Farmers in Transition

The archaeobotanical analysis of the Carpathian Basin from the Late Neolithic to the Late Bronze Age (5000-900 BC)

Thesis submitted for the degree of

Doctor of Philosophy at the University of Leicester

by

Kelly Reed

VOLUME II

School of Archaeology and Ancient History

University of Leicester

Sept 2012

Abstract

This thesis examines the development of agriculture within the Carpathian Basin from the Late Neolithic to the Late Bronze Age. Information on prehistoric crop practices within Croatia have been absent from current debates on the spread and development of agriculture in Southeast Europe. The aim of the study is to examine new archaeobotanical data and provide information on subsistence practices within Croatia and integrate these results with those available from the wider region of the Carpathian Basin. The re-examination of archaeobotanical material from Late Bronze Age Feudvar has also allowed the identification of crop husbandry regimes at the site level.

The results indicate continuous crop cultivation, as well as the collection of wild resources, within Croatia from the Late Neolithic to the Late Bronze. At Feudvar, crop processing analysis indicated that a number of socio-economic factors dictated whether a crop was fully cleaned after the harvest, sieved at a later stage or left full of impurities. Further investigation into ecological characteristics of weed species within three groups of samples (unsieved spikelets, products and fine sieving by-products) identified the practice of two distinct crop husbandry regimes at Feudvar. The first represents small-scale intensive cultivation associated with the wheat crops (i.e. einkorn and emmer) and the second, a more large-scale extensive husbandry regime associated with barley. Integrating these results within the wider geographical area showed regional and temporal variations in the crops cultivated that are likely linked to personal choice and socio-economic influences rather than environmental constraints.

This study advances our knowledge on farming practices within the Carpathian Basin and demonstrates the importance of archaeobotanical data to debates on socio-economic and technological change in prehistory.

Contents

Abstract		i
List of figur	es	vii
List of table	S	xvi
Acknowledg	gements	XX
Chapter 1	Introduction	1
Chapter 2	Environment and society in the Carpathian Basin: Late	5
	Neolithic - Late Bronze Age (5000-900BC)	
2.1	Environment	5
	2.1.1 Topography	5
	2.1.2 Climate	6
	2.1.3 Soil and vegetation	8
2.2	Archaeological context	11
	2.2.1 Chronology and cultural context	11
	2.2.2 Settlement	12
	2.2.3 Ritual	17
	2.2.4 Exchange Systems	20
	2.2.5 Farming	22
2.3	Farming in context	33
	2.3.1 Settlement	33
	2.3.2 Ritual	33
	2.3.3 Exchange Systems	34
	2.3.4 Farming	34
2.4	Conclusion	35
Chapter 3	Methodology	36
3.1	Sampling and recovery	36
	3.1.1 Sampling	36
	3.1.2 Recovery	38
3.2	Laboratory sorting and identification	39
	3.2.1 Identification criteria: crops	39
	3.2.2 Identification criteria: fruits and wild/weeds	40
3.3	Quantification	41
	3.3.1 Dataset	41
	3.3.2 Database	42
	3.3.3 Univariate analysis	42
	3.3.4 Multivariate analysis	45

Chapter 4	Croatian site results	47
4.1	Assemblage characteristics	47
	4.1.1 Mid/Late Neolithic	48
	4.1.2 Copper Age	49
	4.1.3 Bronze Age	50
	4.1.4 Summary	51
4.2	Distribution of species through time	51
	4.2.1 Formation processes	52
	4.2.2 Cereals	54
	4.2.3 Pulses and oil plants	57
	4.2.4 Fruits	58
	4.2.5 Wild/weed species	58
4.4	Conclusion	59
Chapter 5	Results from Late Bronze Age Feudvar	61
5.1	Assemblage characteristics	61
5.2	Formation processes	62
5.3	Crops	64
	5.3.1 Einkorn	64
	5.3.2 Barley	65
	5.3.3 Emmer	65
	5.3.4 Spelt and bread/durum wheat	66
	5.3.5 Millet, rye and oat	66
	5.3.6 Pulses	67
	5.3.7 Oil plants	67
5.4	Wild resources	68
	5.4.1 Fruits	68
	5.4.2 Wild/weed species	68
5.5	Distribution of species through time: (All 19 study sites)	70
5.6	Conclusion	72
Chapter 6	Crop processing analysis at Feudvar	73
6.1	Crop processing and other formation processes	73
	6.1.1 Crop processing in archaeobotany	73
	6.1.2 Other formation processes	76
	6.1.3 Analytical approaches to crop processing	78
6.2	Methodology	81
	6.2.1 Standardisation of data	81
	6.2.2 Weed seed categorisation	82
6.3	Results	83
	6.3.1 Spikelets	83
	6.3.2 Fine sieving by-products	84

	6.3.3	Products	85
	6.3.4	Summary	87
6.4	Corres	pondence analysis	88
	6.4.1	Standardisation of data	88
	6.4.2	Results	89
	6.4.3	Summary	93
6.5	Intra-s	ite variability	94
	6.5.1	General trends	94
	6.5.2	Cereal distribution	95
	6.5.3	Correspondence analysis	97
	6.5.4	Summary	98
6.6	After t	he harvest: crop processing at Feudvar	99
	6.6.1	Early stages of crop processing	100
	6.6.2	Spikelets	101
	6.6.3	Fine sieving by-products	103
	6.6.4	Products	104
6.7	Conclu	usion	106
Chapter 7	Weed	ecology at Feudvar	108
Chapter /	u		
7.1		aches to weed ecology	108
-			
-	Appro. 7.1.1	aches to weed ecology	108
-	Appro. 7.1.1 7.1.2	aches to weed ecology Phytosociology approach	108 109
-	Appro. 7.1.1 7.1.2	aches to weed ecology Phytosociology approach Autecological approach	108 109 110
-	Appro. 7.1.1 7.1.2 7.1.3 7.1.4	aches to weed ecology Phytosociology approach Autecological approach Functional Interpretation of Botanical Surveys (FIBS)	108 109 110 112
7.1	Appro. 7.1.1 7.1.2 7.1.3 7.1.4	aches to weed ecology Phytosociology approach Autecological approach Functional Interpretation of Botanical Surveys (FIBS) Conclusion	108 109 110 112 113
7.1	Appro. 7.1.1 7.1.2 7.1.3 7.1.4 Metho	aches to weed ecology Phytosociology approach Autecological approach Functional Interpretation of Botanical Surveys (FIBS) Conclusion dology Dataset	108 109 110 112 113 114
7.1	Appro. 7.1.1 7.1.2 7.1.3 7.1.4 Metho 7.2.1	aches to weed ecology Phytosociology approach Autecological approach Functional Interpretation of Botanical Surveys (FIBS) Conclusion dology Dataset Analysis	108 109 110 112 113 114 114
7.1	Appro. 7.1.1 7.1.2 7.1.3 7.1.4 Metho 7.2.1 7.2.2	aches to weed ecology Phytosociology approach Autecological approach Functional Interpretation of Botanical Surveys (FIBS) Conclusion dology Dataset Analysis	108 109 110 112 113 114 114 115
7.1	Appro. 7.1.1 7.1.2 7.1.3 7.1.4 Metho 7.2.1 7.2.2 Result	aches to weed ecology Phytosociology approach Autecological approach Functional Interpretation of Botanical Surveys (FIBS) Conclusion dology Dataset Analysis	108 109 110 112 113 114 114 115 117
7.1	Appro. 7.1.1 7.1.2 7.1.3 7.1.4 Metho 7.2.1 7.2.2 Result 7.3.1	aches to weed ecology Phytosociology approach Autecological approach Functional Interpretation of Botanical Surveys (FIBS) Conclusion dology Dataset Analysis s Spikelets: unsieved	108 109 110 112 113 114 114 115 117 117
7.1	Appro. 7.1.1 7.1.2 7.1.3 7.1.4 Metho 7.2.1 7.2.2 Result 7.3.1 7.3.2 7.3.3	aches to weed ecology Phytosociology approach Autecological approach Functional Interpretation of Botanical Surveys (FIBS) Conclusion dology Dataset Analysis s Spikelets: unsieved Fine sieving by-products: unsieved	108 109 110 112 113 114 114 115 117 117 122
7.1	Appro. 7.1.1 7.1.2 7.1.3 7.1.4 Metho 7.2.1 7.2.2 Result 7.3.1 7.3.2 7.3.3 7.3.4	aches to weed ecology Phytosociology approach Autecological approach Functional Interpretation of Botanical Surveys (FIBS) Conclusion dology Dataset Analysis s Spikelets: unsieved Fine sieving by-products: unsieved Products: unsieved	108 109 110 112 113 114 114 115 117 117 122 127
7.1 7.2 7.3	Appro. 7.1.1 7.1.2 7.1.3 7.1.4 Metho 7.2.1 7.2.2 Result 7.3.1 7.3.2 7.3.3 7.3.4 Intra-s	aches to weed ecology Phytosociology approach Autecological approach Functional Interpretation of Botanical Surveys (FIBS) Conclusion dology Dataset Analysis s Spikelets: unsieved Fine sieving by-products: unsieved Products: unsieved Conclusion	108 109 110 112 113 114 114 115 117 117 122 127 131
7.1 7.2 7.3 7.4	Appro. 7.1.1 7.1.2 7.1.3 7.1.4 Metho 7.2.1 7.2.2 Result 7.3.1 7.3.2 7.3.3 7.3.4 Intra-s	aches to weed ecology Phytosociology approach Autecological approach Functional Interpretation of Botanical Surveys (FIBS) Conclusion dology Dataset Analysis s Spikelets: unsieved Fine sieving by-products: unsieved Products: unsieved Conclusion ite variability	108 109 110 112 113 114 114 115 117 117 122 127 131 132
7.1 7.2 7.3 7.4	Appro. 7.1.1 7.1.2 7.1.3 7.1.4 Metho 7.2.1 7.2.2 Result 7.3.1 7.3.2 7.3.3 7.3.4 Intra-s Identif	aches to weed ecology Phytosociology approach Autecological approach Functional Interpretation of Botanical Surveys (FIBS) Conclusion dology Dataset Analysis s Spikelets: unsieved Fine sieving by-products: unsieved Products: unsieved Conclusion ite variability ication of crop husbandry practices at Feudvar The arable environment (climate, temperature, water	108 109 110 112 113 114 114 115 117 117 122 127 131 132 133
7.1 7.2 7.3 7.4	Appro. 7.1.1 7.1.2 7.1.3 7.1.4 Metho 7.2.1 7.2.2 Result 7.3.1 7.3.2 7.3.3 7.3.4 Intra-s Identif 7.5.1 and so	aches to weed ecology Phytosociology approach Autecological approach Functional Interpretation of Botanical Surveys (FIBS) Conclusion dology Dataset Analysis s Spikelets: unsieved Fine sieving by-products: unsieved Products: unsieved Conclusion ite variability ication of crop husbandry practices at Feudvar The arable environment (climate, temperature, water	108 109 110 112 113 114 114 115 117 117 122 127 131 132 133

