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Abstract
Background

Methods for estimating air pollutant exposures for epidemiological studies are becoming more
complex in an effort to minimise exposure error and its associated bias. While land use regression
(LUR) modelling is now an established method, there has been little comparison between LUR and

other recent, more complex estimation methods. Our aim was to develop a LUR model to estimate

intra-city exposures to nitrogen dioxide (NO;) for a Sydney cohort, and t those with
estimates from a national satellite-based LUR model (Sat-LUR) a sian Maximum

Entropy (BME) model.
Methods

Satellite-based LUR and BME estimates were obtai ing € . used methods
PE) methodology to
plers across western

ensity, and traffic volumes for

omparing the standard LUR with Sat-LUR NO. cohort estimates, the mean
R were 4% higher than the Sat-LUR estimates, and the ICC was 0.73. The

Pearson’s correlation coefficients (CC) for the LUR vs Sat-LUR values were r=0.73(log-transformed

estimates from the

data) and r=0.69 (untransformed data). Comparison of the NO, cohort estimates from the LUR
model with the BME blended model indicated that the LUR mean estimates were 8% lower than the
BME estimates. The ICC for the LUR vs BME estimates was 0.73. The CC for the logged LUR vs

BME estimates was r=0.73 and for the unlogged estimates was r=0.69.

Conclusions



Our LUR models explained a high degree of spatial variability in annual mean NO2and NOx in
western Sydney. The results indicate very good agreement between the standard LUR, national-
scale sat-LUR, and regional BME models for estimating NO- for a cohort of children residing in
Sydney, despite the different data inputs and differences in spatial scales of the models, providing

confidence in their use in epidemiological studies.
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Background

Methods for estimating air pollution exposures in epidemiological studies have evolved substantially
over the last 15 years, from simple measures such as assigning concentrations from the nearest air
quality monitor, to models with increasing complexity and computational requirements. This has
been driven by the need to reduce exposure misclassification and hence improve the validity of the
estimation of air pollution — health response functions. There are several factors that influence the
selection of the optimal approach to exposure modelling. These include the nature of the pollutant,
its temporal and spatial distribution and the nature of the health effectbeing“assessed. These
factors also influence the choice of appropriate epidemiological study desigh, (Baxtenet al. 2013).
Notwithstanding all these considerations, it will always be impertant to'select exposure‘estimation
methods that are most reliable and accurate (Baxter et al. 2013; Brauer et'al. 2008; Sellier et al.
2014).

Land use regression (LUR) has been widely used to estimate coneentrations of NO2, NOx, PM1o
and PM.s (Hoek et al. 2008; Ozkaynak et alf2013; Ryaniand LeMasters2007). LUR modelling
gained popularity for estimating NO2 and NOxjbecause of theyavailability of relevant land use data
and the ease with which empirical datasfer NO. and NOXx could be collected from multiple locations
using passive samplers. It has been used toiestimatejpollutant concentrations in various geographic
settings ranging from very locahscales, includingia previolis study in a 50 km? area of Sydney,
Australia (Rose et al. 204, to intra-cityiscales in Canada (Crouse et al. 2009; Henderson et al.
2007; Jerrett et al. 2007), the,USy(Gonzales‘€hall 2012; Jerrett et al. 2013), Europe (Beelen et al.
2013), the UK (Briggs et al. 2000), and¥Asian cities (Chen et al. 2010; Choi et al. 2017; Gurung et
al. 2017).

Recentlenhancements to LUR, modelling include the incorporation of data obtained by satellite
monit@ring, whichyallows pollutant estimation over very large areas, for instance, national or
continentalscales (Bechle“et'al. 2015; de Hoogh et al. 2016; Hoek et al. 2015; Hystad et al. 2011;
Knibbs et al. 2014; Novotny et al. 2011; Vienneau et al. 2013; Young et al. 2016), and even globally
(Larkin et al. 201%)¢As LUR modelling alone does not incorporate data on chemical transformation,
such as the formation of secondary and tertiary pollutant formation (de Hoogh et al. 2016), and is
considered less suitable for modelling background concentrations at large scale, the incorporation
of satellite data mitigates this limitation of LUR models. However, the disadvantages of relying on
satellite data is the need for high-level technical expertise for data manipulation and the need to
deal with missing satellite data. Furthermore, satellite-based models in the absence of other

predictor data, may underestimate variability of ground based measurements as they are less able



to capture small scale spatial variation especially near point or linear sources of pollution (Geddes
et al. 2016; Kharol et al. 2015; van Donkelaar et al. 2015).

Dispersion and chemical transport models (CTMs) are other common methods for assigning air
pollution exposures (HEI 2010; Ozkaynak et al. 2013). Dispersion modelling utilises data from
emissions inventories, meteorological data, knowledge of air chemistry and relatively complex
mathematical modelling. While these models can provide high temporal resolution they may lack the

fine spatial resolution needed to describe the distribution of exposure to NO2 and NOx, which have

steep spatial gradients.

promise of incremental improvements,i ision. e improved predictive power
gained through the Bayesian app ost of substantially greater complexity and,

hence, the need for more co

residential addresses of chi i Asthma Prevention Study (CAPS) cohort in

Sydney (Garde ; are those LUR model estimates with estimates from a

Previous analysesiinvestigating the association between weighted road density, as a marker of
traffic related air pollution, and respiratory and allergic outcomes in this cohort found that weighted
road density within 100m of the home address, was associated with an increased risk of house dust
mite allergy and allergic rhinitis (Hansell et al. 2014). For future exposure-response analyses of this
cohort, we aimed to apply more accurate air pollution estimates by developing a standard NO2/NOx

LUR model.



