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Abstract: 

1. Policy-makers increasingly demand robust measures of biodiversity 
change over short time periods. Long-term monitoring schemes provide 
high-quality data, often on an annual basis, but are taxonomically and 
geographically restricted. By contrast, opportunistic biological records are 
relatively unstructured but vast in quantity. Recently, these data have 
been applied to increasingly elaborate science and policy questions, using a 
range of methods. At present we lack a firm understanding of which 
methods, if any, are capable of delivering unbiased trend estimates on 
policy-relevant timescales.  
2. We identified a set of candidate methods that employ either selection 
criteria or correction factors to deal with variation in recorder activity. We 

designed a computer simulation to compare the statistical properties of 
these methods under a suite of realistic data collection scenarios. We 
measured the Type I error rates of each method-scenario combination, as 
well as the power to detect genuine trends.  
3. We found that simple methods produce biased trend estimates, and/or 
had low power. Most methods are robust to variation in sampling effort, 
but biases in spatial coverage, sampling effort per visit, and detectability, 
as well as turnover in community composition all induced some methods to 
fail. No method was robust to all forms of variation in recorder activity.  
4. We warn against the use of simple methods. We identify three methods 
with complementary strengths and weaknesses that are useful for 

estimating timely trends. Sophisticated correction factor methods, 
including Occupancy and Frescalo, offer the greatest potential in the long-
term. Methods based solely on selection criteria are inherently limited, but 
a combination or ensemble of approaches may be required to generate 
trends that are both robust and powerful. Small amounts of information 
about sampling intensity, captured at the point of data collection, would 
greatly enhance the utility of opportunistic data and make future trend 
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estimates more reliable.  
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Abstract 15 

1. Policy-makers increasingly demand robust measures of biodiversity change over short time 

periods. Long-term monitoring schemes provide high-quality data, often on an annual basis, 

but are taxonomically and geographically restricted. By contrast, opportunistic biological 

records are relatively unstructured but vast in quantity. Recently, these data have been 

applied to increasingly elaborate science and policy questions, using a range of methods. At 20 

present we lack a firm understanding of which methods, if any, are capable of delivering 

unbiased trend estimates on policy-relevant timescales. 

2. We identified a set of candidate methods that employ either selection criteria or correction 

factors to deal with variation in recorder activity. We designed a computer simulation to 

compare the statistical properties of these methods under a suite of realistic data collection 25 

scenarios. We measured the Type I error rates of each method-scenario combination, as well 

as the power to detect genuine trends. 

3. We found that simple methods produce biased trend estimates, and/or had low power. Most 

methods are robust to variation in sampling effort, but biases in spatial coverage, sampling 

effort per visit, and detectability, as well as turnover in community composition all induced 30 

some methods to fail. No method was robust to all forms of variation in recorder activity. 

4. We warn against the use of simple methods. We identify three methods with complementary 

strengths and weaknesses that are useful for estimating timely trends. Sophisticated 

correction factor methods, including Occupancy and Frescalo, offer the greatest potential in 

the long-term. Methods based solely on selection criteria are inherently limited, but a 35 

combination or ensemble of approaches may be required to generate trends that are both 

robust and powerful. Small amounts of information about sampling intensity, captured at the 

point of data collection, would greatly enhance the utility of opportunistic data and make 

future trend estimates more reliable. 

40 
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Introduction 

Robust quantitative measures of the stock and rate of change in biodiversity are crucial for 

assessing species’ risk of extinction (Mace & Lande, 1991), for measuring progress against 

international targets (Butchart et al., 2010) and testing against predictions about climate 

change impacts (Maclean & Wilson, 2011). The demands for timely information are increasing. 45 

For instance, the EU Habitat and Bird directives require changes in species’ status to be 

reported every six years, and progress against the Convention of Biological Diversity targets are 

reported on a decadal basis.  