Chapter 8	Archaeobotany in the Carpathian Basin	144
8.1	Archaeobotanical data from the Carpathian Basin	144
	8.1.1 The dataset	144
	8.1.2 Sampling and recovery	145
	8.1.3 Species identification	146
	8.1.4 The plant remains	147
	8.1.5 Formation processes	149
	8.1.6 The study sites	149
	8.1.7 Summary	150
8.2	Temporal distribution	150
	8.2.1 Cereals	151
	8.2.2 Pulses	154
	8.2.3 Oil/fibre plants	155
	8.2.4 Wild resources	156
	8.2.5 Summary	158
8.3	Regional variation	159
	8.3.1 Mid/Late Neolithic	159
	8.3.2 Copper Age	160
	8.3.3 Bronze Age	160
	8.3.4 Summary	161
8.4	Conclusion	162
Chanter 9	Discussion	164
Chapter 9 9.1	Discussion Crop choice in the Carpathian Basin	164 164
Chapter 9 9.1	Crop choice in the Carpathian Basin	164
-	Crop choice in the Carpathian Basin 9.1.1 Emmer versus einkorn	164 164
-	Crop choice in the Carpathian Basin9.1.1 Emmer versus einkorn9.1.2 The importance of barley	164 164 166
9.1	 Crop choice in the Carpathian Basin 9.1.1 Emmer versus einkorn 9.1.2 The importance of barley 9.1.3 The introduction of gold-of-pleasure 	164 164 166 168
-	 Crop choice in the Carpathian Basin 9.1.1 Emmer versus einkorn 9.1.2 The importance of barley 9.1.3 The introduction of gold-of-pleasure Diversification versus specialisation 	164 164 166 168 169
9.1	 Crop choice in the Carpathian Basin 9.1.1 Emmer versus einkorn 9.1.2 The importance of barley 9.1.3 The introduction of gold-of-pleasure 	164 164 166 168
9.1 9.2	 Crop choice in the Carpathian Basin 9.1.1 Emmer versus einkorn 9.1.2 The importance of barley 9.1.3 The introduction of gold-of-pleasure Diversification versus specialisation 9.2.1 Summary 	164 164 166 168 169 172
9.1 9.2	 Crop choice in the Carpathian Basin 9.1.1 Emmer versus einkorn 9.1.2 The importance of barley 9.1.3 The introduction of gold-of-pleasure Diversification versus specialisation 9.2.1 Summary Reconstructing crop husbandry regimes in the Carpathian 	164 164 166 168 169 172
9.1 9.2	 Crop choice in the Carpathian Basin 9.1.1 Emmer versus einkorn 9.1.2 The importance of barley 9.1.3 The introduction of gold-of-pleasure Diversification versus specialisation 9.2.1 Summary Reconstructing crop husbandry regimes in the Carpathian Basin 	164 164 166 168 169 172 172
9.1 9.2	 Crop choice in the Carpathian Basin 9.1.1 Emmer versus einkorn 9.1.2 The importance of barley 9.1.3 The introduction of gold-of-pleasure Diversification versus specialisation 9.2.1 Summary Reconstructing crop husbandry regimes in the Carpathian Basin 9.3.1 Models of intensive and extensive cultivation 	164 166 168 169 172 172 172
9.1 9.2	 Crop choice in the Carpathian Basin 9.1.1 Emmer versus einkorn 9.1.2 The importance of barley 9.1.3 The introduction of gold-of-pleasure Diversification versus specialisation 9.2.1 Summary Reconstructing crop husbandry regimes in the Carpathian Basin 9.3.1 Models of intensive and extensive cultivation 9.3.2 Sowing times 	164 164 166 168 169 172 172 172 173 175
9.1 9.2	 Crop choice in the Carpathian Basin 9.1.1 Emmer versus einkorn 9.1.2 The importance of barley 9.1.3 The introduction of gold-of-pleasure Diversification versus specialisation 9.2.1 Summary Reconstructing crop husbandry regimes in the Carpathian Basin 9.3.1 Models of intensive and extensive cultivation 9.3.2 Sowing times 9.3.3 Mid/Late Neolithic crop husbandry regimes 	164 166 168 169 172 172 172 173 175 177
9.1 9.2	 Crop choice in the Carpathian Basin 9.1.1 Emmer versus einkorn 9.1.2 The importance of barley 9.1.3 The introduction of gold-of-pleasure Diversification versus specialisation 9.2.1 Summary Reconstructing crop husbandry regimes in the Carpathian Basin 9.3.1 Models of intensive and extensive cultivation 9.3.2 Sowing times 9.3.3 Mid/Late Neolithic crop husbandry regimes 9.3.4 Copper Age crop husbandry regimes 	164 166 168 169 172 172 172 173 175 177 178
9.1 9.2	 Crop choice in the Carpathian Basin 9.1.1 Emmer versus einkorn 9.1.2 The importance of barley 9.1.3 The introduction of gold-of-pleasure Diversification versus specialisation 9.2.1 Summary Reconstructing crop husbandry regimes in the Carpathian Basin 9.3.1 Models of intensive and extensive cultivation 9.3.2 Sowing times 9.3.3 Mid/Late Neolithic crop husbandry regimes 9.3.4 Copper Age crop husbandry regimes 9.3.5 Bronze Age crop husbandry regimes 	164 166 168 169 172 172 172 173 175 177 178 179
9.1 9.2 9.3	 Crop choice in the Carpathian Basin 9.1.1 Emmer versus einkorn 9.1.2 The importance of barley 9.1.3 The introduction of gold-of-pleasure Diversification versus specialisation 9.2.1 Summary Reconstructing crop husbandry regimes in the Carpathian Basin 9.3.1 Models of intensive and extensive cultivation 9.3.2 Sowing times 9.3.3 Mid/Late Neolithic crop husbandry regimes 9.3.4 Copper Age crop husbandry regimes 9.3.5 Bronze Age crop husbandry regimes 9.3.6 Summary 	164 166 168 169 172 172 172 173 175 177 178 179 180
9.1 9.2 9.3	 Crop choice in the Carpathian Basin 9.1.1 Emmer versus einkorn 9.1.2 The importance of barley 9.1.3 The introduction of gold-of-pleasure Diversification versus specialisation 9.2.1 Summary Reconstructing crop husbandry regimes in the Carpathian Basin 9.3.1 Models of intensive and extensive cultivation 9.3.2 Sowing times 9.3.3 Mid/Late Neolithic crop husbandry regimes 9.3.4 Copper Age crop husbandry regimes 9.3.5 Bronze Age crop husbandry regimes 9.3.6 Summary Labour and social organisation 	164 166 168 169 172 172 172 173 175 177 178 179 180 181
9.1 9.2 9.3	 Crop choice in the Carpathian Basin 9.1.1 Emmer versus einkorn 9.1.2 The importance of barley 9.1.3 The introduction of gold-of-pleasure Diversification versus specialisation 9.2.1 Summary Reconstructing crop husbandry regimes in the Carpathian Basin 9.3.1 Models of intensive and extensive cultivation 9.3.2 Sowing times 9.3.3 Mid/Late Neolithic crop husbandry regimes 9.3.4 Copper Age crop husbandry regimes 9.3.5 Bronze Age crop husbandry regimes 9.3.6 Summary Labour and social organisation 9.4.1 Crop processing activities 	164 166 168 169 172 172 172 173 175 177 178 179 180 181 182

Chapter 10	Summary and conclusion	189
10.1	Farming in Croatia: Mid/Late Neolithic - Late Bronze Age	190
10.2	Crop husbandry strategies at Late Bronze Age Feudvar	190
10.3	New interpretations on the development of society in the Carpathian Basin	192
10.4	Methodological, analytical and interpretive issues	193
10.5	Recommendations for future research in the Carpathian Basin	195
10.6	Concluding remarks	197
Bibliography	I	198
	One CD-R containing:	242
Appendix I	Site summaries	243
Appendix II	Species tables and crop processing analysis	
Volume II		
Figures		
Chapter 2		254
Chapter 4		262
Chapter 5		266
Chapter 6		268
Chapter 7		275
Chapter 8		321
Chapter 10		324
Tables		
Chapter 2		326
Chapter 3		328
Chapter 4		329
Chapter 5		342
Chapter 6		346
Chapter 7		358
Chapter 8		362
Chapter 10		368

List of figures

2.1	Outline of the Carpathian Basin and the core study area within Croatia and northern Serbia.	254
2.2a	Soil map of the Carpathian Basin	255
2.2b	Soil map of the Titel plateau (Feudvar settlement) and the surrounding area	256
2.3	Vegetation zones in the Carpathian Basin.	257
2.4	Outline of cultural groups present in the Carpathian Basin <i>ca</i> . 5000 BC	258
2.5	Outline of cultural groups present ca. 4500 BC	258
2.6	Outline of cultural groups present ca. 3000 BC	259
2.7	Outline of cultural groups present ca. 2500 BC	259
2.8	Outline of cultural groups present ca. 1700 BC	260
2.9	Outline of cultural groups present ca. 1000 BC	260
2.10	Map of the main sites within the Carpathian Basin discussed in Chapter 2	261
3.1	SEM photo of <i>Physalis alkengengi</i> , including close up, from sample SOP70 at the Late Neolithic site of Sopot	40
4.1	Locations of the study sites	262
4.2	Number of samples per density group for the 18 Croatian sites	263
4.3	Pie charts representing the percentage of seeds allocated to a particular plant category per site: Mid/Late Neolithic Croatia.	263
4.4	Pie charts representing the percentage of seeds allocated to a particular plant category per site: Copper Age Croatia.	264
4.5	Pie charts representing the percentage of seeds allocated to a particular plant category per site: Late Bronze Age Croatia	265
4.6	SEM of broomcorn millet (<i>Panicum miliaceum</i>) from Copper Age DAKFRA (DAKF01)	56
4.7	Photo of oat grains (Avena sativa) from Bronze Age MAČKOVAC- CRIŠNJEVI (MACC13)	56
5.1	Number of samples per density group: Late Bronze Age Feudvar	266
5.2	Pie chart representing the percentage of seeds allocated to a particular plant category: Late Bronze Age Feudvar	266
5.3		267