Our second aim to compare NO; cohort estimates calculated from the three different spatial models
is important, especially for settings where there may be limited capacity to develop more complex
exposure models. To do this, we assessed the agreement between three estimates of NO; for each
cohort address, derived from the standard LUR model and two alternative models: a national sat-
LUR model (Knibbs et al. 2014); and an ensemble BME regional model (Hanigan et al. 2017). While
a number of studies (Table S1) have compared pollutant estimates derived from different hybrid
models, to our knowledge there are no studies that have examined the agreement between three

such models with substantially varying spatial scales.
Methods
Study area and site selection

Sydney is a coastal city located on the eastern seaboard in'the statedof New South Wales, Australia.
Greater Sydney (Greater Capital City Statistical Area as,defined by the Australian Bureau of
Statistics (ABS)) covers an area of 12,368 km?, and is fringed bysthe Central Coast to the north,
national parks to the south and the Blue Mountains to'the west (Citylef Sydney 2018). In 2017 it had
a resident population of 5.1 million peopleand a population densityof 407 persons/km?, although
the built urban area, estimated at 4,064 km?, supports a densitypefd,237 persons/km? (City of
Sydney 2018). The study area for development ofthe LUR comprised the western half of the urban
area of Sydney, covering 3122 km#.The home,addresses of the members of the CAPS cohort at
time of recruitment were all within thisystudy areai(Figure™). Over the fourteen years of cohort
follow-up, some cohort members movedie new addresses outside the study area, for which we did

not attempt to estimate exposures:

We followed methodsfrem the European Study of Cohorts for Air Pollution Effects (ESCAPE) study
for site selectiony, measurement and development of the LUR models (Beelen et al. 2013; Eeftens et
al. 2042)."NQzandiNOx were measured at 46 sites that were chosen to represent: 1) the range in
pollutant concentrationglikely/to occur in the study area; 2) the likely range in predictor variables;
and 3) the'geographie extent of the study cohort addresses. Where possible, sites were located
outside or closgyto cohort members’ houses. Sites ranged from urban background sites with very
low expected traffic eounts and away from industry, to sites along major roads. The busiest of these
roads recorded >73,000 vehicles per day (vpd) whereas quiet back streets were estimated to have
less than 500 vpd. We categorised sites according to the ESCAPE protocol, but were mindful that
Australian cities exhibit quite different geographical traits to European cities; they are generally
larger in area and have lower population and dwelling densities, tend not to be subject to street
canyon effects except for in central business districts, and are more reliant on personal vehicle use.
We categorised the sites a priori based on local knowledge: 18 sites as traffic sites, 26 as urban

background sites, and two sites as regional sites. Traffic sites were over-sampled given that traffic



is a major contributor to NO2/NOx in the Sydney metropolitan region contributing 62% of NOx
emissions (NSW EPA 2012). One site was co-located for comparative purposes with an Office of

Environment & Heritage (OEH) regulatory monitor in Prospect, a western Sydney suburb.
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We used Og
the 46 sites. The
measurement periods as per the ESCAPE study protocol: 22 July-5 August, 2013 (winter-cold

olers were placed in situ for two weeks in each of three seasonal

season); 28 November-12 December 2013 (summer-hot season); and 18 March-1 April, 2014
(autumn-intermediate period). Duplicate samplers were randomly assigned and deployed at 11-13%
of sites, varying by round. One pair of duplicate samplers was placed at the OEH fixed site monitor
during each round of testing. Measurements were excluded when variability between duplicate
samplers at the same sites exceeded 30%. Two field blanks and two laboratory blanks were also
deployed per round. All samplers were simultaneously deployed and collected over an 8-10 hour



day across the study area to minimise the influence of meteorological impacts. Most samplers were
placed on telegraph poles at a height of 2.2m to avoid tampering. However 3 samplers were placed
under awnings at cohort dwellings. Samples were refrigerated until sent by courier to Edith Cowan
University, Western Australia, for spectrophotometer analysis by the same laboratory used for the
Perth LUR NO2/NOx analysis (Dirgawati et al. 2015). The detection limits were 2.0 ppb (3.76 ug/m?3)
for NO, and 3.4 ppb (6.39 ug/m?) for NOx. ESCAPE Excel calculation sheets for NO, and NOx
concentration calculations were used, taking into account local temperature, relative humidity and

field blank results.