Long-term, standardized, monitoring schemes produce timely and robust estimates of 

status and trends, often on an annual basis (Gregory et al., 2005). Unfortunately such data are 50 

available for only a small number of taxa in a few countries. The next best sources are 

opportunistic data, such as those available on the Global Biodiversity Information Forum 

(GBIF), including records submitted by volunteers (Prendergast et al., 1993). These data are 

less structured than monitoring schemes but high in quantity: GBIF comprises 417 million 

observations of 1.4 million species (http://www.gbif.org). Opportunistic data have delivered 55 

substantive insights into the ecological impacts of climate change (Hickling et al., 2006), 

invasive species (Roy et al., 2012) and habitat loss (Warren et al., 2001). 

Whilst opportunistic data have been used to describe coarse-scale changes in 

biodiversity (e.g. Carvalheiro et al., 2013; Thomas et al., 2004), the absence of standardized 

protocols presents serious challenges for estimating timely trends in the status of individual 60 

species. The noise generated by opportunistic sampling has the potential to swamp any signal of 

real change, or to produce spurious signals of change where none exists. We use the term 

‘variation in recorder activity’ to refer to the sampling biases inherent in opportunistic data, of 

which there are four principle forms: 1) uneven recording intensity over time, measured as the 

number of visits per year (a visit is defined as unique combination of site and date in the 65 

records data), 2) uneven spatial coverage, 3) uneven sampling effort per visit, and 4) uneven 
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detectability. Each source of variation has the potential to introduce substantial bias in trend 

estimates for individual species. The growth of citizen science programs (Dickinson et al., 2012) 

is likely to increase data volumes, and affect the nature of recording with potentially far-

reaching consequences for how the data may be used to infer biodiversity trends (Tulloch et al., 70 

2013).  

In the past, opportunistic data were often treated by collating many years’ data in one 

Atlas period. This compensates to some degree for variation in recorder activity, allowing 

changes in species distributions to be assessed over the years between atlas periods (Botts et 

al.,  2012; Thomas et al., 2004; Tingley & Beissinger, 2009). This approach has limited potential 75 

to deliver trends in a timely fashion, because Atlas periods are typically measured in decades. In 

principle, it should be possible to derive trend estimates on sub-decadal timescales by 

incorporating information about the data collection process (Roy et al., 2012; Szabo et al., 2010; 

van Strien et al., 2013). Therefore, a pressing need exists to understand how recorder activity 

can be treated statistically. Identifying methods that are robust would open a vast frontier of 80 

previously unexploited data for use in both biodiversity policy and applied ecology.  

There are numerous methods proposed in the literature for estimating trends in species’ 

distributions from opportunistic data whilst taking into account recorder activity. Here we test 

a representative set of methods under realistic scenarios of recorder activity. Our aim is to 

identify methods that produce timely trends that are robust to multiple forms of variation in 85 

recorder activity. 

Range change methods 

Many metrics have been proposed to account for variation in recorder activity when estimating 

trends in species’ distributions from opportunistic data (table 1). Methods also differ in the 

spatial and temporal resolution at which they are applied, but we focus on the underlying 90 

assumptions they make. Technical details of all the methods, including mathematical notation, 

can be found in Appendix S1. 
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The simplest measure of change is the linear trend (or difference) in the annual number 

of sites (or grid cells) occupied by the species of interest (i.e. a Poisson generalised linear model 

(GLM)). This model has no mechanism to control for recorder activity, so we refer to it as the 95 

Naïve method. The Naïve method is unique in that the trend is based solely on records from the 

focal species. All others employ records from other species to control for variation in recorder 

activity, either assuming that a record of one species indicates the absence of others, or as a 

means of estimating sampling effort.  

The methods available to cope with variation in recorder activity fall into two broad 100 

categories: employing selection criteria or applying correction factors (table 1). The rationale 

behind selection criteria is that it is possible to select a subset of records that are free from bias 

(Botts et al., 2012). Many selection methods have been proposed (Hickling et al., 2006; 

Kuussaari et al., 2007; Maes & Van Dyck, 2001; Maes et al., 2012; Rich & Woodruff, 1996; Roy et 

al., 2012; Van Calster et al., 2008; Warren et al., 2001): we chose two representatives for closer 105 

examination. 

Maes et al. (2012) applied the criterion that grid cells should have at least five species 

recorded in each of two time periods. This provides a simple way to correct for both the number 

of visits and effort per visit. For each period the relative distribution for a species is the 

proportion of unique records (period-cell-species combinations). The Relative Distribution 110 

Change (RDC) index is the difference in relative distribution between the two time periods, 

divided by the value in the first time period. 

