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Abstract 

Background: Smoking is the strongest environmental risk factor for reduced pulmonary 

function. The genetic component of various pulmonary traits has also been demonstrated, and 

at least 26 loci have been reproducibly associated with either FEV1 (forced expiratory volume in 

1 second) or FEV1/FVC (FEV1/forced vital capacity). Although the main effects of smoking and 

genetic loci are well established, the question of potential gene-by-smoking interaction effect 

remains unanswered. The aim of the present study was to assess, using a genetic risk score 

approach, whether the effect of these 26 loci on pulmonary function is influenced by smoking. 

Methods: We evaluated the interaction between smoking exposure, considered as either ever 

vs. never or pack-years, and a 26 SNPs genetic risk score in relation to FEV1 or FEV1/FVC in 50 

047 participants of European ancestry from the CHARGE and SpiroMeta consortia.   

Results: We identified an interaction (𝛽𝑖𝑛𝑡 = −0.036, 95% confidence interval, -0.040 – -0.032, 

P=0.00057) between an unweighted 26 SNPs genetic risk score and smoking status (ever/never) 

on the FEV1/FVC ratio. In interpreting this interaction, we showed that the genetic risk of falling 

below the FEV1/FVC threshold used to diagnose chronic obstructive pulmonary disease is higher 

among ever smokers than among never smokers. 

Conclusions: This study highlights the benefit of using genetic risk scores for identifying 

interactions missed when studying individual SNPs, and shows for the first time that persons 

with the highest genetic risk for low FEV1/FVC may be more susceptible to the deleterious 

effects of smoking. 
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Key messages 

 Spirometric measures of pulmonary function are influenced by both smoking and 

genetics. This paper identified a genetic risk score-by-ever smoking interaction on 

FEV1/FVC (forced expiratory volume in 1 second / forced vital capacity). 

 In individuals of European ancestry, the reduction in FEV1/FVC due to smoking was 

greater among individuals who are genetically predisposed to lower FEV1/FVC ratio. 

 Genetic risk score-by-ever smoking interaction can allow the identification of subgroups 

in the population whose genetic background makes them more susceptible to the 

deleterious effects of smoking. 
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Introduction 

Spirometric measures of pulmonary function, such as the forced expiratory volume in 

one second (FEV1) or its ratio with the forced vital capacity (FEV1/FVC), form the basis of the 

diagnosis of chronic obstructive pulmonary disease (COPD).1-3 Pulmonary function measures are 

also used clinically to monitor severity and control of asthma and other respiratory diseases, 

and are independent risk factors for mortality.1-3 Pulmonary function is strongly influenced by 

cigarette smoking and by multiple low-penetrance genetic variants. Indeed, genome-wide 

association studies (GWAS) of marginal genetic effects (i.e. not including interaction effects 

between genetic variants and smoking) have identified at least 26 loci associated with FEV1 or 

FEV1/FVC in the general population.4 However, the interplay between genetic factors and 

environmental exposures has not been well established for pulmonary function or its 

associated traits. More broadly, while considerable efforts have been made to identify 

interaction effects between genetic variants and environmental exposures across the wide 

range of human traits and diseases,5, 6 such investigations have been mostly unsuccessful in 

detecting robust gene-environment interactions.5, 7 The well-established effect of cigarette 

smoking on numerous human health outcomes8 makes it a serious candidate for identification 

of novel gene-environment interactions, especially for pulmonary traits.  

Hypothesizing the presence of single nucleotide polymorphism (SNP)-by-smoking 

interaction, Hancock et al.9 performed a genome-wide interaction study of pulmonary function, 

modeling single SNP main effects and their interactions with smoking in 50 047 participants of 

European ancestry across 19 studies within the Cohorts for Heart and Aging Research in 
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Genomic Epidemiology (CHARGE)10 and SpiroMeta consortia11 –the largest genome-wide 

interaction study of pulmonary function as modified by smoking to date. However, rather than 

focusing on the interaction effects per se, they performed a meta-analysis of the joint test of 

SNP main effects and SNP-by-smoking interaction effects, in order to improve power for 

identifying genetic variants associated with pulmonary function.12, 13 While they reported new 

candidate variants based on this joint test, the study did not identify any SNPs with genome-

wide significant interaction with smoking.  