Annual average concentrations for NO2 and NOx were calculated from thethree'measurement
periods, after correcting for temporal variation, according to ESCAPE "Study, methads. For each site
the measured concentration was adjusted by using data from a continuously operatingregulatory
monitoring site at Prospect (within the study area). In summary, thessite concentrations were
adjusted by subtracting the difference between the annual average concentration at the reference
site and the measured concentration at the reference site for theyrelevant two week monitoring
period (Cyrys et al. 2012; ESCAPE Study 2010). Thistallowed us toluse data for all sites, even

where data for only two of the three measufement periodgywere available.
Latitude and longitude coordinates fogeach sitewere assigned tusing Google maps.
Predictor variables

Data for the potential predictor vasiableg,were collated from various sources (Supplementary Table
S2). Buffers of varying sizes wese caleulatedyto represent the density of specific classes of land use,
population and dwelling densityy, andtraffic counts on all roads within each buffer. ArcGIS 10.3
(ESRI, Redlands, CATUSA) was Used to create the geographic variables and buffers and to
calculate distance based variables (egdistance to main roads). The software R 3.2.1 (using the
packages raster, rgeos, rgdal)was used to create and process some of the variables ie combined
traffic variables, population and household densities, land use densities. All spatial datasets were
convertedte, WGS 84/UTM zone 56S (EPSG:32756) for consistent projection in metres.

Land use data framdhe Australian Bureau of Statistics (ABS) at mesh-block level was extracted
(ABS 2011). A mesh-block (MB) is the smallest statistical area available in the hierarchical ABS
Australian Statistical Geography Standard 1270.0.55.001 (ASGS 2011) and represents around 30-
60 dwellings. The ABS assigns each MB a land use category based on the planning designation for
the majority of land in that area. ABS land use data were collapsed from nine land use types to four

(residential, industrial, commercial and open) for LUR model development.



Data on resident population and number of dwellings was obtained from the 2011 ABS Census
(ABS 2011), and the population and number of dwellings in each MB were divided by the MB area

to create density variables.

Elevation data were obtained from GeoScience Australia and comprised Digital Elevation Models
(DEM) using SRTM 1 second data (approximately 30 m resolution) from the Shuttle Radio
Topography Mission (SRTM) conducted by NASA with Space Shuttle Endeavour over 11 days in
2000, where 80% of the Earth’s surface topography was mapped (Gallant et al. 2011). The DEM-S

(smoothed digital elevation model) was used to extract the elevation at each ofithe sampling sites.

Traffic data were obtained from two sources: the Zenith traffic modelg@ne,the NS\WiLands and
Property Information (LPI). The Zenith traffic model was built using“all available traffigocount data
from Roads & Maritime Services (RMS), the NSW governmehnt authorityiwith responsibility, for all
primary (highways, motorways, arterial/main, sub-arterial/main), and 'seme‘secondary roads
(distributor roads) together with data from local coun€ils*ér local roads where available (Zenith
Traffic Model 2014). The Zenith model combines theitraffic countidata with \data from road and rail
networks, land use data, household travel sufueys (destination and purpese of journey), to estimate
traffic counts for all of the Greater Sydney Metropolitan Areay(GSMA)for non-local roads and a
small proportion of local roads. Zenith.modelledtraffic data were“used to calculate many of the

traffic related variables (Table S2).

To capture local roads in our traffic GIS layer, we combined the Zenith traffic modelled data with
road network data from thelkP| to'abtainia,representative layer of traffic counts for all roads. These
two sources of traffic data were combined in"AreGIS to assign a traffic count to all roads. Where
counts were miSsingplocal roadsiwere ‘assigned a count of 500 vehicles per day (vpd) and a count
of 20 vpd for heavy vehicles. Major f@ads were defined as roads with counts >5000 vpd, consistent
with the,ESCAPE,study. Where counts for heavy vehicles were missing for major roads, they were

assigned a count of600 heavy vpd.
LUR model development

Multiple regressiongnodelling was conducted separately for NO2, and NOx. The measured NO; and
NOx readings were the outcome variables in the regression models. Models were built using a
standardised stepwise forward selection procedure, in accordance with the ESCAPE methodology
(Beelen et al. 2013). Univariate analyses were conducted to identify the variable contributing most
(highest adjusted R?) to the variation in the pollutant. The remaining variables were then separately
added to the model to determine the model with the next highest adjusted R2. Variables were added
and retained in the model in accordance with ESCAPE criteria (Table 1 (footnote)). We excluded

variables from the model when they had >75% zero values. Variables with different buffer sizes



were added to the model as indicated above. There were 135 potential predictor variables

considered in the regression models.

Diagnostic tests used to select the final models included: 1) variance inflation factor (VIF) was
required to be < 3, representing a lack of collinearity between the variables; 2) an examination of
influential observations using Cook’s distance (D) >0.8; and 3) an examination of Moran’s | test for
heteroscedasticity, normality and spatial autocorrelation of residuals (testing the assumption of
independence). If the final models resulted in Cook’s D values >0.8, the relevant sites were
sequentially removed from the model and the relative changes in variable parameter estimates, the
p values of the variables and the model adjusted R? were examined to detémminethe changes in the
model structure. For each of the sites, we also considered type and natureyof the'site eg whether a
site might represent heavy traffic because of its location, and thus thealue 'of retainingythe site in