Roy et al. (2012) used a mixed-effects model to explore the impacts of an invasive 

ladybird on native species. They defined thresholds of two species per visit and three years per 

site for including data within the ‘well-sampled’ subset. We use a modified version of this model, 115 

which we refer to as the Well-Sampled Sites (WSS) method (see Appendix S1 for details). The 

observations are unique combinations of site and year, with a binomial response variable for 

estimating a trend in the probability of being recorded on an average visit. We expect that WSS 
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is likely to perform badly when sampling effort per visit changes over time. We test two 

versions, WSS_2 and WSS_4, where 2 and 4 indicate the threshold number of species per visit to 120 

meet the well-sampled criterion.  

The second category of methods has a statistical correction procedure to treat recorder 

activity.  These methods are less frequent in the literature than selection methods, but have a 

greater variety of mechanisms to control for recorder activity. To cover this variety we selected 

five methods for comparison (table 1).  125 

Ball et al. (2011) proposed a simple improvement to the Naïve model to control for 

changes in overall recording intensity over time. The Reporting Rate is the proportion of visits 

on which the focal species was recorded, under the assumption that the effort per visit does not 

vary among years. We implemented two variants: ReportingRate is a binomial GLM and 

ReportingRate+Site incorporates a random effect for site identity, which is equivalent to the WSS 130 

model without selection criteria. We predict that both variants are robust against variation in 

the number of visits, but will be sensitive to uneven sampling effort per visit. To address this 

problem, Szabo et al. (2010) proposed a modification in which individual visits (or species lists) 

are the unit of analysis (thereby controlling for variation in the number of lists over time). Their 

innovation was to treat the number of species on the list (the list length, L) as a proxy for 135 

recorder effort per visit. We use the GLM version of the ListLength method, as well as a 

ListLength+Site variant with random effect for site. We predict that ListLength will be robust to 

trends in both the number of visits and the sampling effort per visit.  

Telfer et al. (2002) used the estimated trend in all species together as an indirect 

measure of how recording intensity differed between two sampling periods. If recorder 140 

intensity is higher in the second period, all species are expected to show increases compared 

with the first period. Any deviation from the overall expected trend is considered as an index of 

change for the species of interest. The Telfer index for each species is the standardised residual 

from a linear regression and is a measure of relative change only, because the average real trend 
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across species is obscured. We predict that Telfer will be sensitive to scenarios in which 145 

recording is biased with respect to the focal species (e.g. spatial bias or changes in detectablity). 

Both Maes & van Swaay (1997) and Hill (2012) developed methods using benchmark 

species as proxy for recorder activity. Benchmarks are common species whose distribution is 

assumed to show no overall trend. We selected Hill’s method, known as Frescalo, which uses 

information about sites’ similarity to one another to assign local benchmarks within 150 

neighbourhoods, and provides site-specific estimates of recording intensity. We compare two 

variants: in Frescalo_P we pooled the data into two equal time periods; in Frescalo_Y the data 

were analysed in ten time-periods (i.e. one per year). Frescalo trends are expressed as the 

reporting rate of focal species relative to that of the benchmarks (see Hill 2012 for further 

details). We predict the performance of Frescalo will be similar to Telfer’s method, but more 155 

powerful.   

Finally, we included Occupancy modelling (MacKenzie, 2006) in our study. Occupancy 

models are derived from capture-recapture theory and have recently been successfully applied 

to large-scale models of distributional change (Van Strien et al., 2013).  The key feature of 

Occupancy is that it uses replicated visits within a season to estimate the probability that a 160 

species is recorded when present. The model consists of two hierarchically coupled submodels, 

one governing occupancy (presence-absence) and the other governing the observations 