Here, we explored gene-by-smoking interaction effects limited to genetic variants 

previously found to be associated with pulmonary function in standard marginal effects GWAS,4 

therefore not including the new variants reported by Hancock et al.9 based on the joint test of 

main effects plus interaction. Specifically, we aimed to determine whether smoking modifies 

the effect of established genetic variants, when considered singly or combined using a genetic 

risk score summarizing the genetic predisposition to abnormal pulmonary function. The primary 

motivation for using genetic risk score is statistical power14, 15. Indeed, several genetic risk 

score-by-exposure interactions have already been identified in cases where single SNPs did not 

show evidence for statistically significant interactions16-21. Genetic risk score-by-exposure 

interaction testing expands on the principle of omnibus test while leveraging the assumption 

that, for a given choice of coded alleles, most interaction effects will have the same direction. 

This is similar to burden tests that have been widely used for rare variant analysis22 where a 

single parameter can accumulate evidence for association without increasing the number of 

degrees of freedom. When interaction effects are null on average (i.e. if interaction effects are 

both negative and positive so that the sum of interaction coefficients tend to zero), the single 
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SNP approach will generally outperform the risk score-based approach. Conversely, if 

interaction effects tend to be in the same direction, the risk score-based approach can have 

dramatically higher power.14 

 

Methods 

Single SNP-by-smoking interaction 

The present analysis relies on the Hancock et al.9 genome-wide screening for main 

genetic effects plus interaction effects with smoking in relation to pulmonary function among 

50 047 participants (56% women) of European ancestry from 19 studies. The mean age was 53 

years at the time of pulmonary function testing. Approximately 15% were current-smokers and 

56% were ever smokers. Among ever smokers, the average pack-years of smoking was 21. 

Supplementary Table 3 (available as Supplementary data at IJE online) provides the main 

characteristics of the studies included, while complete details of study-specific pulmonary 

function testing protocols can be found in previous work4. For studies with spirometry at a 

single visit, we analyzed FEV1/FVC and FEV1 measured at that visit. For studies with spirometry 

at more than one visit, we analyzed measurements from the baseline visit or the most recent 

examination with spirometry data. Smoking history (current, former, and never smoking) was 

ascertained by questionnaire at the time of pulmonary function testing. Pack-years of smoking 

was calculated for current and past smokers by multiplying smoking amount (packs/day) and 

duration (years smoked). Approximately 2.5 million autosomal SNPs were tested for interaction 

with smoking status (ever smoking vs never smoking) and pack-years, for two outcomes, FEV1 
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and FEV1/FVC, using the following model (see Supplementary Note, available as Supplementary 

data at IJE online): 

 𝑌~𝛽0 + 𝛽𝐺𝐺 + 𝛽𝐺𝐸𝑘
𝐺𝐸𝑘 + ∑ 𝛽𝐸𝑙

𝐸𝑙  𝑙=1…3            (Equation 1) 

where 𝛽𝐺 and 𝛽𝐸𝑙
 are the main effect of the SNP 𝐺 and exposure 𝐸𝑙, 𝛽𝐺𝐸𝑘

 is the interaction 

effect between 𝐺 and exposure 𝐸𝑘, and 𝛽0 the intercept. 

 

Multivariate interaction analysis overview 

First, we considered an unweighted genetic risk score-by-smoking interaction where the 

risk score simply sums the number of risk alleles (i.e. alleles associated with a lower pulmonary 

function). This unweighted genetic risk score is most powerful when the interaction effects 

have the same direction as marginal SNP effects, i.e. the harmful effects of smoking are 

magnified in individuals with a genetic predisposition to reduced pulmonary function. Second, 

we used a weighted genetic risk score where SNPs were weighted by the absolute value of their 

marginal effect estimates obtained from stage 1 screening of FEV1 and FEV1/FVC from Soler 

Artigas et al.4 (Supplementary Table 1 available as Supplementary data at IJE online). This 

weighting scheme is most powerful when the magnitude of interaction effects is proportional 

to the SNP marginal effects. Finally, for our third multivariate analysis, we derived a standard 

omnibus test of all interaction effects. This test will retain power in the presence of effects in 

both directions or of different magnitudes. Although there is strong correlation among the 12 

tests performed (these three models, considering interaction with two different smoking 
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metrics, ever/never smoking or pack-years, for the two pulmonary function metrics FEV1 and 

FEV1/FVC), we used a stringent Bonferroni p-value correction threshold of 4×10-3 to account for 

multiple testing. 