model development.
LUR model validation

We used “hold-out” validation to check the robustness ef our modelsy(Dirgawati et al. 2015; Gulliver
et al. 2013; Johnson et al. 2010; Wang et al. 2012; Wang et al. 2016). Hold-out validation is
considered to be an improvement on leave-onesout cross-validation (LOOCYV) validation which has
been found to overestimate the explanatory poweref LUR models when the number of sample sites
is small (Wang et al. 2012). Hold-out validatiom,withholds specified randomly selected subsets of
sampling sites as “training” datasets‘and develops models’based on a smaller number of sites. Due
to the relatively small number, of samplingysites in our study, we ran three separate hold-out
modelling procedures as a sensitivity analysis,first' with-holding 10% of data points (10-fold), then
25% (4-fold) and fiRally 50% (2-fold) of dataypoints. We used the R3.2.1 statistical package for this
analysis. The RMSE represents theabsolute difference between predicted and measured

concentrations and so is antindicator of reliability of the LUR prediction model.
Back and forward, extrapolation of annual average concentrations

LUR modelSiwere used to estimate annual average concentrations of NO, and NOx at the cohort
addresses for theystdy period, July 2013-June 2014. To avoid over-extrapolation of pollutant
estimates at the cohort addresses, we restricted or “truncated” values for the predictor variables to
those observed at the field monitoring sites, when running the models (de Hoogh et al. 2014;
Dirgawati et al. 2015; Wang et al. 2012).

These cohort estimates were then adjusted both backwards (pre-2013) and forwards (post-2013) in
time using the mean of the average annual concentrations from five fixed site regulatory monitors

located within the study area (Prospect, Liverpool, Chullora, St Mary’s, Richmond), and using 2013
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as the base year. The cohort estimates were adjusted by the difference in concentration between
2013 (base year) and the year of interest which was dependent on when the cohort participants

were tested.

NO:; predictions at the CAPS cohort addresses and comparison with sat-LUR estimates and

BME model estimates

In brief, the national Sat-LUR used NO- data from fixed site regulatory monitors from around
Australia (n=68) as the outcome variable, and satellite derived NO; estimate§ from the Ozone
Monitoring Instrument (OMI) from the Aura satellite, land use, and traffiagdata as\predictor variables
(Knibbs et al. 2014). Generalised estimating equation (GEE) modelsgWiere usedyto develop annual
models for 2006-2011, but for this study were updated with 2013 data, (satellite and fixed monitor
data). The Sat-LUR model was validated using passive samplerNO, data (including dataifrom this
study) and was found to predict 58% of variability across all sites and69% Vvariability at the urban

near-traffic and background sites in two capital cities{(Sydneyiand Perth)(Knibbs,et al. 2016).

Bayesian maximum entropy (BME) modelling uses Bayesian analyses to blend different sources of
data with varying temporal and spatial reselutions, with the,objective,of garnering all data into a
blended estimate which is improved and'more‘precise (ie smalleruncertainties). The BME model
used in this analysis combined NO2 estimates fromathe Sat-LUR model, a Chemical Transport
Model (CTM) and regulatory fixed 'Site monitors. The predictive BME model was built using 2011
data, but validated using the NQgz passive samplendata collected in 2013-14 for our standard LUR
model, and then adjusted for,seasonal differences. This was due to an absence of alternative
independent data from 201100 note, NO, data from the fixed site monitors showed only minimal
change duringdhe period 2011-2014. The BME reported 6% and 16% improvements in root mean
square error (RMSE) compared withithe Sat-LUR and CTM models respectively, when compared

using a.Sydneywide study area for that analysis (Hanigan et al. 2017).

We estimated NOj,coneentrations for all CAPS cohort addresses within a 15 km radius of the
passive sampler sites,using the LUR model, the Sat-LUR and BME model. This study area of 3122
km? encompassed all of the CAPS cohort addresses at time of recruitment and represented an area
for which we could eonfidently estimate exposures using the model. For the LUR model the
explanatory regression variables were calculated for each geocoded address and the estimates
made using the NO2 and NOx regression equations. For the model agreement analysis, estimates
using the Sat-LUR model and the BME model were calculated as follows: the Sat-LUR estimates
were based on the centroids of each mesh-block (smallest geostatistical area used in the Australian
census) and assigned to each cohort geocode; the BME model estimated NO, concentrations for
centroids on a 100 x100 m grid. All three models were used to estimate NO2 concentrations during

2013 to enable agreement comparison.
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As the NO; concentrations were log normally distributed, we used the natural logarithm of the values
to conduct the following agreement analyses: visual examination of agreement using scatter plots
and calculated Pearson’s correlation coefficients as commonly reported in the past; and Bland-
Altman plots and calculation of the intra-class correlation coefficients (ICC) (Shrout and Fleiss inter-
rater reliability test) to estimate relative and absolute agreement. The Bland-Altman plots and ICC
calculations are the most appropriate statistical tools for assessing agreement between two
methods (Giavarina 2015; Koo and Li 2016), but have been seldomly applied for comparing LUR
and other model estimates (Buteau et al. 2017; de Hoogh et al. 2014).

diagnostic tests, and ICC. The LUR model was used to produce
250 m gridpoints across the study area, and these were map

using R software version 3.2.1.