(detection-nondetection). Following van Strien et al. (2013), the observation submodel includes 

a covariate for sampling intensity per visit, based on the list length, L (see Appendix S1 for full 

details). This statistical separation of detection from presence-absence represents a major 165 

advance (MacKenzie, 2006) and we predict that Occupancy will be the most robust method to be 

tested. As with other methods, we tested a simple Occupancy model and an Occupancy+Site 

variant  

Simulation design 
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We constructed a computer simulation to assess the performance of the proposed methods 170 

under simple deviations from a control scenario of random sampling. We generated species 

occurrence matrices using simple rules, which were then subjected to a suite of recording 

scenarios by virtual observers (Zurell et al., 2010) to generate a set of realised datasets. Our 

recording scenarios simulate temporal trends in recorder activity, as well as changes in 

community composition. Where possible, our scenarios were parameterised using observed 175 

patterns of recording in the Great Britain and the Netherlands (Isaac, 2012; van Strien et al., 

2010). We then estimated a trend in the distribution of one ‘focal’ species on each realised 

dataset using the methods described above. The performance of each method-scenario 

combination was assessed from 500 simulated datasets. We conducted separate tests of each 

method’s validity and its power to detect change.  180 

Species occurrence data 

Our system consists of 1000 ‘sites’, which we assert to be separated in space (although our 

simulation for simplicity’s sake is not spatially explicit). Each test dataset consisted of one focal 

species and 25 non-focal species (preliminary analyses showed the results are insensitive to the 

total number of species). Species were distributed randomly among sites: each distribution was 185 

determined by drawing 1000 times from a binomial distribution with a species-specific 

probability of being occupied. For the focal species’ we fixed this probability at 50% in all 

simulations; for non-focal species we used random numbers from a beta distribution with shape 

parameters 1 and 2, such that mean species richness among sites was ~13 species, with a 

variance among sites of ~5. We ran all simulations over a period of 10 years. 190 

Control scenario 

This section defines the Control scenario, which corresponds to random sampling. Most 

departures from random sampling were generated by subsampling from the records generated 

by the Control. 
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Overall recording intensity was characterised by the number of visits each year. Within 195 

years, the distribution of visits among sites is characterised by a power law decay, i.e. some sites 

receive many visits and most sites receive few (with a mode of zero). In a selection of British 

and Dutch recording datasets, the power law exponent is close to -2, indicating that the number 

of sites receiving n visits is 4 times greater than number receiving 2n visits (2-2 = 0.25). 

Variation in the total recording intensity is characterised by the proportion of sites that receive 200 

a single visit each year (i.e. the intercept in the power law function). We selected three levels of 

overall recording intensity (low, medium, high), corresponding 5%, 7% and 10% of sites that 

receive a single visit each year. This range of values was selected in order to generate datasets 

that superficially resemble the records of dragonflies (high intensity) and beetles (low 

intensity) in the UK.  205 

Each year, a team of virtual observers visited a certain number of sites. Sites were 

selected by sampling a multinomial distribution defined by the power law function above, 

truncated so that no site received more than 10 visits in any one year. The number of sites to be 

visited varies from year to year, but the parameters of the power law were constant across 

years. Although sites were selected at random, the visits were apportioned non-randomly: 210 

specifically the number of visits to each site was determined by its species richness, with the 

most speciose site receiving most visits. This was done in order to mimic real datasets in which 

records are clustered around nature reserves and other sites that are known to harbour 

interesting wildlife. 

Species do not automatically get recorded if a site is visited, since most surveys are 215 

incomplete (Isaac, 2012; van Strien et al., 2010) and many species are rarely encountered. Each 

species had a fixed probability of being detected if present (i.e. we assume that visits have equal 

sampling effort). The focal species detection probability was fixed at 0.5 per visit; for nonfocal 

species the detection probability varied from 0.88 – 0.16 following the sigmoid curve described 

in Hill (2011). This species-specific detection probability can be thought of as the product of 220 
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visual apparency (Dennis et al., 2006) and mean abundance. Species’ detection probabilities 

were uncorrelated with occupancy.  

Low and high recording intensity delivered 38 and 77 records per species per year, 

respectively, under this Control scenario. Other scenarios produce recording rates that are 

comparable with the four decade average of 20 records per species per year across a range of 225 

taxa regarded as moderately well-recorded in the UK (Isaac, 2012). 

Biased recording scenarios 

We devised five biased recording scenarios (table 2) to capture the four major axes of variation 

in recorder activity, as well as changes in community composition. 