When raw data are available, the weighted genetic risk score (𝐺𝑅𝑆) is usually expressed 

as 𝐺𝑅𝑆 = ∑ [𝑤𝑖 × 𝐺𝑖]𝑚  where 𝑚 is the number of SNPs included in the genetic risk score and 

𝑤 = (𝑤1, . . 𝑤𝑚) are the weights attributed to each single SNP. Following previous notation, the 

test of interaction between the genetic risk score and the exposure 𝐸𝑘 can be applied using the 

following model: 

𝑌 ~𝛾0 +  𝛾𝐺𝑅𝑆 × 𝐺𝑅𝑆 + 𝛾𝐼𝑁𝑇 × 𝐺𝑅𝑆 × 𝐸𝑘 + ∑ γ𝐸𝑙
× 𝐸𝑙 

𝑙=1…3

      (Equation 2) 

where 𝛾0, 𝛾𝐺𝑅𝑆, 𝛾𝐸𝑙
 and 𝛾𝐼𝑁𝑇 are the intercept, the main effect of the genetic risk score, the 

main effect of the exposure 𝐸𝑙  and the interaction effect between 𝐸𝑘 and the genetic risk score, 

respectively. However, as raw data were not directly available, we performed the test of 𝛾𝐼𝑁𝑇 

from summary statistics of interaction effects using an inverse-variance weighted sum as 

proposed by Aschard.14 The chi-square for the interaction term 𝛾𝐼𝑁𝑇 was derived as follows: 

𝜒𝑖𝑛𝑡
2 =

(∑
𝑤𝑖 × 𝛽̂𝐺𝑖𝐸𝑘

𝜎̂𝛽𝐺𝑖𝐸𝑘

2𝑖=1…𝑚 )

2

∑
𝑤𝑖

2

𝜎̂𝛽𝐺𝑖𝐸𝑘

2𝑖=1…𝑚

 

where 𝛽̂𝐺𝑖×𝐸𝑘
 and  𝜎̂𝛽𝐺𝑖×𝐸𝑘

2  are the estimated effects and variance of the interaction between 

the exposure 𝐸𝑘 and the SNP 𝐺𝑖 obtained from Equation 1; and 𝑤𝑖 is the weight applied to SNP 
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𝐺𝑖 . Under the null hypothesis of no interaction effect, 𝜒𝑖𝑛𝑡
2  follows a chi-squared distribution 

with one degree of freedom. 

The standard omnibus test of all interaction effects consisted in evaluating jointly 

𝜶𝑮×𝑬𝒌
= (𝛼𝐺1×𝐸𝑘

, … , 𝛼𝐺𝑚×𝐸𝑘
)  from the model: 

𝑌 ~𝛼0 + ∑ [𝛼𝐺𝑖
× 𝐺𝑖]

𝑖=1…𝑚
+ ∑ [𝛼𝐺𝑖×𝐸𝑘

× 𝐺𝑖 × 𝐸𝑘]
𝑖=1…𝑚

+ ∑ 𝛼𝐸𝑙
× 𝐸𝑙

𝑙=1…3
 

where 𝛼0, 𝛼𝐺𝑖
, 𝛼𝐸𝑙

 and 𝛼𝐺𝑖×𝐸𝑘
 are the intercept, the main effects of SNP 𝐺𝑖 and the exposure  

𝐸𝑙, and the interaction effect between 𝐺𝑖 and 𝐸𝑘. Leveraging the independence between the 

SNPs considered (a single SNP was selected for each independent locus), we also derived the 

omnibus test using summary statistics. Under this independence assumption, the 𝐺𝑖 × 𝐸𝑘  

interaction terms would also be independents,14 so that it can be performed by summing the 

chi-square from each univariate interaction test to form a chi-square with 𝑚 degree of freedom 

as follows: 

𝜒𝑗𝑜𝑖𝑛𝑡
2 = ∑

𝛽̂𝐺𝑖×𝐸𝑘

2

𝜎̂𝛽𝐺𝑖×𝐸𝑘

2
𝑖=1…𝑚

 

where 𝛽̂𝐺𝑖×𝐸𝑘
 and  𝜎̂𝛽𝐺𝑖×𝐸𝑘

2  are the estimated effects and variance of the interaction between 

the exposure 𝐸𝑘 and the SNP 𝐺𝑖 obtained from Equation 1. 

