysis. The diagnostic possibilities that lie in the 

combination of descriptive and quantitative assessment of biological samples are best seen in 

cancer medicine. Identification of cancer is mostly carried out by the means of descriptive 

analysis, however, in the case of leukemia, scanning cytometry provide an alternative with its 

ability to rapidly differentiate the cancer type based on 16 tumor-specific antigens [Clatch et 

al. 1996 & 1998]. The amount of biological material needed for quantitative assessment by 

this method is minimal when compared to other techniques, including flow cytometry, thus 

allowing the whole analysis to be carried out on a single thin-needle biopsy. Finally, as the 

sample is analyzed on a microscope slide, the same material can be later used for traditional 

staining procedures.  

Cancerogenesis is a very complicated process, where multiple mutations are generated 

in various cells. During growth and spread of the disease, the cells differentiate into a variety 

of phenotypes that form the tumor. These clones vary, often significantly, in the expression 

level of various proteins and therefore their response to an antitumor agent may be different. 

To prevent selection of the resistant and thereby more dangerous cancer clones in the course 

of therapy, simple detection of the presence of antigens is insufficient. As indicated by 

Preston [Preston 2002], traditional approaches to quantify the level of protein expression, 

such as real-time PCR or Western and Northern blotting, give only the mean value of 

expression for the whole sample. The variability in the phenotypes of cells forming the tumor 

may introduce a serious possibility of misinterpretation when using these methods, as a small 

amount of highly-expressing cells may (sometimes significantly) increase the mean. In the 
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worst case scenario the majority of cells with low or no expression decrease the overall 

expression mean to an insignificant level, hiding the small, highly aggressive population of 

cancer cells. This is dangerous especially in the course of assessment of cell susceptibility to 

therapeutic agents and monitoring during the course of therapy.  

Quantitative analysis based on a selection of markers answers several fundamental 

questions: What percent of the tumor cells do express these markers? What is the level of 

expression? Is there an association between the expression of different proteins in various cell 

phenotypes? In physiological studies, the aim is to observe and relate a process/pattern 

representative of the whole population or compare acquired results with the population 

average established during different experiments. Automated quantitative analysis of the data 

allows rapid and precise assessment of the development process (understanding growth, 

differentiation and maturation of complex tissues), also providing the possibility to easily 

compare data between experiments and laboratories. Figure 1 shows examples of quantitative 

evaluation of fluorescent data in a cell culture and in tissue analysis. Quantification based on 

parameters of a large number of individual cells (by scanning cytometry, discussed below) 

showed significant differences (p<0.01) between proapoptotic protein (Bax) expression levels 

indicating that there were two phenotypes present in otherwise uniform COLO 205 cells (Fig. 

1 a). On the other hand, there were no differences in Bax aggregation, the parameter 

describing protein oligomerization and aggregation on cell organelles. A further experiment 

with an anticancer agent showed that response of COLO 205 cells to proapoptotic treatment 

was bimodal, with more sensitive cells dying earlier. Interesting results were obtained when 

the extent of apoptotic process in the duodenum of healthy young wistar rats was analyzed 

(Fig. 1 b). Variations between groups with high and low apoptosis were significant  (p<0.05, 

asterisks). These variations were related to changes in the digestive juice flow and acidity 

(pancreatic juice, bile and hydrochloric acid) as they disappeared further along the gut 

[Godlewski et al. 2006a]. 

 

Methods of quantitative analysis 

Single cell analysis usually carried out by the means of confocal microscopy provides 

deep insights into various processes occurring in the cell. However, observations performed 

on a single object cannot be assumed to be representative for whole population. Thus 

repetitive experiments are required, when a number of (randomly selected) cells are observed 

and the acquired data compared. Quantification of the data facilitates the comparison process, 
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as sets of numerical data is easier to manipulate than a collection of images. Furthermore, 

statistical data can be easily acquired from such quantitative measurements.  