The first simulates an increase in the number of visits per year (i.e. recording intensity is 230 

uneven over time). In the MoreVisits scenario the expected number of visits per year doubled 

over the ten year recording period. We simulated this by sub-sampling from the Control 

scenario: each year we sampled (without replacement) a proportion of visits, with the 

proportion in the final year set equal to 1. Our second scenario, MoreVisits+Bias, is a 

modification in which sites are selected nonrandomly: this simulates temporal change in the 235 

spatial coverage of sites. Specifically, sites containing the focal species are 27% more likely to be 

visited (than non-focal sites) in year one, but in year 10 the focal and nonfocal sites are equally 

represented. 

Uneven sampling per visit is the third major axis of variation in recorder activity. Inter-

annual variation in sampling effort is a potentially serious form of bias for some methods, 240 

because it affects species’ probabilities of being recorded. We simulated a directional trend 

towards shorter lists, as might result from changes in recorder behaviour (e.g. a growth in the 

number of inexperienced recorders with limited identification skills). In the LessEffortPerVisit 

scenario, the prevalence of short lists increased from 60% to 90% in each simulation. Short lists 

contained 1, 2 or 3 species, in the ratios 2:1:1 respectively. As above, this was achieved by 245 
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subsampling from data produced under the Control scenario. The total number of records 

produced by LessEffortPerVisit is around half the number produced by the Control. 

We also model situations in which species become more detectable over time, e.g. 

through the adoption of new technology or publication of a field guide. In the MoreDetectable 

scenario, we model a gradual increase in the focal species’ probability of detection per visit, 250 

from 0.4 at the start of the simulation to 0.5 at the end (i.e. a 20% increase over the recording 

period). 

Several of the methods described above measure relative, rather than absolute, change 

(Telfer, ListLength and Frescalo). For this reason, an important consideration is the degree to 

which these relative trends are impacted by changes in the status of other (nonfocal) species. 255 

We tested this by simulating a decline of 50% over ten years in 30% of nonfocal species 

(NonFocalDeclines). Declining species were selected at random in each simulation. 

Estimating the trends and evaluating model performance 

For each simulated dataset we tested the null hypothesis of no change in the focal species’ 

distribution using each of the 13 method variants. Full details of how we derived p-values for 260 

each method are described in Appendix S1. For RDC, Telfer and Frescalo_P we split the realised 

data into two five-year periods. To implement Frescalo we generated a random matrix of 

neighbourhood weights: randomly-generated neighbourhoods would be inappropriate for real 

datasets where communities show strong evidence of species sorting, but are reasonable for 

our simulated data in which species were independently distributed. Other parameters of 265 

Frescalo were set following Hill (2012). We implemented Occupancy in a Bayesian framework 

using JAGS with three Markov chains, 5000 iterations per chain, a burn-in of 2500 and a 

thinning rate of three (van Strien et al., 2013).  

For the test of validity, the distribution of the focal species remained unchanged 

throughout the simulation: the Type I error rate is the proportion of 500 simulated datasets in 270 

which the null hypothesis was rejected at α=0.05.  In the test of power we simulated a linear 
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decline in occupancy of the focal species of 30% over the 10 year period (i.e. the species would 

qualify as Vulnerable under IUCN Criterion A2). A simple estimate of power would be the rate at 

which we failed to reject the null hypothesis (the Type II error rate). However, some scenarios 

are designed to introduce negative bias in the trend estimates, so Type II error rates are not 275 

comparable across scenarios. Instead we defined power as the proportion of simulations in 

which a true decline was successfully detected (at α=0.05) minus the matching Type I error 

rate, with a lower boundary of zero. 

Results 

About half the methods return appropriate Type I error rates (α ≈ 0.05) under the control 280 

scenario of unbiased even recording, including the Naïve model (figure 1; Appendix S2). The 

simple version of ListLength and ReportingRate methods return significant results around twice 

as frequently as expected: this behaviour is fixed by adding a random effect for site identity (the 

+Site variants). The three methods that split the data into two time-periods (RDC, Telfer and 

Frescalo_P) are all conservative (α < 0.05): indeed RDC almost never rejected the null 285 

hypothesis across all parameter combinations (figure S1). 