 

Relative risk in ever smokers versus never smokers 
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Genetic risk score interaction effects can further be translated in terms of risk 

prediction. For pulmonary function, low FEV1 or FEV1/FVC increases the risk of death23 and 

together form the basis for the diagnosis of COPD.1-3 COPD stage 2 or higher are defined by the 

Global Initiative for Chronic Obstructive Lung Disease (GOLD) as having FEV1/FVC < 0.70 and 

FEV1 < 80% of the predicted value. According to recent studies,2, 24 between 5% and 20% of 

European ancestry adults are expected to have FEV1/FVC <0.70, depending on smoking 

characteristics and age distribution. Moreover, several studies argue for a more stringent 

threshold to define COPD24, 25 based on lower limit of normal predicted value, rather than a 

fixed absolute value, to prevent disease misclassification.  

To explore the impact of interaction effect on the risk of disease, we derived the relative 

risk (RR) of having FEV1/FVC below a given threshold (1%, 5% and 20%) in ever smokers versus 

never smokers conditional on the unweighted genetic risk score. This quantity is defined as the 

joint probability of having both FEV1/FVC in the interval [−∞, FEV1/FVC𝑢𝑝] and the genetic risk 

score (GRS) in the interval [𝐺𝑅𝑆𝑙𝑜𝑤, 𝐺𝑅𝑆𝑢𝑝]. This can be expressed as the following integral: 

∫ ∫ 𝑓1(𝑦|𝑔, 𝑒) × 𝑓2(𝑔|𝑒) 𝑑𝑦 𝑑𝑔

𝐺𝑅𝑆𝑢𝑝

𝐺𝑅𝑆𝑙𝑜𝑤

FEV1/FVC𝑢𝑝

−∞

 

where 𝑦, 𝑒 and 𝑔 are FEV1/FVC, smoking status and the genetic risk score, respectively, and 𝑓1 

and 𝑓2 are the probability density function of 𝑦 and 𝑔. The detailed derivation of the above 

integral is available as Supplementary data at IJE online. 
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Results 

We selected 26 loci previously found to be associated with FEV1 and/or FEV1/FVC at 

genome-wide significance (P < 5×10-8) in marginal association tests4, 11, 26 (i.e. not including 

interaction effects with smoking exposures), and replicated in the GWAS by Soler Artigas et al.,4 

the largest meta-analysis of marginal genetic effect conducted for these two traits in the 

general population. Additional loci for these two phenotypes have been identified in two recent 

studies.27, 28 However, these new loci were not included in our analysis because both these 

studies used a large cohort ascertained through smoking status. For each of the 26 selected 

loci, we choose the SNP with the strongest evidence for association (i.e. smallest p-value) with 

each of these phenotypes. The final list included 26 SNPs per phenotype, with only two SNPs 

being different between FEV1 and FEV1/FVC as previously reported4 (Supplementary Table 1 

available as Supplementary data at IJE online). Estimated interaction effects of these SNPs were 

extracted from the meta-analysis summary statistics for the four tests performed in the 

Hancock et al.9 analysis: SNP-by-smoking status (ever smoking vs never smoking) interaction 

effect on FEV1 and FEV1/FVC; and SNP-by-smoking pack-years interaction effect on FEV1/FVC 

and FEV1. As showed in Supplementary Table 2 (available as Supplementary data at IJE online), 

nine SNPs showed nominal significance (P < 0.05) out of the 104 tests performed ; however, 

none remained significant after accounting for multiple testing (Bonferroni corrected p-value 

threshold of 5×10-4). The minimum p-value was observed for the interaction between rs993925, 

near the TGFβ2 gene, and smoking status on FEV1 (𝛽𝑖𝑛𝑡 = −0.036, 95% confidence interval (CI), 

-0.009 – -0.032, P=0.007). 
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Next, using these data, we conducted three multivariate (as opposed to single SNP) 

interaction analyses, testing jointly for the interaction effects between those SNPs and either 

smoking status or pack-years on the two phenotypes (FEV1 and FEV1/FVC) for a total of 12 tests. 

As shown in Table 1, none of the multivariate interaction tests with pack-years were significant. 