5.4	Average seed density per litre of sediment per block: Late Bronze Age Feudvar	267
6.1	Correspondence analysis of the Feudvar samples (> 50 identifications and > 10% weed species) classified by the crop processing stage, as identified by the ratio analysis, on the first two principal axes (axis 1 horizontal, axis 2 vertical): LBA Feudvar	268
6.2	Correspondence analysis of samples identified as sieved and unsieved einkorn spikelets: LBA Feudvar	268
6.3	Correspondence analysis of samples identified as sieved and unsieved fine sieving by-products: LBA Feudvar	269
6.4	Correspondence analysis of samples identified as sieved and unsieved products: LBA Feudvar	269
6.5	Correspondence analysis of samples identified to specific crop products: LBA Feudvar	270
6.6	Pie charts representing the percentage of samples identified as spikelets, fine sieving by-products and products per 5x5m area: LBA Feudvar	271
6.7	Pie charts representing the percentage of samples identified as sieved and unsieved (regardless of crop processing stage) per 5x5m area: LBA Feudvar	271
6.8	Correspondence analysis of samples identified as spikelets per feature type: LBA Feudvar	272
6.9	Correspondence analysis of samples identified as spikelets per area/block within the trench: LBA Feudvar	272
6.10	Correspondence analysis of samples identified as fine sieving by- products per feature type: LBA Feudvar	273
6.11	Correspondence analysis of samples identified as fine sieving by- products per area/block within the trench: LBA Feudvar	273
6.12	Correspondence analysis of samples identified as products per feature type: LBA Feudvar	274
6.13	Correspondence analysis of samples identified as products per area/block within the trench: LBA Feudvar	274
7.1	Unsieved spikelets - Shannon diversity examining the impact of Chenopodium on sample composition: LBA Feudvar	275
7.2	Unsieved fine sieving by-produces - Shannon diversity examining the impact of Chenopodium on sample composition: LBA Feudvar	275
7.3	Unsieved products - Shannon diversity examining the impact of Chenopodium on sample composition: LBA Feudvar.	276
7.4	Correspondence analysis of crops, possible crops and weed species for samples identified as unsieved spikelets on the first two	276

	principal axes (axis 1 horizontal, axis 2 vertical): LBA Feudvar	
7.5	Correspondence analysis of the proportion of cereals per sample identified as unsieved spikelets: LBA Feudvar	277
7.6	Correspondence analysis of crops, possible crops and weed species for samples identified as unsieved spikelets per feature type: LBA Feudvar	277
7.7	Correspondence analysis of each sample identified as unsieved spikelets per block group: LBA Feudvar	278
7.8	Correspondence analysis of crops and weed species for samples identified as unsieved spikelets showing the ecological indicator values for light: LBA Feudvar	278
7.9	Correspondence analysis of crops and weed species for samples identified as unsieved spikelets showing the ecological indicator values for temperature: LBA Feudvar	279
7.10	Correspondence analysis of the proportion of weed species according to their temperature indicator value for samples identified as unsieved spikelets: LBA Feudvar	279
7.11	Correspondence analysis of crops and weed species for samples identified as unsieved spikelets showing the ecological indicator values for continentality: LBA Feudvar	280
7.12	Correspondence analysis of the proportion of weed species according to their continentality indicator value for samples identified as unsieved spikelets: LBA Feudvar	280
7.13	Correspondence analysis of the proportion of weed species without CHENSPE according to their continentality indicator value for samples identified as unsieved spikelets: LBA Feudvar	281
7.14	Correspondence analysis of crops and weed species for samples identified as unsieved spikelets showing the ecological indicator values for moisture: LBA Feudvar	281
7.15	Correspondence analysis of the proportion of weed species according to their moisture indicator value for samples identified as unsieved spikelets: LBA Feudvar	282
7.16	Correspondence analysis of the proportion of weed species without CHENSPE according to their moisture indicator value for samples identified as unsieved spikelets: LBA Feudvar	282
7.17	Correspondence analysis of crops and weed species for samples identified as unsieved spikelets showing the ecological indicator values for reaction: LBA Feudvar	283
7.18	Correspondence analysis of the proportion of weed species according to their reaction indicator value for samples identified as unsieved spikelets: LBA Feudvar	283

7.19	Correspondence analysis of crops and weed species for samples identified as unsieved spikelets showing the ecological indicator values for nitrogen: LBA Feudvar	284
7.20	Correspondence analysis of the proportion of weed species according to their nitrogen indicator value for samples identified as unsieved spikelets: LBA Feudvar	284
7.21	Correspondence analysis of the proportion of weed species without CHENSPE according to their nitrogen indicator value for samples identified as unsieved spikelets: LBA Feudvar	285
7.22	Correspondence analysis of crops and weed species for samples identified as unsieved spikelets showing the maximum flowering height for each weed: LBA Feudvar	285
7.23	Correspondence analysis showing the proportions of weed species according to their maximum flowering height for samples identified as unsieved spikelets: LBA Feudvar	286
7.24	Correspondence analysis showing the proportions of weed species without CHENSPE according to their maximum flowering height for samples identified as unsieved spikelets: LBA Feudvar	286
7.25	Correspondence analysis of crops and weed species for samples identified as unsieved spikelets showing the life cycle of each weed i.e. whether they are an annual, perennial with or without rhizomes: LBA Feudvar	287
7.26	Correspondence analysis showing proportions of annuals and perennials for samples identified as unsieved spikelets spikelets: LBA Feudvar	287
7.27	Correspondence analysis of crops and weed species for samples identified as unsieved spikelets showing the germination time of each weed: LBA Feudvar	288
7.28	Correspondence analysis showing proportions of summer and winter annuals for samples identified as unsieved spikelets: LBA Feudvar	288
7.29	Correspondence analysis showing proportions of summer and winter annuals without CHENSPE for samples identified as unsieved spikelets: LBA Feudvar	289
7.30	Correspondence analysis of crops, possible crops and weed species, without CHENSPE, SECACEG AND PANMIL, for samples identified as unsieved spikelets: LBA Feudvar	289
7.31	Correspondence analysis of crops and weed species, without CHENSPE, SECACEG AND PANMIL, for samples identified as unsieved spikelets showing the ecological indicator values for nitroge: LBA Feudvar	290

7.32	Correspondence analysis of crops and weed species , without CHENSPE, SECACEG AND PANMIL, for samples identified as unsieved spikelets showing the germination time of each weed: LBA Feudvar	290
7.33	Correspondence analysis of crops, possible crops and weed species for samples identified as unsieved fine sieving by-products on the first two principal axes (axis 1 horizontal, axis 2 vertical): LBA Feudvar	291
7.34	Correspondence analysis of the proportion of cereals per sample identified as unsieved fine sieving by-products: LBA Feudvar	291
7.35	Correspondence analysis of crops, possible crops and weed species for samples identified as unsieved fine sieving by-products per feature type: LBA Feudvar	292
7.36	Correspondence analysis of each sample identified as unsieved fine sieving by-product per block group: LBA Feudvar	292
7.37	Correspondence analysis of crops and weed species for samples identified as unsieved fine sieving by-products showing the ecological indicator values for light: LBA Feudvar	293
7.38	Correspondence analysis of crops and weed species for samples identified as unsieved fine sieving by-products showing the ecological indicator values for temperature: LBA Feudvar	293
7.39	Correspondence analysis of crops and weed species without CHENSPE for samples identified as unsieved fine sieving by- products showing the ecological indicator values for temperature: LBA Feudvar	294
7.40	Correspondence analysis of crops and weed species for samples identified as unsieved fine sieving by-products showing the ecological indicator values for continentality: LBA Feudvar	294
7.41	Correspondence analysis of crops and weed species without CHENSPE for samples identified as unsieved fine sieving by- products showing the ecological indicator values for continentality: LBA Feudvar	295
7.42	Correspondence analysis of crops and weed species for samples identified as unsieved fine sieving by-products showing the ecological indicator values for moisture: LBA Feudvar	295
7.43	Correspondence analysis of the proportion of weed species according to their moisture indicator value for samples identified as unsieved fine sieving by-products: LBA Feudvar	296
7.44	Correspondence analysis of crops and weed species for samples identified as unsieved fine sieving by-products showing the ecological indicator values for reaction: LBA Feudvar	296

7.45	Correspondence analysis of the proportion of weed species according to their reaction indicator value for samples identified as unsieved fine sieving by-products: LBA Feudvar	297
7.46	Correspondence analysis of crops and weed species for samples identified as unsieved fine sieving by-products showing the ecological indicator values for nitrogen on the first two principal axes (axis 1 horizontal, axis 2 vertical): LBA Feudvar	297
7.47	Correspondence analysis of the proportion of weed species, without CHENSPE, according to their nitrogen indicator value for samples identified as unsieved fine sieving by-products: LBA Feudvar	298
7.48	Correspondence analysis of crops and weed species for samples identified as unsieved fine sieving by-products showing the maximum flowering height for each weed: LBA Feudvar	298
7.49	Correspondence analysis showing the proportions of weed species, without CHENSPE, according to their maximum flowering height for samples identified as unsieved fine sieving by-products spikelets: LBA Feudvar	299
7.50	Correspondence analysis of crops and weed species for samples identified as unsieved fine sieving by-products showing the life cycle of each weed i.e. whether they are an annual, perennial with or without rhizomes: LBA Feudvar	299
7.51	Correspondence analysis showing proportions of annuals and perennials for samples identified as unsieved fine sieving by- products: LBA Feudvar	300
7.52	Correspondence analysis of crops and weed species for samples identified as unsieved fine sieving by-products showing the germination time of each weed: LBA Feudvar	300
7.53	Correspondence analysis showing proportions of summer and winter annuals for samples, without CHENSPE, identified as unsieved fine sieving by-products: LBA Feudvar	301
7.54	Correspondence analysis of crops, possible crops and weed species, without TRITSPL, TRITAED, CHENSPE, SECACEG AND PANMIL, for samples identified as unsieved fine sieving by- products: LBA Feudvar	302
7.55	Correspondence analysis of the proportion of cereals per sample, without TRITSPL, TRITAED, CHENSPE, SECACEG AND PANMIL, identified as unsieved fine sieving by-products: LBA Feudvar	302
7.56	Correspondence analysis of samples, without TRITSPL, TRITAED, CHENSPE, SECACEG AND PANMIL, identified as unsieved fine sieving by-products per feature type: LBA Feudvar	303