Results
Figure 2 shows the distribution of NO» an ions, as measured by the Ogawa passive
samples, classified by site type. NO2 co i 0 17.6 ppb (7.1 to 33.1 ug/m?3)

and NOx ranged from 6.5 to 43.4

a) NO, by site type b) NOx by site type
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Figure 2. NO2 and NOx concentrations by site type

All Ogawa samplers returned readings above the detection limit. Five pairs (29%) of duplicate NO2

readings were excluded as they had > 30% variability. One of these pairs included a cracked
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sampler and two other pairs included samplers that had been incorrectly installed. Supplementary
Table S4 shows the NO; concentrations measured by the Ogawa passive samplers that were co-
located with the OEH fixed site chemiluminesence monitor. The winter readings could not be
assessed due to four days of missing data at the OEH sites. The summer readings were 3.0 ppb
lower on the Ogawa passive sampler (5.5 ppb passive sampler vs 8.5 ppb regulatory monitor); and

autumn readings were 1.2 ppb lower on the Ogawa sampler (9.2 ppb sampler vs 10.4 ppb monitor).

Traffic variables, particularly those related to heavy traffic and major roads, population density within
5 km, dwelling density within 100 m, and commercial land use were the strongest predictors of NO2
and NOx in each LUR model (Table 1). The best NO, LUR model had an'R#=0.84,and RMSE= 2.35
ug/m3. Moran’s test (p=0.97) indicated that there was no spatial autecorrelation. The best LUR
model for NOx had an R?=0.916 and RMSE=4.35 ug/m3. Moran’s testi(p=0.96) indicated that there

was no spatial autocorrelation.

For the NO2 and NOx models, one and four sites respectively, were found'ito have Cook’s D values
>0.8. These were sequentially removed from the model but the medel structures and estimates did
not change substantially (<10%) with exclusion, of any ofithe sites. Thusgall sites were retained in

the model.

Validation of the models

In all three “hold-out” scenarigs the estimated'R? and RMSE were similar to the estimates in the

initial model (Table 2). This lendsysuppert to the reliability of the selected models.

Figure 3 (a, b) illustrates thelNOziand"NOx spatial predictions over the study area estimated by the
LUR models. Expanded views ofypart ofithe,study area incorporating the suburban centres of

Parramatta and|Liverpoohare provided to illustrate the variation in pollutant estimates.

Comparison,of standard LUR estimates with satellite-LUR estimates for the CAPS cohort

addresses

Table 3 provides summary statistics for the estimated NO, concentration at the CAPS cohort
addresses according to the LUR, the Sat-LUR and the BME models.

There was good agreement between the NO; LUR and both the Sat-LUR NO; and BME model
estimates. The ICC for comparison of all three methods was 0.93. The Bland-Altman plots (Figure
4) and the scatterplots (Figure 5 and Supplementary Fig S1 (untransformed values)) illustrate that
the three sets of model estimates showed very good agreement, although there was greater
variability in the estimates at higher NO- concentrations. The scatter plots also showed that both the
Sat-LUR and BME model estimates were higher than the LUR estimates at lower NO>

concentrations and lower than the LUR estimates at high NO2 concentrations.
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Table 1. LUR models for NO; and NOx for Western Sydney, 2013-2014

Pollutant predictors** Coefficient Standard Standardised P VIF | Increm-
Error coefficient* ental R?

NO;
Intercept 5.7295 1.0983 16.5454
Product of traffic intensity on nearest major 0.0015 4.079 x 10* 1.9094 0.039 2.31 0.49
road & inverse distance to the road
(vpd/metre) @
Population density within 5000 m (number of 3.91x10°% 6.99 x 10 2.0419 <0.0001 1.09 0.65
people)’
Dwelling density within 100 m (number) 0.0653 0.0173 1.4682 <0.0006 1.34 0.73
Heavy traffic intensity on nearest road (vpd)® 0.0012 2.401 x 10 2.6114 0.001 2.26 0.80
Commercial land use within 700 m 9.96 x 10 3.00x 10® 1.3523 0.002 1.36 0.84
(proportion of land area within buffer
distance)
NOx
Intercept 23.6982 3.554 30.9472 <0.0001 0
Length of major roads within 75m buffer 43.3518 6.9328 5.2753 <0.0001 1.69 0.58
(metres) ¢
Product of heavy traffic intensity on nearest 0.0558 0.0073 7.0991 <0.0001 2.04 0.70
road & inverse distance to nearest road
(vpd/metre)d
Dwelling density within 100 m (number) 0.1116 0.0329 2.6182 0.0016 1.42 0.79
Elevation (square root) (m) -1.770 0.3326 -3.8857 <.0001 1.27 0.84
Heavy traffic intensity on nearest major road 0.0012 2.671 x 10+ 3.3809 0.0001 1.46 0.88
(vpd)
Commercial land use within 500 m 3.42x10° 9.37 x 10 27218 0.0008 1.32 0.90
(proportion of land area within buffer
distance)
Population density within 5000 m (number of 4.039x 10° 1.344 X10° 2.1078 0.0047 1.17 0.92

people)

** Variables added and retained in the models when: 1) absolute increase in adjusted R? >1%; 2) coefficients
in the pre-specified expected direction and, 3) direction of effect of the coefficients of the retained variables

did not change with addition of the new variable.* Predictor variables in the final model were used to

generate standardised predictor variables (and coefficients) by subtracting the mean for each variable from
each value for that variable and dividing by the standard deviation (SD).