Today, an increasing number of researchers create and validate methods for data 

processing and use them in their experiments.. Our analysis of protein translocations within 

the cell provides a good example. We analyzed interactions of the proapototic protein (Bax 

and Smac/DIABLO) with mitochondria [Gorka et al. 2004; Godlewski and Gorka 2006] and 

their translocation between cytoplasmic and nuclear compartments of the living cell (Fig. 2). 

Among different approaches we found out that only the whole volume cell analysis (3-

dimensional in time) gives accurate description of the pattern of changes. The analysis of a 

single cell cross-section, although quick and relatively easy, was not very accurate, as the 

expression varied in different layers of the cell and living cells were never entirely stationary 

throughout the entire experiment. Quantification of the data on the basis of fluorescence 

integrated optical density (IOD: a parameter describing mean fluorescence intensity 

multiplied by fluorescence area) in the cell volume made it possible to compare the  results 

between a large number of experiments and present them graphically [Godlewski and Gorka 

2006]. By comparing the temporal evolution of changes, we postulated the coincidence 

between Bax translocation and Smac/DIABLO efflux to and from the mitochondria, which 

was later confirmed by immunogold electron microscopy. Digitalization of the data also made 

it possible to compare experiments performed in living cells with those carried out on fixed 

cell populations which can be seen by comparing Fig. 2 with Fig. 3.  

Another challenge in the analysis is to relate fluorescence intensity to protein 

concentrations in the cell. A recent technique proposed for data interpretation uses an external 

calibration and is based on the intensity curves for a series of dilutions of recombinant 

proteins, which is then compared to the fluorescence intensity observed in the cell 

[Fernandez-Gonzalez et al. 2006; Schwartz et al. 2006]. This approach has given satisfactory 

results in studies with YFP-tagged fusion proteins and transporter molecules, however, the 

data needed to be averaged over a relatively large population of examined cells.  

Light intensity and the speed of the observation process are important parameters for a 

biologist as they can provide information of the intracellular transport patterns and the de 

novo generation of proteins in the cell. Kenworthy [2006] proposed the application of 

quantitative FRAP (Fluorescence Recovery After Photobleaching, described elsewhere in this 

volume) for a study of the role of palmitoylation in protein trafficking and recycling within 

the cell. Her results showed that protein recirculation was a dynamic process, as it took less 

than a minute for a full recovery of the fluorescence in the photobleached area. Furthermore, 
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experiments conducted with cycloheximide (a nonspecific inhibitor of protein synthesis) 

showed that proteins were recirculated to the Golgi complex from the cell membrane. A 

different approach to the quantification of protein dynamics was proposed for the study of 

association and disassembly of actin filaments within the cell. For this purpose, Fluorescence 

Speckle Microscopy (FSM) was combined with mathematical computational models to 

recognize different patterns of fluorescence of the actin filaments which were later associated 

with biological activity [Adams et al. 2003; Danuser and Waterman-Storer 2006]. The 

movement of the molecules could also be analyzed by tracking the speckle flow through 

multi-frame correlation [Danuser and Waterman-Storer 2006].  

Various computational models based on Monte Carlo simulations have been 

implemented to calculate protein folding, conformation and interactions with other proteins or 

intracellular membranes, as in case of Bid (an important proapoptotic factor active at the early 

stages of programmed cell death) [Veresov and Davidovskii 2007]. These models are usually 

used to theoretically explain the biochemical and biophysical processes on which the patterns 

observed in fluorescent microscopy analysis were based.  

Automated, fluorescence-based analysis of large populations of cells is the backbone 

of a computational approach in biology. The most popular and widespread tool in this field of 

research is a flow cytometer, however, its uses are limited to cells in suspension. The need to 

prepare cell suspensions is a major disadvantage of the method, as the majority of cells grow 

attached to a surface, and when removed tend to undergo considerable structural changes; in 

some cases the detachment alone can trigger apoptosis. Tissue analysis is also very difficult as 

the tissue needs to be digested before  experiments, leaving cells suspended but undamaged. 