7.57	Correspondence analysis of crops and weed species, without TRITSPL, TRITAED, CHENSPE, SECACEG AND PANMIL, for samples identified as unsieved fine sieving by-products showing the ecological indicator values for nitrogen: LBA Feudvar	304
7.58	Correspondence analysis of crops and weed species , without TRITSPL, TRITAED, CHENSPE, SECACEG AND PANMIL, for samples identified as unsieved fine sieving by-products showing the germination time of each weed: LBA Feudvar	304
7.59	Correspondence analysis of crops, possible crops and weed species for samples identified as unsieved products on the first two principal axes (axis 1 horizontal, axis 2 vertical): LBA Feudvar	305
7.60	Correspondence analysis of the proportion of cereals per sample identified as unsieved products: LBA Feudvar	305
7.61	Correspondence analysis of crops, possible crops and weed species for samples identified as unsieved products per feature type: LBA Feudvar	306
7.62	Correspondence analysis of each sample identified as unsieved products per block group: LBA Feudvar	306
7.63	Correspondence analysis of crops and weed species for samples identified as unsieved products showing the ecological indicator values for light: LBA Feudvar	307
7.64	Correspondence analysis of crops and weed species for samples identified as unsieved products showing the ecological indicator values for temperature: LBA Feudvar	307
7.65	Correspondence analysis of the proportion of weed species according to their temperature indicator value for samples identified as unsieved products: LBA Feudvar	308
7.66	Correspondence analysis of crops and weed species for samples identified as unsieved products showing the ecological indicator values for continentality: LBA Feudvar	308
7.67	Correspondence analysis of the proportion of weed species, without CHENSPE, according to their continentality indicator value for samples identified as unsieved products: LBA Feudvar	309
7.68	Correspondence analysis of crops and weed species for samples identified as unsieved products showing the ecological indicator values for moisture: LBA Feudvar	309
7.69	Correspondence analysis of the proportion of weed species, without CHENSPE, according to their moisture indicator value for samples identified as unsieved products: LBA Feudvar	310
7.70	Correspondence analysis of crops and weed species for samples identified as unsieved products showing the ecological indicator	310

values for reaction: LBA Feudvar

7.71	Correspondence analysis of the proportion of weed species according to their reaction indicator value for samples identified as unsieved products: LBA Feudvar	311
7.72	Correspondence analysis of crops and weed species for samples identified as unsieved products showing the ecological indicator values for nitrogen: LBA Feudvar	311
7.73	Correspondence analysis of the proportion of weed species, without CHENSPE, according to their nitrogen indicator value for samples identified as unsieved products: LBA Feudvar	312
7.74	Correspondence analysis of crops and weed species for samples identified as unsieved products showing the maximum flowering height for each weed: LBA Feudvar	312
7.75	Correspondence analysis showing the proportions of weed species, without CHENSPE, according to their maximum flowering height for samples identified as unsieved products: LBA Feudvar	313
7.76	Correspondence analysis of crops and weed species for samples identified as unsieved products showing the life cycle of each weed: LBA Feudvar	313
7.77	Correspondence analysis showing proportions of annuals and perennials for samples identified as unsieved products: LBA Feudvar	314
7.78	Correspondence analysis of crops and weed species for samples identified as unsieved products showing the germination time of each weed: LBA Feudvar	314
7.79	Correspondence analysis showing proportions of summer and winter annuals, without CHENSPE, for samples identified as unsieved products: LBA Feudvar	315
7.80	Correspondence analysis of crops, possible crops and weed species, without TRITAED, CHENSPE, SECACEG AND PANMIL, for samples identified as unsieved products: LBA Feudvar	315
7.81	Correspondence analysis of the proportion of cereals per sample, without TRITAED, CHENSPE, SECACEG AND PANMIL, identified as unsieved fine products: LBA Feudvar	316
7.82	Correspondence analysis of samples, without TRITAED, CHENSPE, SECACEG AND PANMIL, identified as unsieved products per feature type: LBA Feudvar	316
7.83	Correspondence analysis of crops and weed species for samples, without TRITAED, CHENSPE, SECACEG AND PANMIL, identified as unsieved products showing the ecological indicator values for moisture : LBA Feudvar	317

7.84	Correspondence analysis of the proportion of weed species, without TRITAED, CHENSPE, SECACEG AND PANMIL, according to their moisture indicator value for samples identified as unsieved products : LBA Feudvar	317
7.85	Correspondence analysis of crops and weed species, without TRITAED, CHENSPE, SECACEG AND PANMIL, for samples identified as unsieved products showing the ecological indicator values for nitrogen : LBA Feudvar	318
7.86	Correspondence analysis of crops and weed species , without TRITSPL, TRITAED, CHENSPE, SECACEG AND PANMIL, for samples identified as unsieved fine sieving by-products showing the germination time of each weed: LBA Feudvar	318
7.87a	Pie charts representing the percentage of low, medium and high nitrogen indicator weed species for samples identified as unsieved spikelets per 5x5m area: LBA Feudvar	319
7.87b	Pie charts representing the percentage of low, medium and high nitrogen indicator weed species for samples identified as unsieved fine sieving by-products per 5x5m area: LBA Feudvar	319
7.78c	Pie charts representing the percentage of low, medium and high nitrogen indicator weed species for samples identified as unsieved products per 5x5m area: LBA Feudvar	319
7.88 a	Pie charts representing the percentage of summer annuals, winter annuals and perennial/annuals for samples identified as unsieved spikelets per 5x5m area: LBA Feudvar	320
7.88b	Pie charts representing the percentage of summer annuals, winter annuals and perennial/annuals for samples identified as unsieved fine sieving by-products per 5x5m area: LBA Feudvar	320
7.88c	Pie charts representing the percentage of summer annuals, winter annuals and perennial/annuals for samples identified as unsieved products per 5x5m area: LBA Feudvar	320
8.1	Map of sites with archaeobotanical material dating to the Mid/Late Neolithic in the Carpathian Basin	321
8.2	Map of sites with archaeobotanical material dating to the Copper Age in the Carpathian Basin	322
8.3	Map of sites with archaeobotanical material dating to the Bronze Age in the Carpathian Basin	323
8.4	Average number of carbonised crop species recovered from each main feature type: Carpathian Basin	324
10.1	Correlation between number of samples and number of crops for all 18 Croatian sites including r ² value	324

List of tables

2.1	Pollen record from Báb-tava northeast Hungary	326
2.2	Presence of crop remains recovered from Late Neolithic sites in Southeast Europe	326
2.3	Presence of crop remains recovered from Copper Age sites in Southeast Europe	327
2.4	Presence of crop remains recovered from Bronze Age sites in Southeast Europe	327
3.1	Summary of sampling, recovery and representativeness of the samples from each site	328
4.1	Summary of Croatian sites with associated AMS dates and cultural groups	329
4.2	Summary statistics for the 18 Croatian sites	330
4.3	Summary statistics of the Croatian sites per period	330
4.4	Summary table of the charcoal and seed densities per litre for each site: Middle/late Neolithic Croatia	331
4.5	Summary table of the median seed densities (per litre) for each plant category per site: Mid/Late Neolithic Croatia	331
4.6	Summary table of the charcoal and seed densities per litre for each site: Copper Age Croatia	331
4.7	Number of species identified per sample: Mid/Late Neolithic Croatia	APPENDIX II
4.8	Summary table of the median seed densities (per litre) for each plant category per site: Copper Age Croatia	332
4.09	Summary table of the charcoal and seed densities per litre for each site: Bronze Age Croatia	332
4.10	Number of species identified per sample: Copper Age Croatia	APPENDIX II
4.11	Summary table of the median seed densities (per litre) for each plant category per site: Bronze Age Croatia	332
4.12	Summary of samples identified to a preservation class per site: All 18 Croatian sites	333
4.13	Number of species identified per sample: Bronze Age Croatia	APPENDIX II
4.14	Percentage of samples identified to a preservation class per site type: All 18 Croatian sites	333

4.15	Percentage of samples from each feature type per density group: All 18 Croatian sites	334
4.16	Samples from the Croatian sites with >25.1 seed density (per litre) and details of the dominant component of each sample	334
4.17	Percentage of seeds identified to each plant category per feature type: All 18 Croatian sites	334
4.18	Frequency of species per site: Mid-Late Neolithic Croatia	335
4.19	Frequency of species per site: Copper Age Croatia	337
4.20	Frequency of species per site: Bronze Age Croatia	339
4.21	Presence/absence of crops per site: All 18 Croatian sites	340
4.22	Frequency of each crop per period: All 18 Croatian sites	341
5.1	Summary statistics: Late Bronze Age Feudvar	342
5.2	Summary table of seed densities (per litre) of plant remains, grouped by plant category: Late Bronze Age Feudvar	342
5.3	Percentage of samples from each feature type per density group: Late Bronze Age Feudvar	342
5.4	Density per litre of main plant categories, given for samples with a seed density of > 100 per litre: Late Bronze Age Feudvar	343
5.5	Presence/absence of crops per site and taxa frequency (i.e. percentage of samples for each phase, with each crop): Late Bronze Age Feudvar	344
5.6	Frequency of each crop per period: All 18 Croatian sites and LBA Feudvar	345
6.1	The grain, chaff and weed ratios used to identify crop processing stages and their interpretation.	346
6.2	Classification of wild/weed taxa into physical weed categories per author	347
6.3	The average length and width (mm) of grain per cereal species	350
6.4	Ratio table for crop processing analysis, showing the whole plant ratio per cereal, the grain, chaff and weed ratio values and what constitutes a low and high value.	350
6.5	Results of crop processing (ratio and correspondence analysis) per sample with > 50 identifications: Late Bronze Age Feudvar	APPENDIX II
6.6	Summary of the number of samples identified for each crop processing stage, based on the ratio analysis: Late Bronze Age Feudvar	351

6.7	Species codes used in the correspondence analysis of the archaeobotanical data: Late Bronze Age Feudvar	351
6.8	Summary of the number of samples identified for each crop processing stage from the ratio analysis and after correspondence analysis: Late Bronze Age Feudvar	352
6.9	Samples with > 90% and >70% <i>Chenopodium</i> sp. content per identified crop processing group. USP= Unsieved spikelets, UFS = Unsieved fine sieving by-products, UP= Unsieved products	352
6.10	Percentage of samples per feature type based on their crop processing identifications: LBA Feudvar	353
6.11	Percentage of samples per block in relation to feature type: LBA Feudvar	353
6.12	The number of samples identified to each cereal per feature type: LBA Feudvar	354
6.13	Percentage of each cereal per feature type: LBA Feudvar	354
6.14	Percentage of each cereal per block for house and pit features from samples identified as spikelets: LBA Feudvar	355
6.15	Percentage of each cereal per block for house and pit features from samples identified as fine sieving by-products: LBA Feudvar	356
6.16	Percentage of each cereal per block for house and pit features from samples identified as products: LBA Feudvar	357
7.1	The number of species present in >10% of each of the six crop processing groups and the number of samples with >25 weed seeds: LBA Feudvar	358
7.2	Samples with >70% <i>Chenopodium</i> sp. content within the unsieved spikelets, fine sieving by-product and product groups: LBA Feudvar	358
7.3	Ecological indicator values per species and genus	359
7.4	The height, life cycle and germination times of each species: LBA Feudvar	360
7.5	Character species identified within Feudvar assemblage under their Phytosociological Classes	361
8.1a	Mid/Late Neolithic sites with archaeobotanical material from the Carpathian Basin	APPENDIX II
8.1b	Copper Age sites with archaeobotanical material from the Carpathian Basin	APPENDIX II
8.1c	Bronze Age sites with archaeobotanical material from the Carpathian Basin	APPENDIX II

8.1d	Mid/Late Neolithic archaeobotanical remains from the Carpathian Basin	APPENDIX II
8.1e	Copper Age archaeobotanical remains from the Carpathian Basin	APPENDIX II
8.1f	Bronze Age archaeobotanical remains from the Carpathian Basin	APPENDIX II
8.2	Number of records per country and period: Carpathian Basin	362
8.3	The level of information available for each record per period: Carpathian Basin	362
8.4	Number of crops identified per country and period: Carpathian Basin	362
8.5	Number of fruits/nuts identified per country and period: Carpathian Basin	362
8.6	Number of wild/weed species identified per country and period: Carpathian Basin	363
8.7	Number of records identified as a tell, flat or cave settlement for each country per period	363
8.8	Frequency of crop species per record for each period: Carpathian Basin	364
8.9	Frequency of crop species per country: Mid/Late Neolithic Carpathian Basin	365
8.10	Frequency of crop species per country: Copper Age Carpathian Basin	366
8.11	Frequency of crop species per country: Bronze Age Carpathian Basin	367
10.1	The ideal sample volume for each site (based on the median seed density not including unidentified fragments) to achieve 100 and 300 seeds per sample: All 18 Croatian sites	368