@ Intmajorinvdist (ESCAPE name)
b Heavytrafnear

¢ Majroad75

d Heavyintinvdist

¢ Heavytrafmajor
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Table 2. Results from hold-out cross validation of NO, and NOx LUR models

Hold out % data points Adjusted R? RMSE
validation used for
training dataset
NO2model 0.84 2.35
10-fold 10% 0.82
4-fold 25% 0.85
2-fold 50% 0.85
NOx model 0.92
10-fold 10% 0.90
4-fold 25% 0.90
2-fold 50% 0.85

Table 3. Summary statistics for NO; (p
LUR, Sat-LUR and BME model

cohort addresses by the

Model Max | 25% | 75%
LUR 17.7 6.1 8.2
Sat-LUR 1.9 3.6 18.0 5.8 7.9
BME 1.9 4.5 18.1 6.6 8.9

r=0.73 and fo

gged estimates was r=0.68.

higher than the Sat-LUR estimates (95%Cl: 3% to 6%). The
here 95% of the values for the fold difference between the two
it) and 1.52 (upper limit) (antilog values of Figure 4a). The ICC for
. The correlation between the LUR and Sat-LUR (log values) was

The mean estimates for the LUR model were 8% lower than the BME estimates (95%Cl: -9.5% to -
7%). The lower and upper limits of agreement were between 0.64 and 1.31 fold difference,
respectively (antilog values of Figure 4b). The ICC for the LUR vs BME estimates was 073. The
correlation between the LUR and the BME estimates (log value) was r=0.73 and for the unlogged
estimates was r=0.69.
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Figure 3 Surface maps of LUR (a) NOz and (b) NOx concentrations, for western Sydney

and expanded view (Parramatta and Liverpool), 2013-2014

L 9 -
"!# Campbelltown
r

NO, concentration (ppb)

I 0.0t02.5

25t05.0
50t07.5
7510 10.0

10.0t0 12.5
12.5t015.0

15.0t017.5
17.5t020.0

Richmond

Al
Penrith
i e

’ ol -
Campbelltown.
n

Liverpool:# .

.‘..

LY s
- i R

NO,concentration (ppb)

I0t05

5t0 10
10t0 15
15 to 20
20 to 25

2510 30

30to 35
35t0 40

7

a) NO; concentrations

d
NO, concentration (ppb)

I 00t025
25105.0
50t07.5
7510 10.0
10.0t0 125
12510 15.0
15010175
17510200

b) NOXx concentrations

NO, concentration (ppb)

I0t05

51010
10to 15
150 20
20t0 25
25 t0 30

l30to35
351t0 40

Parramatta

1 2 3 4 5k

A

Liverpool

Figure 4. Bland-Altman plots of level of agreement (log ppb)

16



.808612 ?,

logsat - loglur

-.72504 °
1 .2‘225

260994
Average

a) Sat-LUR vs LUR NO; estimates (log ppb)

Figure 5. Scatter plots of estimates from a) LUR vs Sat
Scatter plot matrix; ¢) LUR vs Sat-LUR NO;; d) LP

o

25
L

log(NO2 ppb)
2
1

25 3
LUR log(NO2 ppb)

® Satellite @ Bayesian

2 25
L L

Satellite (log(NO2 ppb))

1

1.5

2 2.5 3
LUR (log(NO2 ppb))

Discussion

logbme - loglur

1.11414 °

-.629856 —| °

T
1.31889

R (b

logsat

logbme

BME (log(NO2 ppb))
2 25
1 1

1

1.5

T T T T T
1 15 2
LUR (log(NO2 ppb))

17



We developed standard LUR models with high spatial predictive capability of 84% and 91% for NO»
and NOx respectively, for an area covering around 75% of the built urban area of Sydney. We also
show that estimates from the standard LUR models that we developed specifically for the study
area agree well with estimates from more complex models incorporating both satellite and CTM

data developed for much larger areas.

The validity of our models, 84% and 91% for NO2 and NOXx, respectively, compare well with the
better predictive models from the European ESCAPE study (Beelen et al. 2013), North America
(HEI 2010) and those reported in reviews of LUR modelling (Hoek et al. 2008;Y\Ryan and LeMasters
2007). For example, the ESCAPE NO2 models explained 55 to 92% (mediam82%) of the variation
in NO2 and 49 to 91% (median 78%) in NOx, across 36 study area$ in Europe (Beelen et al. 2013).