Another problem is that cells in suspension (even dead, fixed ones) tend to aggregate and this 

may produce a misleading results. Finally, as the cells after experiment can not be retrieved  

this eliminates the possibility for time-based studies of the dynamic processes in the living 

cell population since single cells are identified separately. Two methods of analysis are 

proposed to overcome the problems: one based on digital imaging from a confocal or 

fluorescent microscope, the other is scanning cytometry. Both are used to analyze cells or 

tissue cross-sections attached to the surface of a microscope slide or placed in a special 

chamber, where live-cell analysis can be performed. In scanning cytometry the slide is placed 

in a fluorescent microscope with a motorized stage which enables the entire slide to be 

scanned automatically with repeated focusing in each scanning steps. The objects are 

identified either based on their fluorescence intensity or by their edges. This produces a set of 

cellular images accompanied by cell coordinates and a number of quantitative parameters 
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such as cell number and distribution combined with average, maximum, minimum 

fluorescence intensities in designated observation areas. The fluorescence parameters may be 

measured separately over the nucleus and cytoplasmic area in each cell. Other analyses such 

as Fluorescence In-Situ Hybridisation (FISH) is also possible, as well as the colony cell 

counts. The most popular form of studies by scanning cytometry performed on cell cultures is 

the cell cycle analysis. The cell position in the proliferation cycle can be established from the 

three measured parameters: the nucleus size, DNA-related fluorescence and DNA aggregation 

pattern [for ref see Godlewski et al. 2001 & 2002; Kolek et al. 2003a]. Another possibility is 

the observation of protein-related fluorescence. Compared to flow cytometry, the scanning 

cytometry produces much more data concerned with every single cell. Not only the protein 

content and dispersion can be measured, but we can also distinguish between subcellular 

compartments. Usual targets for  analysis are the nuclear and cytoplasmic compartments of 

the cell, however, when specific organelle-targeting dyes are applied there is also a possibility 

to differentiate between them and the rest of the cell [details in Godlewski et al. 2006b]. On 

this basis, protein expression, localization and translocation between different cellular 

compartments can be quantitatively analyzed in large populations (Fig. 4) [Godlewski et al. 

2001 & 2002]. Based on the fluorescence intensity in a single pixel and differences between 

neighboring pixels, the pattern and intensity of protein aggregation within the cell can also be 

studied [Godlewski et al. 2001 & 2002; Kolek et al. 2003b]. Another unique feature of 

scanning cytometry is the ability to store X and Y position of each cell along with the 

fluorescence-related data. It allows to localize and identify them on a slide for further 

comparison between the biochemistry and morphological features of the cell (Fig. 4 – b: X-Y 

map and c).  

In contrast to the “tidy” and “well-organized” cell cultures where all cells and nuclei 

are localized in the same plane, the analysis of tissues presents a major obstacle. Tissue 

architecture is much more complex and compact than that of individual cells. The nuclei are 

usually smaller and arranged randomly with respect to the dissection plane, often overlapping 

one another. The tissues are also composed of variety of cell types with different 

characteristics and these assemblages can further be embedded in different types of 

extracellular matrices. (Fig. 5).  For the optimal observation conditions, a tissue sample 

should be cut in the way that it consists only of a single layer of whole nuclei – a task which is 

near impossible. Therefore the common practice is to cut the slice as thin as possible (4-5 µm 

for paraffin-embedded and 10 µm for frozen tissues), to minimize the occurrence of 

overlapping nuclei (see Fig 6 a and Fig. 9 a). This is crucial for quantitative analysis, where 
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nuclei-related fluorescence is the only means to distinguish between cells. Unfortunately, thin 

slices only minimize the problem but. there are two ways in which it can be overcome..The 

first option is to increase the analyzed area and lens magnification, so that a larger number of 