VOLUME II

Figures and tables

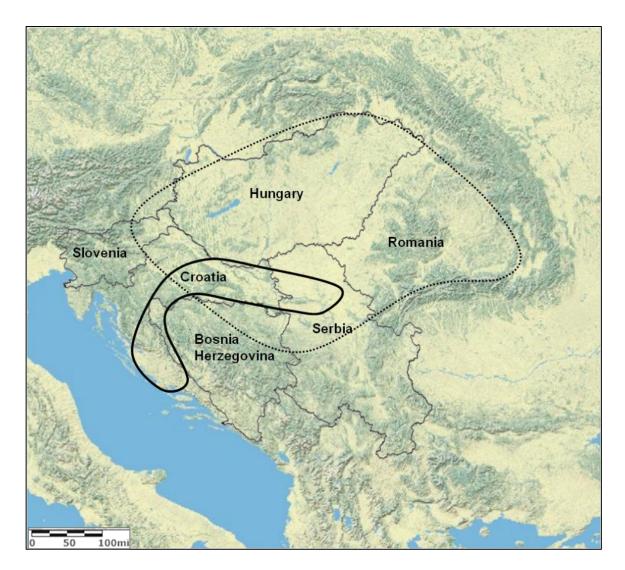


Fig 2.1. Outline of the Carpathian Basin and the core study area within Croatia and northern Serbia. Base map U.S. National Park Service (NPS) 2009

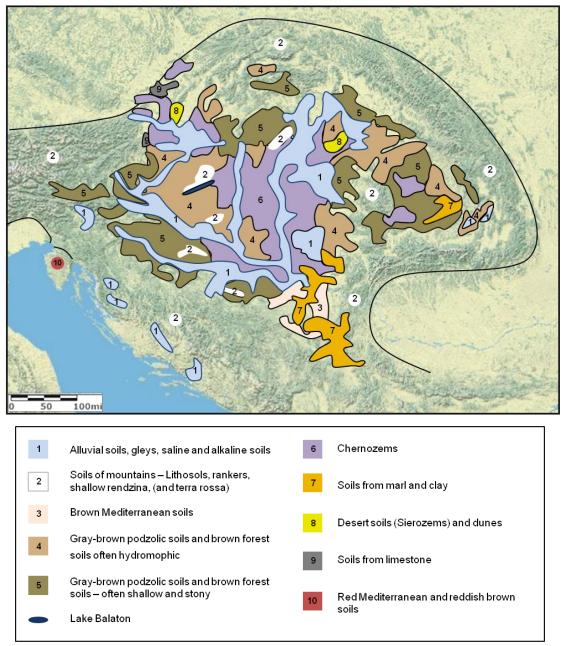


Fig 2.2a. Soil map of the Carpathian Basin. (After European Digital Archive of Soil Maps (EuDASM) 2005)

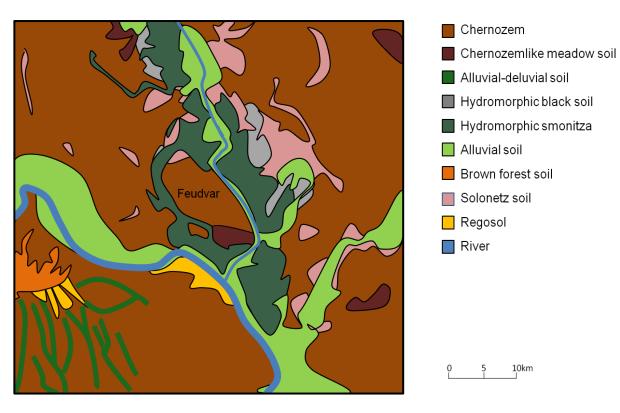


Fig 2.2b. Soil map of the Titel plateau (Feudvar settlement) and the surrounding area. Adapted from (Benka 2006)

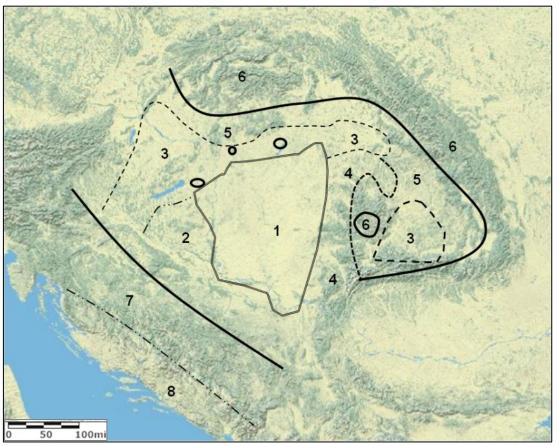


Fig 2.3. Vegetation zones in the Carpathian Basin.

(1) Pannonian forest steppe; (2) Sub-Mediterranean oak forest; (3) Central European and sub-Mediterranean mixed oak forest; (4) Balcanic oak forest; (5) Central European oak forest; (6) Sub alpine and alpine, beech and needle-leaved forest; (7) Pine and beech forest; (8) Pine and oak forest (adapted from Rudner and Sümegi 2001:180 Fig. 4)

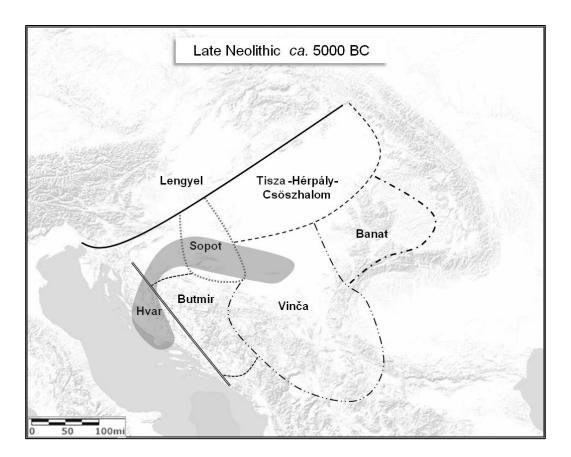


Fig 2.4. Outline of cultural groups present in the Carpathian Basin *ca.* 5000 BC. Core study area is shaded.

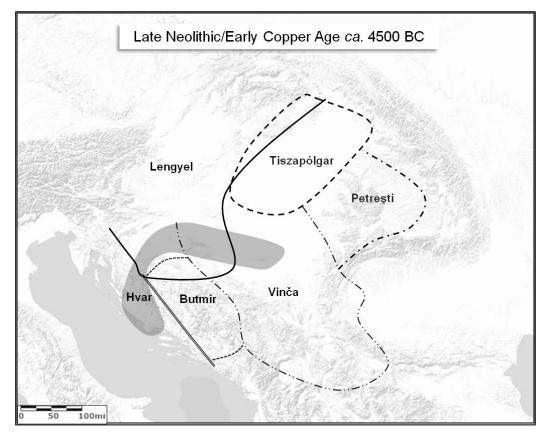


Fig 2.5. Outline of cultural groups present ca. 4500 BC. Core study area is shaded.

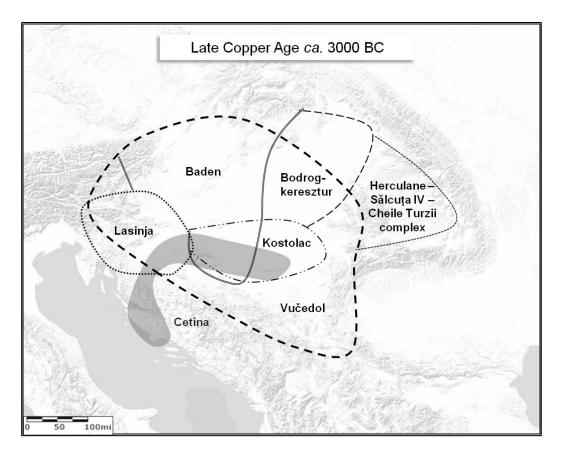


Fig 2.6. Outline of cultural groups present ca. 3000 BC. Core study area is shaded.

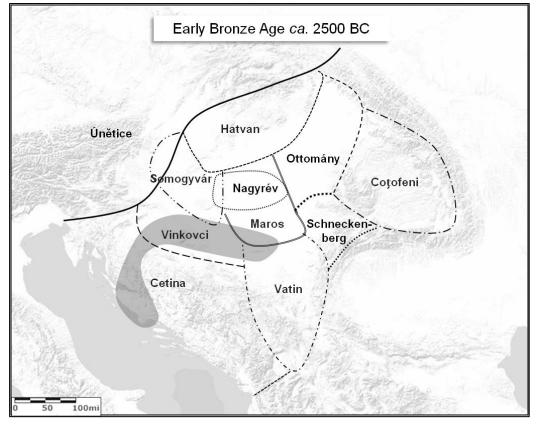


Fig 2.7. Outline of cultural groups present ca. 2500 BC. Core study area is shaded.

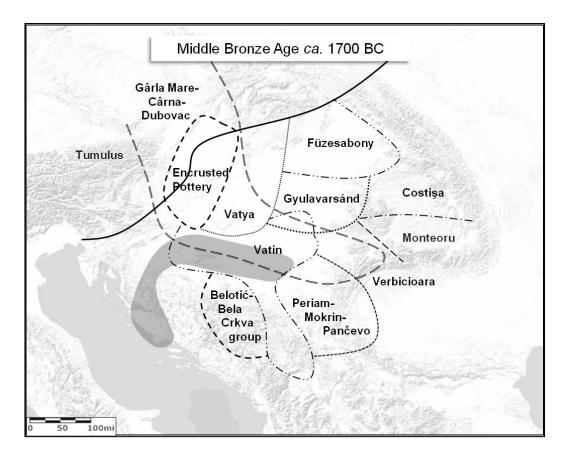


Fig 2.8. Outline of cultural groups present ca. 1700 BC. Core study area is shaded.