However, four of the six multivariate interaction tests with smoking status (ever versus never) 

showed nominal significance, and two tests for FEV1/FVC had a p-value below the Bonferroni 

significance level (12 tests, P<4×10-3). . The strongest signal was observed for the unweighted 

genetic risk score by smoking status interaction effect on FEV1/FVC (𝛽𝑖𝑛𝑡 = −0.036, 95% CI, -

0.040 – -0.032, P=0.00057). The Cochran’s Q test for heterogeneity of the interaction effect 

across studies was not significant (P=0.97), and the forest plot of study-specific results did not 

display any obvious outlier (Supplementary Figure 1, available as Supplementary data at IJE 

online). 

The contrast between this significant risk score interaction and the absence of strong 

single SNP interaction effects can be explained by looking at the distribution of the single SNP 

interaction effect estimates. Figure 1 shows this distribution for the alleles associated with 

decreased FEV1/FVC. It highlights that while the 95% CI of most single SNP interaction effects 

encompass the null (and therefore the absence of significant single SNP interaction effect), 

there is an enrichment for negative interaction effects. Indeed, even a binomial test can be 

used to confirm the unbalanced direction of interaction effects (18 out of 26 interactions are 

negative leading to a p-value of 0.014 for a binomial test with an expected equiprobable 

distribution of 0.5). The genetic risk score-based interaction test exploits such enrichment by 

testing for the average interaction effect across all SNPs.14 As with any multivariate approach 
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based on a composite null hypothesis, this result indicates that at least a subset of these 26 

SNPs interact with smoking status, but does not allow us to determine which SNP(s) or how 

many SNPs are driving the genetic risk score-by smoking interaction. The three other sets of 

single-SNP interaction tests showed a similar (but not significant after correction for multiple 

testing) trend with enrichment for negative interactions (Supplementary Figs. 2-4 available as 

Supplementary data at IJE online). We summarized the contribution of the unweighted genetic 

risk score-by-smoking interaction on FEV1/FVC in Table 2 and Figure 2A. This indicates that the 

deleterious effect of smoking is enhanced among carriers of the risk alleles or equivalently that 

the deleterious effect of smoking is reduced among subjects carrying the protective alleles. 

We used two datasets of 8859 unrelated individuals and 9457 related individuals, 

respectively to test for independent replication of our results (Supplementary Note available as 

Supplementary data at IJE online). Both replication samples showed consistent negative GRS-

by-ever smoking interaction effect on FEV1/FVC (𝛽̂𝑖𝑛𝑡 = −0.0025, 95% CI -0.0165, 0.0115, 

P=0.72 and 𝛽̂𝑖𝑛𝑡 = −0.0030, 95% CI -0.0214  0.0154, P=0.74, and overall interaction effect in 

the combined replication datasets 𝛽̂𝑖𝑛𝑡 = −0.0027, 95% CI -0.0136, 0.0082 P=0.63), and a 

Cochran’s Q test for heterogeneity showed no significant difference in the three effect 

estimates (P=0.51). However, despite having total N=18,316 individuals, our combined 

replication sample remains underpowered (<50% power at nominal significance of 5%) and 

analyses including more participants would be necessary to strength the replication evidence 

for interaction effects. 
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To quantify the impact of this result from a public health perspective, we estimated the 

impact of the genetic risk score-by-smoking interaction on having FEV1/FVC below 1%, 5% and 

20% in the lower tails of the distribution in the population. Specifically, we derived the relative 

risk (RR) of having FEV1/FVC below these cutoff points (1%, 5% and 20%) in ever smokers 

compared to never smokers. Figure 2B quantifies the excess RR (i.e. the RR minus one) of 

individuals across five genetic risk score quintiles. It highlights the higher risk associated with 

smoking among individuals carrying risk alleles (i.e. alleles associated with poorer pulmonary 

function) as compared to individuals carrying protective alleles (i.e. alleles associated with 

better pulmonary function). For example, among individuals with a genetic risk score above the 

80th percentile, smokers have on average a 26% excess RR of having FEV1/FVC in the lowest 1% 

of the population distribution, whereas ever smokers with a genetic risk score below the 20th 

percentile have on average a 18% excess RR of falling in that same FEV1/FVC category 

compared to never smokers. Applying the same approach for FEV1, we observed a similar 

pattern (Supplementary Figs. 5 available as Supplementary data at IJE online). However, as 

expected, the lower magnitude of the genetic risk score-by-ever smoking interaction on FEV1 

implied a lower difference in RR between ever smokers and never smokers.     