cells can be scanned with a greater precision (Fig. 9 b).  The second option is to use confocal 

aperture to dissect the tissue section into even thinner slices (Fig. 6 b and Fig. 8 a). Confocal 

imaging greatly increases the readout accuracy but at a cost of considerable increase of the 

time of analysis. In our practice, we carry the analysis of complicated and variable tissues, 

such as gut cross-sections [Godlewski et al. 2006a; Strzalkowski et al. 2007] and complex 

tumors (e.g. head and neck carcinomas) by the means of confocal imaging, while the uniform 

tissues (e.g. pancreas, solid tumors) are being analyzed with great accuracy by scanning 

cytometry.  

Another source for serious problems in tissue analysis originates from the preparation 

and fixing method. Figure (Fig. 7) shows three intestine cross-sections labeled against MAP I 

LC3 (programmed cell death II marker) and DNA. In this image the staining and imaging 

procedures were the same, the only difference was the preparation technique. The high 

background to signal ratio observed in the case of Bouine solution fixing (Fig. 7 b) obscured 

the image, rendering the automated analysis extremely difficult if not impossible. In contrast, 

a perfect background to signal ratio was obtained with the frozen tissues (Fig. 7 c). This kind 

of preparation requires confocal-based imaging as the frozen specimens cannot be cut as thin 

as paraffin-embedded ones.  For scanning cytometry and fluorescent microscopy however the 

best method seams to be Para-formaldehyde fixing combined with paraffin embedding 

(Fig. 7 a). This method allows thin cross-sections to be made from the fixed tissue (4-6 µm) 

minimizing the possibility of nuclei overlap, while the immuno-specificity of the tissue is just 

slightly altered.  

For confocal-based image analysis of protein expression indices (percentage of cells 

expressing the studied protein), at least 14 images were randomly acquired from the mucosa 

of every single intestine cross-section and at least three cross-sections per specimen were 

quantified. Random image selection of different areas in tissue analysis is crucial since the 

areas may vary significantly in the protein expression level. This can be seen in Fig 8 a  where 

we can compare active caspase 3 expression on the villi (top) and in the crypts (low).. In this 

case, object recognition was performed on the basis of fluorescent intensity; objects under 50 

pixels in size were automatically eliminated and the remaining cells were counted (Fig. 8). 

The number of objects, total fluorescence IOD and fluorescence area were acquired for the 

index, total protein expression level and process intensity, respectively. The staining and 
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image acquisition parameters were kept uniform in all experiments to achieve reproducibility 

between different specimens and experiments. The same intestine cross-sections were also 

analyzed by scanning cytometry. At least three whole cross-sections were analyzed per 

specimen with nuclei recognition based on the DNA-related fluorescence intensity. The 

system implemented the watershed method of mathematical separation which was carried out 

to separate overlapping nuclei. All the remaining overlapping conglomerates of nuclei were 

automatically eliminated from the readout by gating (see Fig. 9 b – DNA-spread cytogram). 

From the tissue map reconstructed from the X and Y positions of the nuclei, all areas with 

connective tissue were manually gated out (see Fig. 9 b – tissue map) and active caspase 3 

expression was measured in the remaining cells (Fig. 9 b – active caspase 3 expression). The 

picture gallery (Fig. 9 c) shows the cells relocated from the slide on the basis of their stored 

X-Y coordinates from the regions of high and low caspase 3-related fluorescence. The results 

obtained by the two methods discussed above were comparable, although the actual readout 

was higher in the case of scanning cytometry.  Overall, no significant differences were found 

between the methods (Tab.1).  