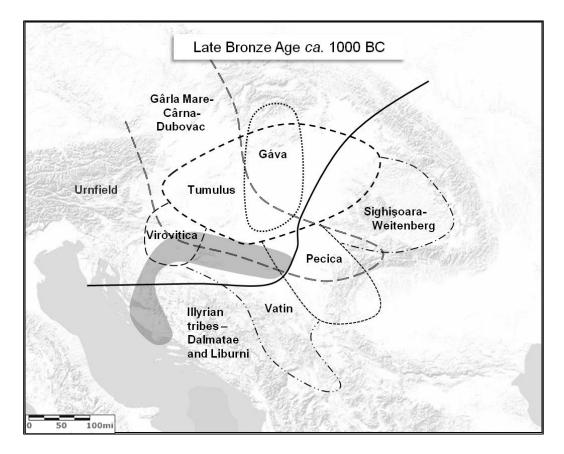
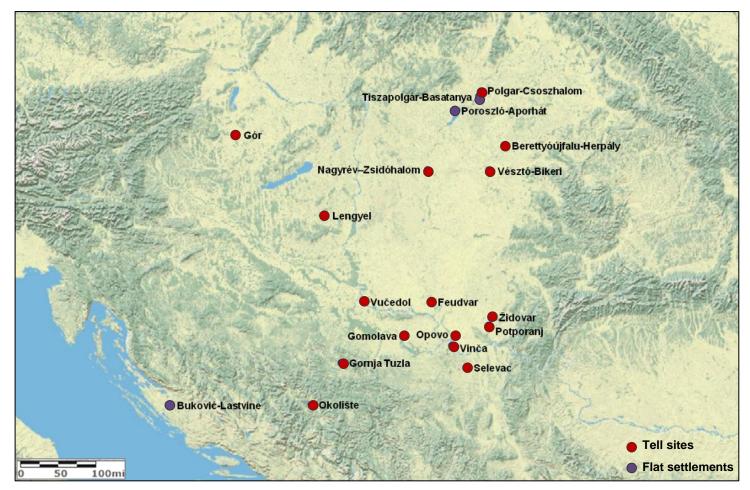



Fig 2.9. Outline of cultural groups present ca. 1000 BC. Core study area is shaded.

Fig 2.10. Map of the main tell and flat sites within the Carpathian Basin discussed in Chapter 2

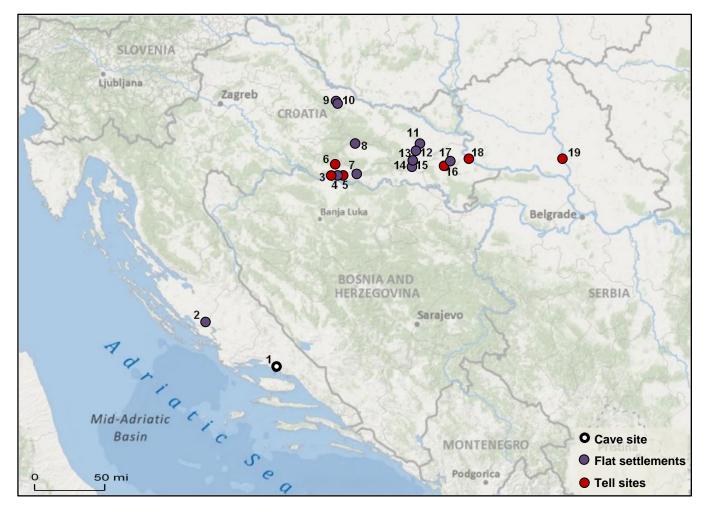


Fig 4.1. Locations of the study sites. Base map GEBCO, NOAA, National Geographic, DeLorme, and Esri Ocean Basemap 2008.
1. Turska Peć, 2. Cista Mala Velištak, 3. Mačkovac Crišnjevi, 4. Crišnjevi – Oštrov, 5. Orubica-Veliki Šeš, 6. Slavča, 7. Ravnjas, 8. Potočani, 9. Virovitica-Batelije, 10. Virovitica-Brekinja, 11. Ivandvor-Gaj, 12. Pajtenica-Velike Livade, 13. Jurjevac-Stara Vodenica, 14. Tomašanci - Palača, 15. Đakovo-Franjevac, 16. Sopot, 17. Vinkovci, 14 Matije Gupca, 18. Vučedol, 19. Feudvar

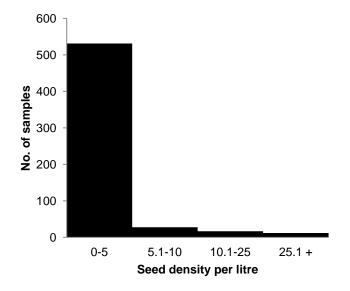


Figure 4.2. Number of samples per density group for the 18 Croatian sites (n=565)

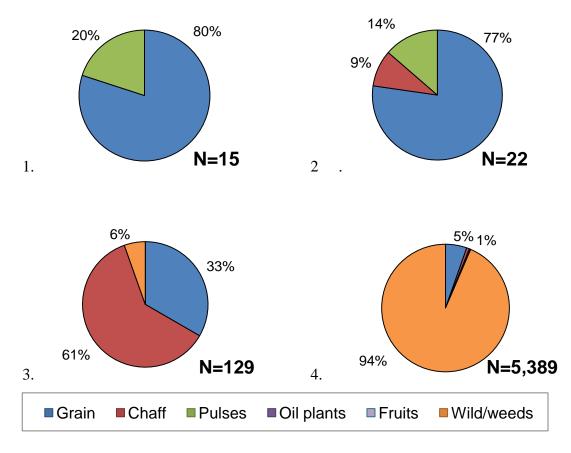


Fig 4.3. Pie charts representing the percentage of seeds allocated to a particular plant category per site: Mid/Late Neolithic.Croatia. 1. Virovitica-Brekinja, 2. Ivandvor-Gaj, 3. Čista Mala Valištak, 4. Turska Peć, 5. Sopot, 6. Slavča, 7. Ravnjaš

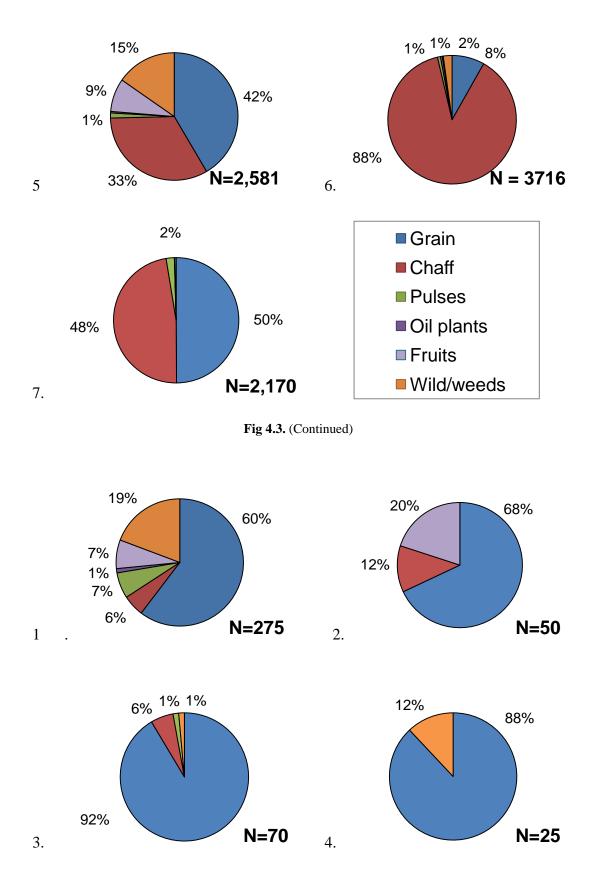


Fig 4.4. Pie charts representing the percentage of seeds allocated to a particular plant category per site: Copper Age Croatia.1. Đakovo-Franjevac, 2. Jurjevac-Stara Vodenica, 3. Potočani, 4. Pajtenica-Velike Livade, 5. Virovitica-Batelije, 6. Vinkovci/ Matije Gupca 14, 7. Vučedol, 8. Tomašanci–Palača, 9.

Slavča



Fig 4.5. Pie charts representing the percentage of seeds allocated to a particular plant category per site: Late Bronze Age Croatia. 1.Mačkovac Crišnjevi, 2. Crišnjevi-Oštrov, 3.Orubica-Veliki Šeš, 4. Tomašanci – Palača

CHAPTER 4: FIGURES

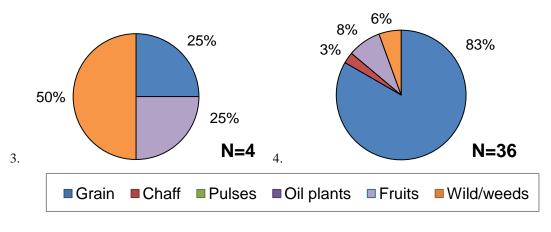


Fig 4.5. (Continued)

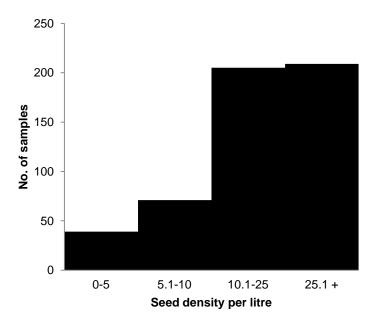


Fig 5.1. Number of samples per density group: Late Bronze Age Feudvar (n=524)

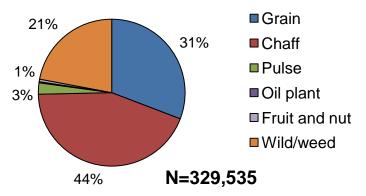
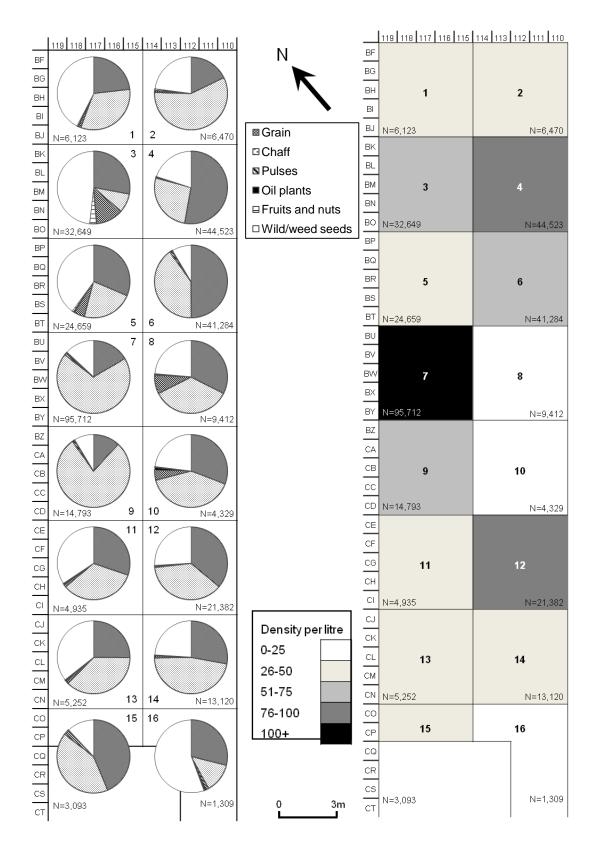
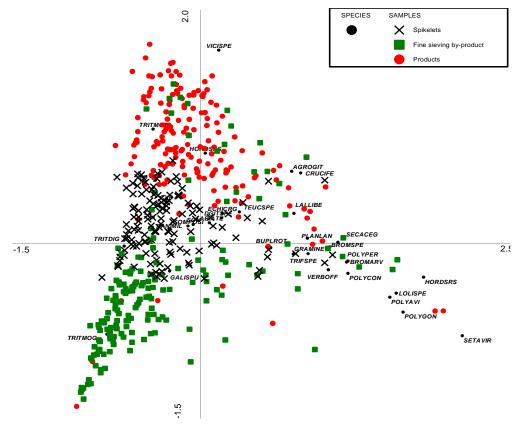