 

Discussion 

Using the largest dataset to date of European ancestry participants from the general 

population with pulmonary function (FEV1/FVC and FEV1), smoking, and genetic data, we 

identified a gene-by-smoking interaction effect on FEV1/FVC by using a genetic risk score 
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composed of 26 SNPs identified and replicated in a prior GWAS meta-analysis of marginal 

genetic effects. Replication study showed interaction effect estimates in the same direction as the 

discovery study, though analyses including more participants would be necessary to strength the 

replication evidence for interaction effects. To our knowledge, our study is the first to report a 

synergistic action of genes and smoking on pulmonary function, i.e. the reduction in FEV1/FVC 

due to smoking is greater among individuals who are genetically predisposed to lower FEV1/FVC 

ratio. Our study also highlights the importance of developing and applying alternative strategies 

to evaluate interaction effects for lung phenotypes along with other complex traits and 

diseases. The genetic risk score-based approach enabled us to identify an interaction when the 

standard univariate test (i.e. evaluating each single genetic variant for interaction 

independently) failed to identify any interactions.  

Genetic risk score-by-exposure interaction can have higher clinical value than the 

identification of single SNP-by-exposure interaction as it can capture a wealth of information in 

a single measure to identify subgroups in the population whose genetic background makes 

them more susceptible to the deleterious effects of smoking.19, 29, 30 Indeed, if single SNP-by-

smoking interactions are distributed unconditionally on the marginal genetic effect (i.e. 

interaction effects have equal chances to be positive or negative given the coded alleles are the 

risk alleles), the genetic effect will be similar between ever and never smokers on average. The 

enrichment for negative interactions we identified through our genetic risk score approach 

reveals a stronger genetic component among the ever smoker subgroup in the population, and 

can allow the implementation of more efficient implementation of prevention strategies. For 

example, in the public health setting, programs targeting smoking cessation campaigns to 
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individuals who are genetically predisposed to low pulmonary function may have a stronger 

impact in preventing COPD.  

Our results may also elucidate biological mechanisms underlying the interplay between 

genes and smoking in pulmonary function. In particular, the higher statistical power for the 

genetic risk score-based interaction test points towards the potential presence of an 

unmeasured intermediate biomarker mediating the effect of the 26 loci on FEV1/FVC. As shown 

in Figure 3, the most parsimonious model (i.e. the less complex following Occam's razor) that 

would explain multiple interactions going in the same direction (Figure 1) implies the genetic 

variants together influence an intermediate biomarker which itself interacts with smoking. 

Future studies with extended genomic data, including transcriptomic, proteomic, and/or 

metabolomic data, might be able to further assess such an hypothesis by evaluating i) the effect 

of the genetic risk score on those biomarkers, and ii) testing for interactions between smoking 

and the candidate biomarkers identified at step i).   

This study has some limitations. The 26 selected variants together explain a relatively 

small proportion of the additive genetic variance in FEV1/FVC and in FEV1.4 However, GWAS 

with increasing sample sizes will likely continue to provide additional associated genetic 

variants to further assess the role of SNP-by-smoking interaction effects on pulmonary 

phenotypes, and may increase the gap between smokers and never smokers to allow for a 

significant impact in the clinic or at the population level. Moreover, we focused on genetic 

variants previously found to be associated at genome-wide significance level, but future studies 

might consider less stringent criteria to select genetic variants, including those with only 
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suggestive evidence, or alternatively candidate variants with functional annotation relevant to 

the outcomes and exposures in question. Obviously, the signal to noise ratio might decrease 

when relaxing the constraint on the SNP selection. However, as we recently showed, additional 

gain in statistical power might be achieved even if a substantial proportion of the variants do 

not interact with the exposure.14 Finally, investigation of interaction effects with other 

environmental exposures such as secondhand smoke, air pollution, asbestos, or occupational 

risks may lead to a more comprehensive understanding of the biological and epidemiological 

significance of these variants.  

In summary, the identification of interaction effects between genetic variants and 

environmental exposures in human traits is recognized as extremely challenging, and this quest 

has been mostly unsuccessful so far. In this study, we discovered novel gene-by-smoking 

interactions using risk scores, that were not observed at the level of individual genetic variants. 