 

Image processing 

The digital form of acquired image presents a great temptation for post-capture 

modification by various software packages. Most commonly, the authors tend to enhance the 

image intensity and correct the background to signal ratio to make sure that the presented data 

are clearly visible and optimised for the printing process. While in the case of descriptive 

microscopy this kind of image processing may be justifiable, there are some issues concerning 

analyses carried out based on the processed image. The question one must ask is ‘what kind of 

information is to be gathered and how does image processing affect interpretation of the 

data?’. Image processing greatly influences the brightness level of each pixel thus altering 

fluorescent intensity readouts. Furthermore, the ability to vary the change between color 

ranges and tones to improve the image quality results in an even greater modification of the 

original data and significant loss in the data fidelity. Thus the images processed in any manner 

cannot be used for expression level analysis based on optical density (Fig.10 – table). 

However, in the case of index analysis where simply the number of objects matters, the image 

processing can be used to some extent to facilitate the recognition based on the difference 

between background and signal. Post-capture modification of the data in the case of index 

analysis offers significant advantages over pre-capture offsetting. Pre-capture offsetting 

removes all weak fluorescence from the image as a background regardless of its localization. 
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Thus, a low protein expressing profile, manifested by this weak, yet specific fluorescence may 

be irretrievably lost from the image.  

In the case of tissue analysis where uniformity in sample preparation as well as 

staining and scanning protocols is critically required to allow comparison between specimens, 

the differences in the expression level are often clearly visible (compare Fig 10 a and 10 c). 

Both background and intensity correction, as presented in Fig. 10 b and d provide some 

advantages for the intensity histogram-based automated object recognition (Fig. 10 – white 

arrows). However, some artifacts are also generated (Fig. 10 – red arrows) and this fact needs 

to be strongly emphasized.  

The volume analysis of the reconstructed confocal image presents different kind of 

problems. Due to optical limitations, the acquired voxel (three-dimensional pixel) is different 

from its original form. An image is always distorted along the Z axis and the fluorescence 

intensity is also slightly altered. Moreover, the smaller is the object being analyzed, the more 

it is distorted along all three axes (Fig. 11) [Godlewski et al. 2006b]. The interpretation of 

these images may be misleading, especially when the analysis is carried out on the basis of 

fluorescent spectra overlap during protein colocalization studies. The imperfections in 

fluorescent image may sometimes generate the overlap pattern that may sometimes be 

mistaken with the actual result. This is the reason why the colocalization experiments need to 

be always validated by another experimental techniques (FRET, co-immunoprecipitation or 

immunogold electron microscopy). Some authors have suggested the use of mathematical 

spatial deconvolution models to correct the problem [Roux et al. 2004]. Deconvolution is 

widely used as a means to correct the image clarity especially in 3D reconstructions. 

However, along with the increase of the number of deconvolutions there is a danger to alter 

the image far beyond the original, and obtain the data that are simply not real. We therefore 

suggest restraint in any image correction before the analysis to minimize the risk of data 

misinterpretation.  
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Table 1 

 

 confocal-based image analysis [%] scanning cytometry [%] 

1 22.48 25.17 

2 19.03 20.02 

3 7.70 15.3 

4 20.83 36.30 

5 15.09 15.04 

6 23.96 30.47 

Geomean 17.08 22.46 

SEM 2.68 3.83 

   

t student 0.111586444  
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Figure captions 

 

Fig.1. Phenotype diversity in the expression of the proapoptotic protein Bax in genetically 

uniform human adenocarcinoma COLO 205 cell line, measured by scanning cytometry (a). 

On the cytogram of Bax expression vs. aggregation (top left), the two sub-populations of cells 

were differentiated on the basis of Bax expression level.  Subpopulation with a higher 

expression has proven more susceptible to apoptosis induction (as confirmed by later 

experiments). Bax aggregation, a parameter describing protein oligomerization and 

translocation to cell organelles, however, remained similar. Bax expression histograms (red 

for low and green for high expression levels) were plotted against the mean (black line) of the 

population (top right). The table shows numerical data from the analysis. The expression 

levels in single cells were statistically evaluated by nonparametric Mann-Whitney test and 

significant difference (p<0.05) was found between low and high expression groups.  