Fig 5.2. Pie chart representing the percentage of seeds allocated to a particular plant category: Late Bronze Age Feudvar

Fig 5.3. Pie charts representing the percentage of seeds allocated to a particular plant category per block: Late Bronze Age Feudvar

Fig 5.4. Average seed density per litre of sediment per block: Late Bronze Age Feudvar

Fig 6.1. Correspondence analysis of the Feudvar samples (> 50 identifications and > 10% weed species) classified by the crop processing stage, as identified by the ratio analysis, on the first two principal axes (axis 1 horizontal, axis 2 vertical): LBA Feudvar

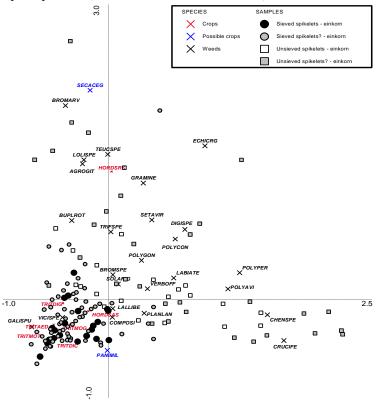


Fig 6.2. Correspondence analysis of samples identified as sieved and unsieved einkorn spikelets: LBA Feudvar

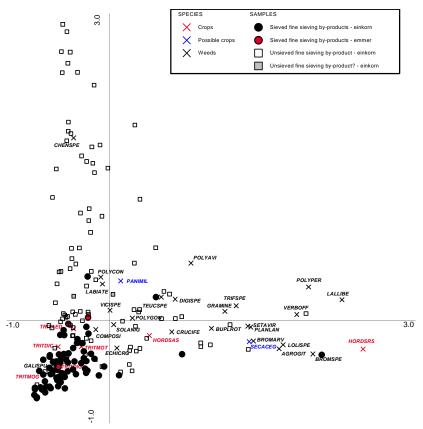


Fig 6.3. Correspondence analysis of samples identified as sieved and unsieved fine sieving byproducts: LBA Feudvar

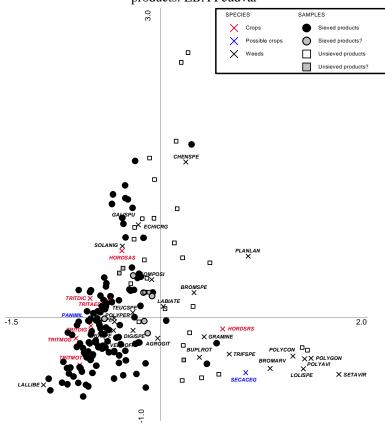


Fig 6.4. Correspondence analysis of samples identified as sieved and unsieved products: LBA Feudvar

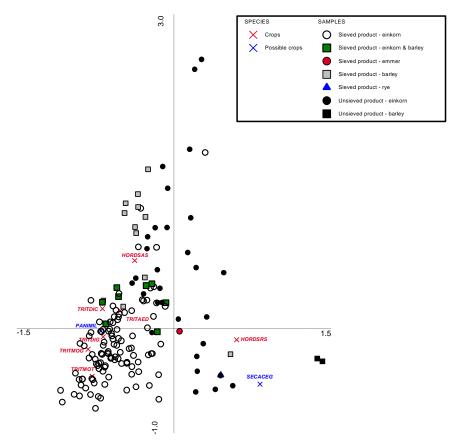


Fig 6.5. Correspondence analysis of samples identified to specific crop products: LBA Feudvar

Fig. 6.6. Pie charts representing the percentage of samples identified as spikelets, fine sieving by-products and products per 5x5m area: LBA Feudvar

Fig 6.7. Pie charts representing the percentage of samples identified as sieved and unsieved (regardless of crop processing stage) per 5x5m area: LBA Feudvar

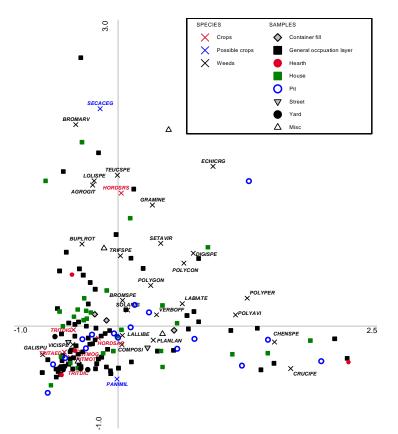


Fig 6.8. Correspondence analysis of samples identified as spikelets per feature type: LBA Feudvar

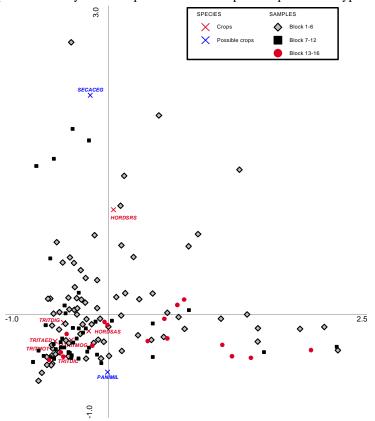


Fig 6.9. Correspondence analysis of samples identified as spikelets per area/block within the trench: LBA Feudvar

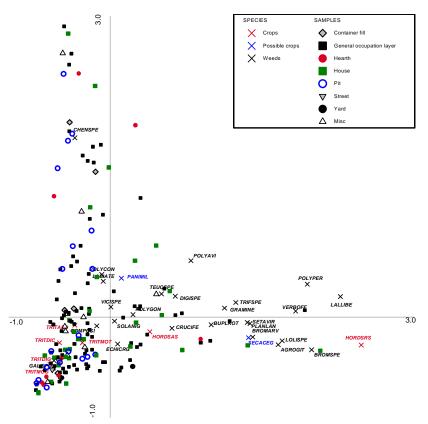


Fig 6.10. Correspondence analysis of samples identified as fine sieving by-products per feature type: LBA Feudvar

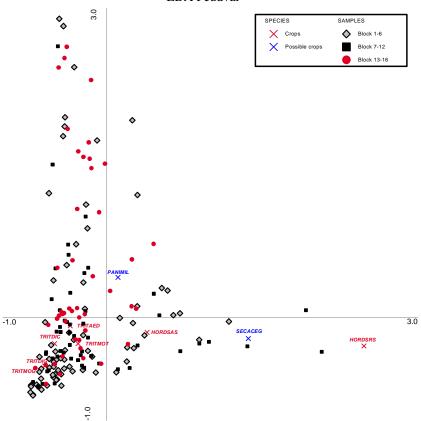


Fig 6.11. Correspondence analysis of samples identified as fine sieving by-products per area/block within the trench: LBA Feudvar

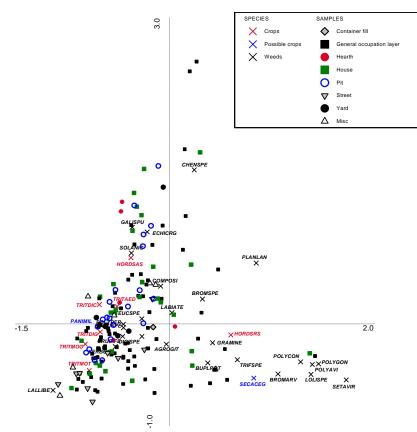


Fig 6.12. Correspondence analysis of samples identified as products per feature type: LBA Feudvar

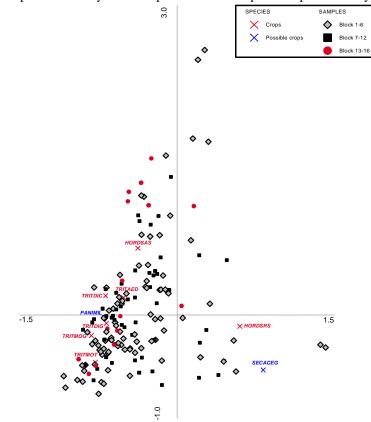


Fig 6.13. Correspondence analysis of samples identified as products per area/block within the trench: LBA Feudvar

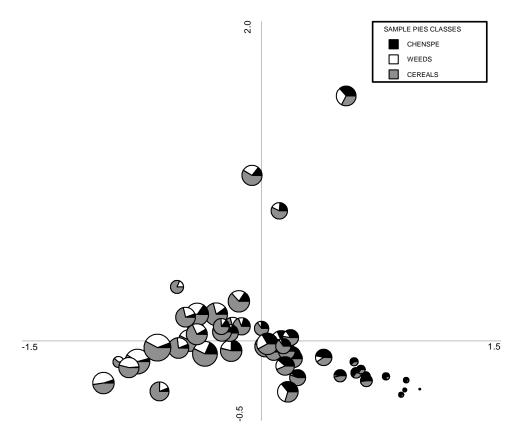


Fig 7.1. Unsieved spikelets - Shannon diversity examining the impact of Chenopodium on sample composition: LBA Feudvar.

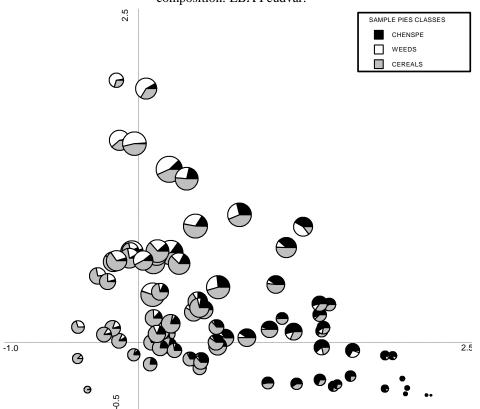


Fig 7.2. Unsieved fine sieving by-produces - Shannon diversity examining the impact of Chenopodium on sample composition: LBA Feudvar.

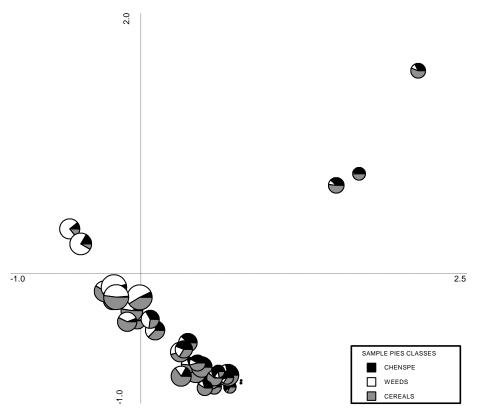
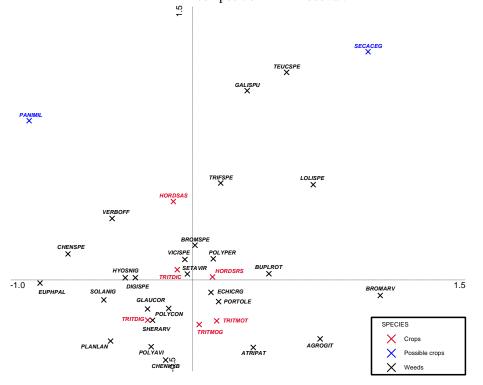



Fig 7.3. Unsieved products - Shannon diversity examining the impact of Chenopodium on sample composition: LBA Feudvar.