In Australia, only three previous LUR NO; models have used'empirical ground based
measurements; one in a small study area in Sydney (Rose ‘et al. 2011))onefor Perth, a
metropolitan city on Australia’s west coast (Dirgawati'et'ak 2045); and a recent'model for Brisbane,
a tropical city in northern Australia ((Rahman et al. 2017). The earlier Sydney model, incorporating
fixed site monitored data and a simpler traffieftpeasure(weighted roadidensity), developed for a
much smaller area (50 km?) in northern Sydney, explained80% of the overall variation in NO, (Rose
et al. 2011). However, it was uncertain,whetherthis model could“be’extrapolated across Sydney
due to its small scale. We also updated theleurrent 'study using traffic counts as a model input. The
Perth LUR model reported predictions of 69% and 75%"in,NO2 and NOx variability, respectively,
across the metropolitan Perth area (Dirgawati et als2015). The Brisbane models explained 64% and
70% of variability in NO, and"N©x concentrations#aespectively, but are not directly comparable to
the Sydney models as they estimatedydaily pollutant concentrations using short-term and long-term
monitoring campaigns,jand samplejsites were restricted to schools and EPA monitoring sites which

may not represent the full'tange of expected concentrations (Rahman et al. 2017).

Annual mean N©, and NOx cancentrations in Sydney (9.2 ppb NO», 17.1 ppb NOx) were almost
twice asthigh as foePerthi(813 ppb NO, and 9.9 ppb NOXx). Our mean concentrations for NO, were
similar to thase in ESCAPE models from Scandinavia and Hungary and Erfurt, Germany, but
substantially lower, than for England and other European countries, albeit sampling for the ESCAPE
models occurred between 2008-2011 (Beelen et al. 2013).

Slightly different predictors were chosen for our NO2 model compared with the NOx model, which is
expected given that NOx is a primary pollutant and NO- a secondary pollutant formed by reaction of
NOx with oxygen in the atmosphere. As a consequence these two pollutants have different scaled
spatial contrasts (Karner et al. 2010). The slightly different predictors for each model are consistent
with the ESCAPE models for various cities (Beelen et al. 2013). Nevertheless, the nature of the

predictors was similar for both pollutant models in that the main predictors related to: heavy traffic,
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population density, dwelling density, and commercial land use, and each model included at least
two traffic variables. We found commonality in the final variables selected in our model and the
previous small-area Sydney LUR model (Rose et al. 2011), which included two traffic density
variables, population density (within 500 m) and commercial land use (within 750 m). The Perth
LUR models reported traffic intensity on the nearest road, household density, industrial land use,
and road length within 50 m the main predictor variables for both NO2 and NOx (Dirgawati et al.
2015). In Europe, the most consistently chosen explanatory variables across the 36 ESCAPE study
areas included small-scale traffic and population and household density (Be€len et al. 2013). Our
models demonstrate that variables reflecting traffic density (including heayy traffic on main roads)
and distance to roads, are the strongest predictor variables for NO, anghNOX pellution in Sydney.
This is not surprising, given that traffic contributes approximately 62% of NOx emissions in Sydney
(NSW EPA 2016). Related to this finding, the results from th€ passive samplers substantiated the a
priori categorisation of sampling sites and demonstrated that NO. andINOXx‘€oncentrations were
greatest at the traffic sites, lowest at regional sites representative of the tUrban-rural fringe, and
midway between the two categories at the urban background siteg,which were representative of

suburban backstreets.

We report good agreement between the'NO, €éohort exposurelestimates derived from our LUR
model and the estimates derived from"béth the natienal Sat-LUR model and the BME model for our
study area. There was little difference betweehn the mean estimates for the three methods, with this
difference being much lower than the precision fQk, passive’sampler analysis. The Sat-LUR model
however, resulted in slightliplowermeaniand median estimates than did the LUR model, which may
be a function of the location‘of theysegulatory'measurement sites used as the outcome variable for
Sat-LUR modelfbuilding, whichimySydney are at “background” locations. For all summary measures
the two methods were highly comparable. Both models included traffic variables as major predictors
of NO,,\Ale conclude that, atleast in the present setting, the choice among the alternative models
shodld be made,onithe basis of,availability of data and feasibility, as all three models yield similar
findingsiikrom a broaderperSpective, the choice of application of a specific exposure model for

epidemiologieal purposes will also be guided by the spatial extent of participants and study design.

The BME model estimated slightly higher mean, minimum and maximum NO- concentrations than
the LUR model, however the mean difference between estimates from the two models was very
small. The small differences might be due to the different spatial resolution for pollutant estimation:
the Sat-LUR method was based on centroids of each mesh-block whereas the BME model
estimated concentrations for centroids of 100 x 100 m grids. The BME model also incorporates
information from the CTM model, which is reliant on pollutant inventory data, and thus likely to
represent industrial source contribution of NO- differently to the industrial land use density data

used for LUR and Sat-LUR model development.
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One key feature of our study is that it compares estimates from models applied at different spatial
scales. Even when using just one model method such as LUR, use of varying spatial scales for the
same area can reveal different patterns with sometimes poor transferability (Marcon et al. 2015),
particularly for pollutants with strong spatial gradients. Our results indicate that the variation in
spatial scale of the three models does not appear to be a substantial limitation in the context of this
study, seen by the good model(s) agreement and similar summary statistics for the estimates.
However, our study found that the models with lower spatial resolution (Sat-LUR and BME), tended
to predict higher concentrations at background sites compared with the LUR @nd the difference in
spatial gradients may have contributed to the small variation in NO: estimates. The higher
concentrations estimated by the Sat-LUR and BME models might begxplainedyby.the fact that the
standard LUR relies on local knowledge of the study area characteristics forisite selegtion so as to
maximise the range of measured pollutant concentrations. Hénceptheoretically it is bettepplaced to
capture minimum and maximum concentrations. Understanding how the potential biases at the
lower and upper ends of our NO exposure range mightimpact,on the expesuresresponse
coefficients in epidemiological analyses is important.We will testithis by applying all three estimates
to the CAPS cohort.