Differences in the apoptosis index (percent of apoptotic cells) evaluated by confocal-

based image analysis of active caspase 3 expression (major executor caspase in late, 

irreversible phase of apoptosis) in duodenum mucosa of healthy young (8 week old) wistar 

rats. There were significant differences (p<0.05 by nonparametric Mann-Whitney test) 

between groups with low (light grey) and high (dark grey bars) apoptotic index. Inserted table 

shows the average results for different rats (± SEM) and the black bar represents the mean 

from the entire experiment.  

 

Fig. 2. Four-dimensional (3D in time) analysis of Bax-GFP translocation to the nucleus in 

living human adenocarcinoma COLO 205 cell. Subsequent images show 3D reconstruction of 

a single COLO 205 cell incubated with the anticancer agent nimesulide (1 µm) progressing by 

5 minutes intervals. The graph shows the results of integrated optical density (IOD) 

volumetric analysis of Bax in the nuclear area, showing the peak of translocation at 30 

minutes after proapoptotic stimuli.   

 

Fig. 3. Differences in the distribution of active (left) and inactive (middle) form of Bax within 

human adenocarcinoma COLO 205 cells stimulated to apoptosis by a 30 minute incubation 

with anticancer agent camptothecin (0.15 µm), measured by confocal microscopy. Active 

form of Bax was labeled with antibodies recognizing the #44-63 amino-acid (AA) sequence 

within the death domain responsible for protein oligomerization and activity. Inactive form of 

Bax was labeled by antibodies against #11-30 AA sequence of n-terminal part of protein that 
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is cleaved upon Bax activation. The graph (right) shows differences in the active and 

nonactive Bax-related IOD in the nuclear and cytoplasic compartments of the cell, designated 

upon DNA-related fluorescence area (not shown).  

 

Fig. 4. Equine herpesvirus (JanE EHV-1)-induced changes in the actin cytoskeleton of the 

horse epithelial ED cells, visualized by confocal microscopy (a) and quantitatively analyzed 

by scanning cytometry (b). F-actin was labeled with Alexa Fluor 633 (red fluorescence), virus 

antigen by FITC-conjugated gamakon and cell nuclei were counterstained by HOECHST 

33342. Confocal images present the pattern of F-actin organization in healthy cells where no 

virus antigen-relater fluorescence was observed (arrow 1) and in cells infected by the virus 

with low (arrow 2), normal (arrow3) and increased (arrow 4) actin-related fluorescence 

intensity (a). Scanning cytometry analysis (b) performed on 195 randomly selected fields of 

view (b – top left) of the same slides showed that the majority (over 98%) of the cells 

remained uninfected (b – top right quadrants and the table), and only around 2% of the 

infected cells remained attached to the slide. Cells with high gamakon and actin-related 

fluorescence are of the lowest abundance (only 0.01%). Two cells from healthy (green 

crosshair on the quadrant cytogram) and virus infected (red crosshair) were randomly selected 

and relocated (b – bottom) showing cell recognition (green outline) based on high intensity 

DNA-related fluorescence with the related actin pattern (blue outline). Gallery (c) shows 

randomly selected cells from the cytogram areas, labeled according to the region quadrant.  

 

Fig. 5. Confocal Nomarski contrast and fluorescent microphotographs of a human head and 

neck carcinoma cross-section labeled against Bcl-2, a major antiapoptotic protein over-

expressed in a variety of tumours (green fluorescence); DNA counterstained with 7 

aminoactinomycin-D (red fluorescence). Letters indicate the different cell types and cell 

architecture within a tissue: a) blood vessel with endothelial cells surrounded by fibroblasts 

and connective tissue; b) necrotic loci of a few cells of high Bcl-2 expression and 

characteristic distorted arrangement under Nomarski contrast; c) solid tumour area with large 

number of compacted cells with variable Bcl-2 expression. 