All methods experience at least one combination of recording scenario and input 

parameters in which the Type I error rate is inflated by a factor of two compared with the 

Control (figure 1, table S1). Under three scenarios (MoreVisits+Bias, MoreDetectable, 

NonFocalDeclines), the failures become more acute as the quantity of data increases (figure S1), 290 

reflecting the fact that small datasets contain insufficient data to reject the null hypothesis. 

As predicted, the Naïve model performs badly under virtually all departures from 

random sampling. Other methods are robust to growth in the number of visits (MoreVisits), i.e. 

the Type I error rate is close to that observed under the Control. The performance of several 

methods deteriorates markedly when in our spatial biased scenario (MoreVisits+Bias), notably 295 

Frescalo_Y, ReportingRate+Site, ListLength+Site and both implementations of Occupancy. 
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When recording becomes progressively more incomplete (LessEffortPerVisit), the 

ReportingRate+Site and WSS_2 both fail, reflecting the fact that it becomes increasingly less 

likely that the focal species will be recorded on an average visit. Increasing the threshold list 

length solves the problem (WSS_4), as predicted. Both implementations of Frescalo and 300 

Occupancy are robust to this form of bias, although the latter is conservative. 

Changes in detectability (MoreDetectable) elevate Type I error rates in almost all 

methods. For Occupancy, Frescalo_P and Telfer the elevation is slight (α < 0.1 under all levels of 

recording intensity), but the failure is more extreme for WSS and Frescalo_Y, especially under 

high recording intensity (figure S1). NonFocalDeclines induce poor performance of 305 

ListLength+Site and Frescalo_Y, but only slight elevations for both implementations of Frescalo_P 

and Occupancy. 

In summary, the Naïve, ReportingRate and ListLength models (including +Site variants) 

all experience serious failures under a majority of biased recording scenarios and are therefore 

not robust.  310 

Not surprisingly, power is strongly affected by overall sampling intensity, with a two-

fold increase going from low to high intensity recording (figure 2). Power declines under most 

deviations from the Control (figure 3), but the relative power of each method is fairly consistent, 

with Occupancy+Site being most powerful, followed by the simple version of Occupancy, then 

Frescalo_Y, Frescalo_P, Telfer, WSS_2, WSS_4 and finally RDC (which has virtually no power at 315 

all). The exceptions to this rule are LessEffortPerVisit, in which case Frescalo outperforms 

Occupancy, and NonFocalDeclines, in which WSS outperforms Frescalo (figure 3, figure S2). 

Discussion    

Our simulations have provided a rigorous test of candidate methods for estimating 

trends in species’ distributions from opportunistic data. Many studies have emphasised the 320 

problem that opportunistic data were generated with uneven sampling effort over time (Botts 

et al., 2012; Maes et al., 2012; Prendergast et al., 1993), but we observe that most methods are 
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robust to this (MoreVisits scenario). Other forms of variation in recorder activity present serious 

problems for many methods, yet are rarely discussed. We found that none of the methods is 

robust under all scenarios, but several perform well enough to be useful, and some general 325 

principles have emerged about how to apply then to real-world datasets. 

We have clear evidence that simple methods easily fail under realistic scenarios of 

recording behaviour. The poor performance of the Naïve model is not unexpected, but the 

ReportingRate and ListLength (including +Site variants) both failed under a majority of 

scenarios (table 3). The simple versions of both methods failed even under the Control scenario 330 

of random sampling, since they treat visits as independent. Our findings draw into question the 

conclusions of studies that have used such methods (Breed et al., 2012; Szabo et al., 2011). The 

trend estimates from these methods are likely to be unreliable in any situation where the 

sampling variance of the focal species is high or uneven, including when the timescale is short, 

and when the study area is large and/or heterogeneous. The RDC method fails in a different 335 

way: it almost never rejects the null hypothesis (because few sites qualify as well-sampled) and 

always under-estimates the true trend (because data are aggregated into time periods). These 

features imply that published trends (e.g. Maes et al., 2012) are highly conservative. Telfer’s 

method, which is also relatively simplistic, performed consistently well but never better than 