To date we have found no other studies‘of NOgestimation thatyhave compared agreement, using
appropriate agreement statistics, bétween, UR madels and separately developed models using
satellite data or Bayesian methods, that mightiindicateiwhether this finding is generalizable to other
countries or areas. In Supplementary il able S1 we summarise results from studies (Beelen et al.
2010; Buteau et al. 2017; de,Hooghyet ala2014; Hennig et al. 2016; Marshall et al. 2008; Sellier et
al. 2014; Wang et al. 2015; Wuetial. 2011 1) thatthave compared LUR estimates of NO; with other
modelled NO, gStimates (dispersion modelled including CTMs), or with measured concentrations
(nearest monitor measurement; inverse distance weighted measurement). It reports correlations for
the various comparisons whieh range from R=0.19 to 0.89, and includes at least two previous LUR
comparison studiesithat underscore the influence of local characteristics in model development.
Comparison of LUR\vs CEMINO, estimates in Germany reported better R> when the CTM method
was restricted to local'traffic areas only (Hennig et al. 2016). A Dutch study reported good
agreement at theymid-range of concentrations estimated by LUR versus dispersion modelling and
versus validation sites, but larger differences at the ends of the concentration range, suggesting the
differences might be due to the coarse categorisation for the industrial land use variable used in the
LUR (Beelen et al. 2010).

A limitation of all but two (Buteau et al. 2017; de Hoogh et al. 2014) of these comparative studies is
that they have used correlation coefficients to describe the agreement between methods, rather

than reporting agreement statistics such as Bland-Altman ICC statistics or Bland Altman plots.
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Strong correlation does not inherently imply good agreement, as two methods might be highly

correlated but concentrations may not agree well (Giavarina 2015; Koo and Li 2016).

Limitations of our LUR model development are the relatively small number of sample sites (n=46),
compared to some studies. However, our separate hold-out validation analyses demonstrated the
robustness of both the NO, and NOx models, with the adjusted R? found to be high and similar
between different hold-out iterations of 10%, 25% and 50%, indicating that the smaller sample size
is unlikely to have unduly influenced model estimates. It is also possible that the measurement of
NO2/NOx during three seasons using the passive samplers did not fully capture,the annual variation
in pollutant concentrations, however, we sought to adopt sampling methodsywhich were consistent
with most other LUR studies (Beelen et al. 2013; Hoek et al. 2008¢Ryan“and LeMasters 2007).

The number of variables in our final NOx model (n=7) is another petentialweakness, given the
number of sample sites is relatively low and the number of predictor variables, is large. Our NOx
model with seven predictor variables may be over-specified, however ourmodels,are consistent
with ESCAPE models where the number of model variables ranged from 247) Furthermore, the
incremental R? of the NOx model was 0.84 arid 0.88 with,four and five'predictor variables
respectively, reflecting good variance explained with a lowelRnumber of variables and variables

were only retained in the model if VIE<3.

Strengths of our LUR model develgpment include the'use of a standardised and previously tested
method (ESCAPE) that allows‘@empatison of oufkesults with a local Perth model and a large
number of European models;, whilstialsotacknowledging variation in local environmental and
geographic conditions. Our held-out,validationtis @'second strength of the study, demonstrating
robustness of the moedel irrespective of the number of samples used for model building and
validation. A further strength is the Use of agreement statistical analyses to report on comparison
betweengthe methods. In thisistudy we used Bland-Altman statistics and determined the intra-class
correlation coefficientwhereas most previous studies have reported Pearson correlation

coefficients, whichiare a‘measure of correlation rather than agreement (Giavarina 2015).
Conclusion

Our study is the first, as far as we are aware, to compare agreement between NO, estimates from a
standard LUR to a national LUR model using satellite estimates and a Bayesian blended model. We
reported strong agreement as well as small absolute differences between our LUR model and both
of the other models, despite the different data inputs and differences in the spatial scales of the
models. Our study reaffirms the place for standard LUR model methods, not only, but particularly,
where it may be challenging to apply more complex exposure models because of data gaps and/or

a lack of computational resources. Further work is required to determine whether this good

21



agreement holds true for other pollutants, especially for particulate matter concentrations. Our study
cannot indicate which of the methods is the most valid as there is no gold standard method,
however, it demonstrates that any of our tested exposure methods can be used to assign annual
average NO; exposures for epidemiological analyses in Sydney. It also indicates that the LUR
model might be generalisable to other areas within Australia, both urban and non-urban, although
this will require validation in both rural settings as well as other cities. We will apply the three sets of
model estimates for exposure-response analyses for the CAPS cohort to determine their impact on
the effect estimates.
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