 

Fig. 6. Schematic view showing the advantage of confocal imaging over fluorescence 

imaging in tissues. Cell nuclei are aligned in a relatively random pattern on different depths in 

the slice. In the fluorescent microscopy, they often overlap providing misleading information 

about the DNA content and nucleus area (a). By “dissecting” the tissue into even thinner 
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slices (focal planes) by the use of confocal aperture, the architecture of the tissue can be 

resolved in much greater detail (b).  

 

Fig. 7. Cross-sections of the piglet mid jejunum labeled against MAP I LC-3 protein, the 

marker of programmed cell death II (green fluorescence); nuclei were counterstained by 

7 aminoactinomycin-D (red fluorescence). Tissues were prepared by three different 

techniques. a) Para-formaldehyde fixed, paraffin-embedded tissue shows good nuclei 

counterstaining, but the antibody-related labeling gives a fine background fluorescence. The 

advantage of the method is that samples can be cut into very thin (4-6 µm) slices minimizing 

the risk of nuclei overlap in the acquired fluorescent image. preferred method for scanning 

cytometry and fluorescent microscopy-based image analysis. b) Bouine-fixed, paraffin 

embedded tissue (the technique widely used for morphometry studies and classical 

histochemical staining, because it does not alter the tissue dimensions) gives huge background 

against both fluorescent channels, simultaneously significantly decreasing specific binding of 

both antibodies and DNA probes due to the presence of Picric acid, rendering it unsuitable for 

image analysis. c) Liquid nitrogen-frozen tissue gives the best background to signal ratio, 

however it requires confocal-based image acquisition because frozen samples cannot be cut 

into as thin slices as paraffin-embedded ones and the risk of nuclei overlap increases.  

 

Fig. 8. Confocal-based apoptosis index analysis in the mucosa of the piglet mid jejunum 

labeled against active caspase 3 with Alexa Fluor 488 (green fluorescence); DNA 

counterstained with 7 aminoactinomycin-D. Photo-mosaic reconstruction showing the whole 

depth of the mucosal layer from villi on the top to the crypt region on the bottom (a). 

Automated, fluorescence intensity-based recognition of cell nuclei (yellow outline) and active 

caspase 3 expressing cells (blue outline)carried out with the image analysis system (b). 

Masking of cell nuclei (yellow) and caspase-positive cells (blue) as seen by counting software 

(c).  

 

Fig. 9. Scanning cytometry analysis of the same cross-sections of piglet mid jejunum as 

presented on Figure 8. Alexa Fluor 488 anti-active caspase 3 labeling (green fluorescence) 

combined with 7 aminoactinomycin-D DNA counterstaining (red fluorescence). a) 

Fluorescent intensity-based automated nuclei recognition. Observe the large number of 

overlapping nuclei counted as single object that had to be later removed by gating of the DNA 

cytogram. b) Typical scanning cytometry panel for tissue analysis. DNA spread cytogram was 
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used to eliminate the large objects generated from overlapping nuclei, tissue map of the whole 

scanned cross-section was gated to avoid connective tissue.  Also showing are the active-

caspase 3 cytogram gating cells with low (region in bottom right corner) and high caspase-

related fluorescence. Red crosshair indicates the cell with high caspase 3 expression relocated 

in bottom left panel. Gallery of randomly selected cells with high (upper) and low (lower) 

active caspase 3 expression (bottom right).  

 

Fig. 10. Influence of post-acquisition image processing on the image analysis data. The 

background correction (a-b) increased the fluorescent intensity-based object recognition due 

to better resolved differences between objects (white arrows), but it also generated some 

artifacts (red arrows). The enhancement of very dim positive fluorescence (c-d) reduced the 

number of unspecific objects found and increased resolution between cells (white arrows) at a 

cost of some positive objects (red arrows). Both methods altered the integrated optical density 

of analyzed images significantly making it unsuitable for protein expression analysis (see the 

table).  

 

Fig. 11. Differences between physical object dimensions (on the left) and its optical 

representation (right) when scanned in X-Z axes.  

 