Frescalo_P, which produces trends that are easier to interpret.  340 

Previous studies have compared only simple methods (Botts et al., 2012), but our 

results show that complex methods outperform simple ones. In some cases, the reasons for this 

strong performance are clear: models with Site effects are more robust than those without; 

Occupancy is the most robust method under MoreDetectable because it explicitly models the 

detection process; WSS_4 (but not WSS_2) is robust to LessEffortPerVisit because visits with low 345 

effort (defined here as L<4) are excluded. By contrast, we were surprised that Frescalo_P 

(although not Frescalo_Y) is reasonably robust to scenarios where the focal species undergoes 

separate treatment (MoreVisits+Bias, MoreDetectable). A deeper understanding of why methods 
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fail, and why they perform well, would help develop methods that are robust to all forms of 

variation in recorder activity.  350 

Until such universally robust methods become available, we must devise tests to 

determine the extent to which real datasets exhibit the specific forms of bias modelled here. It 

should be possible to diagnose whether the prevalence of short lists changes over time, or 

whether the spatial footprint of recording has shifted with respect to the focal species’ 

distribution. Changes in detectability are likely to be more challenging, because detection is a 355 

function of both the species’ ecology and the data collection process (Isaac et al., 2011; van 

Strien et al., 2013). In the absence of a single best method, we are encouraged that the three 

best performers (WSS_4, Frescalo_P, Occupancy+Site) have complementary strengths and 

weaknesses. Thus, one approach to trend estimation would be to draw inferences from an 

ensemble of methods (c.f. Thuiller et al., 2009). Our experience to date is that trends from 360 

different methods broadly agree (Isaac et al., 2013). 

Overall, we feel that sophisticated methods such as Frescalo and Occupancy, which 

model the data collection process, have the greatest potential for delivering robust and timely 

trends from opportunistic data. Selection methods, including WSS, are ultimately limited by the 

assumption that simple thresholds can separate the signal from the noise, and by the loss of 365 

power that results from discarding data (at least 75% of site:year combinations in most 

simulations). However, selection criteria may still have a role in addressing specific forms of 

bias that are difficult to model. For example, excluding sites with few years of data (as employed 

by WSS) could be an effective solution to the problem of spatial bias in site selection that 

produced inflated type I errors for Occupancy.  370 

Whilst Frescalo_P performed well in our simulations, we have a number of reservations 

about its usage. First, using the method requires the user to make a variety of choices, in 

addition to the number of time periods. The selection of benchmark species and 

neighbourhoods are defined by input parameters (Hill, 2012) which have considerable impact 
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on the trend estimates that are produced (van Strien et al., unpublished data). Second, our 375 

simulations compared all methods at the same spatial scale, but the typical grain size for 

Frescalo is 100-fold larger (100 km2 vs 1 km2) than used by WSS (Roy et al., 2012) and 

Occupancy (van Strien et al., 2010, 2013), so the number of unique observations (and hence 

power) is also lower. This coarse-grained approach reflects both computational limitations 

(neighbourhoods are defined by a matrix of N x N, where N is number of sites), and the need to 380 

robustly estimate recording intensity for each site. However, Frescalo remains the most 

appropriate method for describing long-term change where the periods are well-defined (e.g. 

published atlases) and when information from individual visits is unavailable (Hill, 2012). 

We modelled a suite of recording scenarios, but there is a gap between our idealised 

simulations and the reality of how opportunistic data are collected. Our four axes of variation in 385 

recorder activity conceal many specific departures from the central assumption that species are 

recorded as complete assemblages during site visits. This assumption is violated during 

targeted surveys, or where recorders make annual lists but submit records from individual 

visits: in this case species reported during early visits get omitted from lists made later in the 

year. At present we lack information about how the records were generated, such as whether all 390 

observations were reported. The growth of technology in wildlife recording, including 

smartphone apps, offers great potential to capture meta-data about sampling intensity (e.g. 

start and end times of the survey) with minimal input from the recorder. These data would go a 

long way to make inferences from opportunistic data more robust in future. 