This risk score analysis suggests that persons with a greater genetic predisposition to low 

pulmonary function are more susceptible to the deleterious effects of smoking. By extension, 

the use of a genetic risk score may help predict which smokers will fall below thresholds that 

establish the diagnosis of COPD.  
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Figure Legends 

Figure 1. Distribution of interaction effects on FEV1/FVC. 

Single SNP risk allele-by-smoking status (ever/never) interaction effect estimates (𝛽𝑖𝑛𝑡) and 95% 

confidence intervals are plotted by increasing values. Negative and positive interactions are in 

dark blue and light blue, respectively. The unweighted genetic risk score-by-smoking status 

interaction is plotted in purple. 

 

Figure 2. Overview of the unweighted genetic risk score-by-smoking interaction effect on 

FEV1/FVC. 

Upper panel (A) presents the distribution of the unweighted genetic risk score (GRS, grey 

density plot) and the relationship between the unweighted GRS and standardized FEV1/FVC in 

ever smokers (red line) and never smokers (black line). Lower panel (B) shows the excess 

relative risk (RR) of having FEV1/FVC in the lowest 1%, 5% and 20% of the population for ever 

smokers compared to never smokers, as stratified by GRS quintiles. 

 

Figure 3. Underlying causal model.  

Potential causal diagrams underlying the gene and smoking interaction effects on FEV1/FVC. 

Panel (A) presents a scenario where each genetic variant influences the outcome through a 

SNP-specific pathway, and interactions with the environmental exposure take place along these 
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pathways. Panel B) presents an alternative (and simpler) model where multiple genetic variants 

influence an unmeasured intermediate biomarker, which effect on FEV1/FVC depends on 

smoking. In scenario (A), the single SNP-by-smoking interaction test is the optimal approach, 

while in scenario (B), the single SNP-by-smoking interaction test can become inefficient and 

interaction would be easier to detect using a genetic risk score-by-smoking interaction test, as it 

summarizes all interaction effects in a single test.  
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Table 1. Multivariate interaction tests of the 26 loci associated with pulmonary function. 

Outcome Exposure Test 
 

𝜷̂𝒊𝒏𝒕 (CI) p-value 
 

        

FEV1 
Smoking 

status* 

uGRS  -0.0055 (-0.011, 2.7x10-5) 0.051 
 

wGRS  -0.21 (-0.40,-0.033) 0.020 
 

CHISQ  - - 0.49 
 

        

FEV1 Pack-years 
uGRS  -1.6x10-5 (-4.6x10-5, 1.4x10-5) 0.30 

 
wGRS  -6.5x10-4 (-1.6x10-3,3.3x10-4)   0.19 

 
CHISQ  - - 0.46 

 
        

FEV1/FVC 
Smoking 

status 

uGRS  -0.0099 (-0.016, -0.0043) 0.00057† 
 

wGRS  -0.21 (-0.33,-0.073) 0.0022† 
 

CHISQ  - - 0.026 
 

        

FEV1/FVC Pack-years 
uGRS  -4.4e-06 (-3.6x10-5, 2.7x10-5)   0.78 

 
wGRS  -6.5x10-5 (-8.0x10-4,6.6x10-4) 0.85 

 
CHISQ  - - 0.53 

 
uGRS is the genetic risk score using equal weights to all SNPs; wGRS is the genetic risk score weighted by effect 

estimates from the marginal screening; CHISQ is the omnibus test of all interaction effects;  

𝛽̂𝑖𝑛𝑡 is the estimated interaction effect between the GRS and the outcome; and CI is the confidence interval of that 

estimate.  

Nominally significant tests are indicated in bold.  

*Smoking status is defined as never smokers versus ever smokers. 

†Significant p-value after Bonferroni correction. 
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Table 2. Summary of effect estimates for genetic risk score-by-smoking status interaction on 

FEV1/FVC. 

Predictors beta SD p-value 

From the marginal exposure model 

Pack-years -0.0030 0.00017 1.2 x 10-71 

Current smoking -0.040 0.0047 7.7 x 10-18 

Smoking status* -0.0023 0.0046 0.61 

From the interaction model 

GRS -0.0363 0.0021 3.9 x 10-64 

GRS x Smoking status* -0.0099 0.0029 5.7 x 10-4 

GRS is the unweighted genetic risk score ; beta is the effect estimates of each predictor; and SD the standard 

deviation of the each beta. 

*Smoking status was defined as never smokers versus ever smokers 

 

 