Our results add to a growing body of evidence that opportunistically-gathered data has 395 

enormous potential to make meaningful contributions in biodiversity science and policy-making 

(Schmeller et al., 2009; Tulloch et al., 2013). Some of the methods we tested here (e.g. WSS, 

Occupancy) can easily incorporate covariates, making them ideal for testing hypotheses about 

the drivers of biodiversity change (e.g. Roy et al., 2012). Our results provide an evidence base 

for producing quantitative trends from opportunistic data and a benchmark against which 400 

future methods can be compared. 
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Table 1: Methods to estimating trends in distribution in opportunistic data and the way they control for variation in recorder activity. 525 

Category Source Name Metric of change Temporal 

scale  

Mechanism to adjust for variation in recorder activity 

 This study Naïve Number of sites year None  

Selection Maes et al. 

(2012) 

RDC index Proportion of unique records 

on well-sampled sites 

period selection of well-surveyed sites + surveyed in each 

period + taking into account sum of sites for all species 

Roy et al. (2012) Well-sampled 

Sites 

Probability of being recorded 

per visit 

year ‘Well-sampled sites’ defined by threshold list length 

per visit and number of years visited + site effect 

Correction Ball et al. (2011) Reporting 

Rate 

Probability of being recorded 

per visit 

year Expressing the records as a proportion controls for 

temporal variation in number of visits 

Szabo et al. 

(2010) 

List Length Probability of being recorded 

per visit 

year Number of species per list (the list length) as proxy for 

sampling effort of each visit 

Telfer et al. 

(2002) 

Telfer index Number of sites period Difference in the number of sites per period is 

expressed relative to that across other species 

Hill (2012) Frescalo Relative reporting rate period Detection of regional benchmark species as proxy for 

recorder effort 

Van Strien et al. 

(2013)  

Occupancy Probability of occupancy year Detection probability as proxy for recorder effort  
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Table 2: Description of recording scenarios in the simulation 

Scenario Summary 

Control Constant recording intensity over years. All species have a fixed probability of being 

recorded per visit. 

MoreVisits Number of visits per year doubles over the course of the recording period.  

MoreVisits+Bias As MoreVisits, but the extra visits are biased toward sites where the focal species is 

absent. 

LessEffortPerVisit Sampling effort per visit declines over time, increasing the proportion of ‘short lists’ 

from 60% to 90% of visits. 

MoreDetectable The focal species is 20% easier to detect at the end of the recording period than at 

the start. 

NonFocalDeclines 50% of nonfocal species are each declining at 30% over the recording period. 
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Table 3: Summary of method performance across all tests 

Method Summary of key findings 

Naïve Inflated type I errors under a majority of scenarios 

Relative Distribution Change Very low power 

Well-sampled Sites Invalidated under MoreDetectable. Sensitive to LessEffortPerVisit with 2 

species threshold. Otherwise robust. 

ReportingRate (incl +Site) Inflated type I errors under a majority of scenarios  

ListLength (incl +Site) Inflated type I errors under a majority of scenarios  

Telfer Robust and generally powerful 

Frescalo Generally robust and powerful. The ‘per-year’ version is less robust but 

more powerful. 

Occupancy (incl +Site) Invalidated under MoreVisits+Bias, otherwise robust and powerful 

530 
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Figure Legends 

Figure 1. Type I error rates of all methods under all scenarios (note square root scale on y-axis). Results 

are shown for medium levels of recording intensity. The solid and dashed lines indicate α=0.05 and α=0.1 

respectively. 

 535 

Figure 2: Power under the Control scenario plotted against recording intensity. Results are not shown for 

five methods that failed the test of validity. 

 

Figure 3: Power under medium recording intensity for all scenarios. Results are not shown for five 

methods that failed the test of validity. 540 

 

 

Appendices 

Appendix S1: Statistical description of the methods compared by simulation 

Appendix S2: Detailed results of the simulation study 545 
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Type I error rates of all methods under all scenarios (note square root scale on y-axis). Results are shown 
for medium levels of recording intensity. The solid and dashed lines indicate α=0.05 and α=0.1 respectively. 
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Power under the Control scenario plotted against recording intensity. Results are not shown for five methods 
that failed the test of validity.  
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Power under medium recording intensity for all scenarios. Results are not shown for five methods that failed 
the test of validity.  
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