Fig 7.4. Correspondence analysis of crops, possible crops and weed species for samples identified as unsieved spikelets on the first two principal axes (axis 1 horizontal, axis 2 vertical): LBA Feudvar

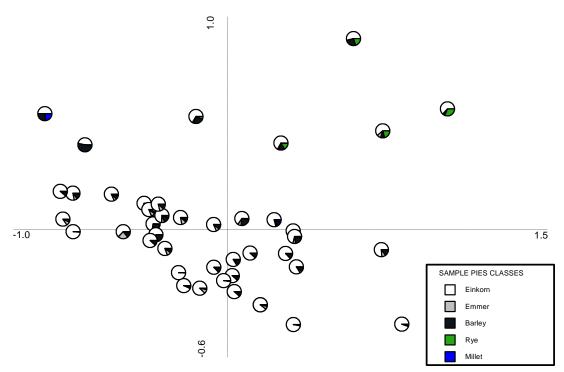


Fig 7.5. Correspondence analysis of the proportion of cereals per sample identified as unsieved spikelets: LBA Feudvar

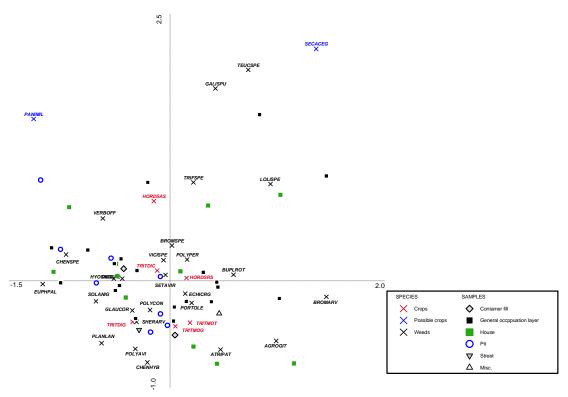


Fig 7.6. Correspondence analysis of crops, possible crops and weed species for samples identified as unsieved spikelets per feature type: LBA Feudvar

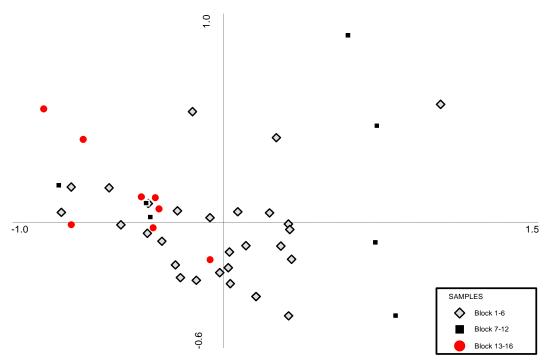


Fig 7.7. Correspondence analysis of each sample identified as unsieved spikelets per block group: LBA Feudvar

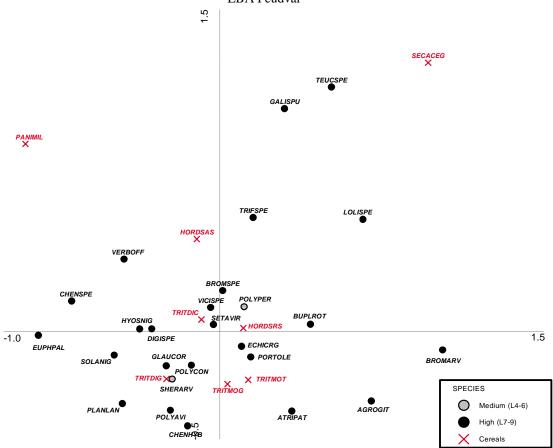


Fig 7.8. Correspondence analysis of crops and weed species for samples identified as unsieved spikelets showing the ecological indicator values for light (after Borhidi 1995): LBA Feudvar

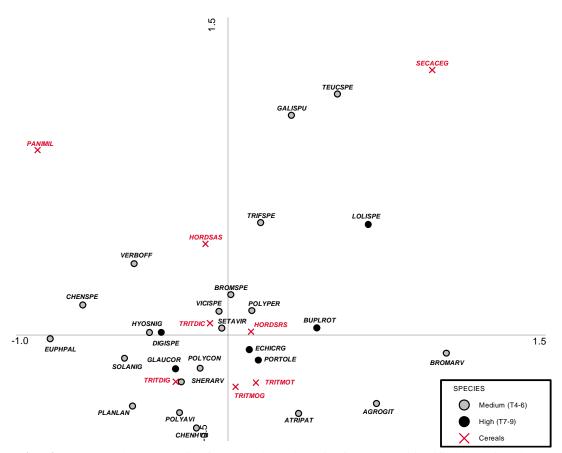


Fig 7.9. Correspondence analysis of crops and weed species for samples identified as unsieved spikelets showing the ecological indicator values for temperature (after Borhidi 1995): LBA Feudvar

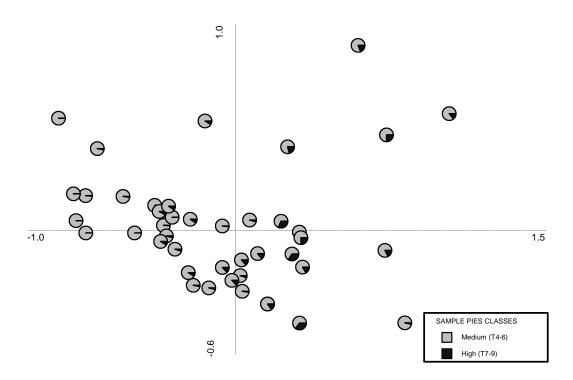
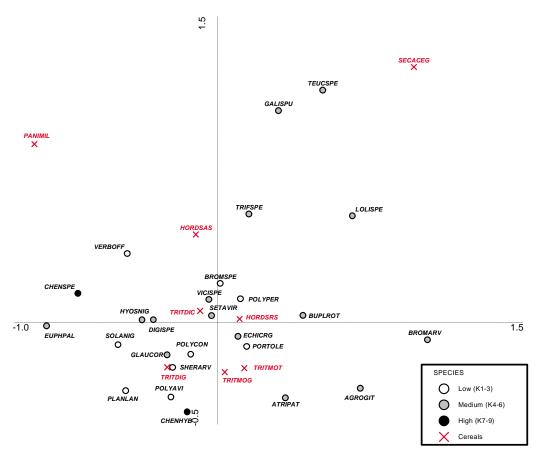



Fig 7.10. Correspondence analysis of the proportion of weed species according to their temperature indicator value for samples identified as unsieved spikelets (after Borhidi 1995): LBA Feudvar

Fig 7.11. Correspondence analysis of crops and weed species for samples identified as unsieved spikelets showing the ecological indicator values for continentality (after Borhidi 1995): LBA Feudvar

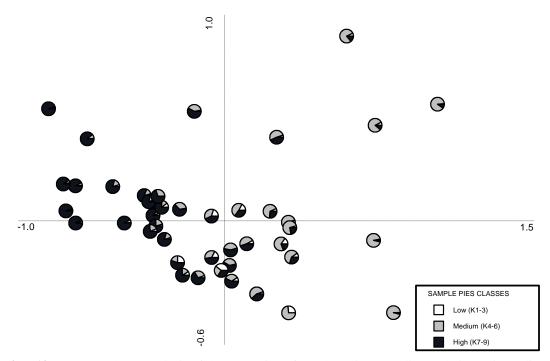


Fig 7.12. Correspondence analysis of the proportion of weed species according to their continentality indicator value for samples identified as unsieved spikelets (after Borhidi 1995): LBA Feudvar

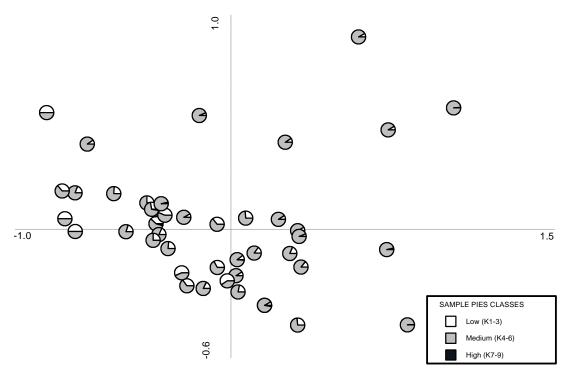


Fig 7.13. Correspondence analysis of the proportion of weed species without CHENSPE according to their continentality indicator value for samples identified as unsieved spikelets (after Borhidi 1995):

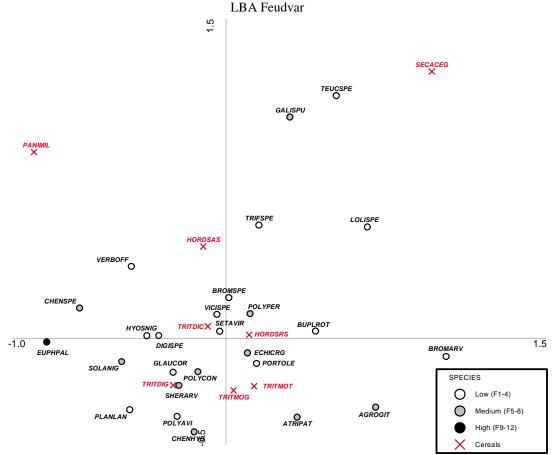


Fig 7.14. Correspondence analysis of crops and weed species for samples identified as unsieved spikelets showing the ecological indicator values for moisture (after Borhidi 1995): LBA Feudvar

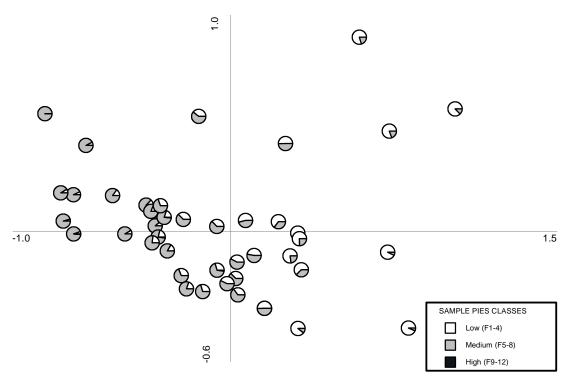


Fig 7.15. Correspondence analysis of the proportion of weed species according to their moisture indicator value for samples identified as unsieved spikelets (after Borhidi 1995): LBA Feudvar

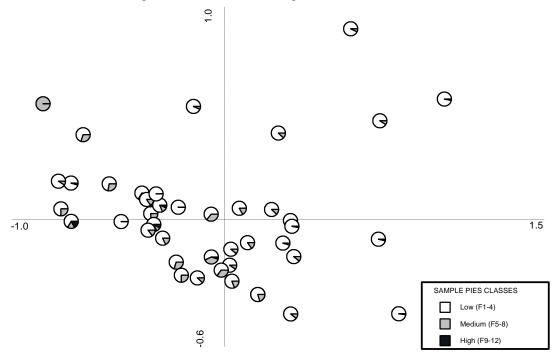
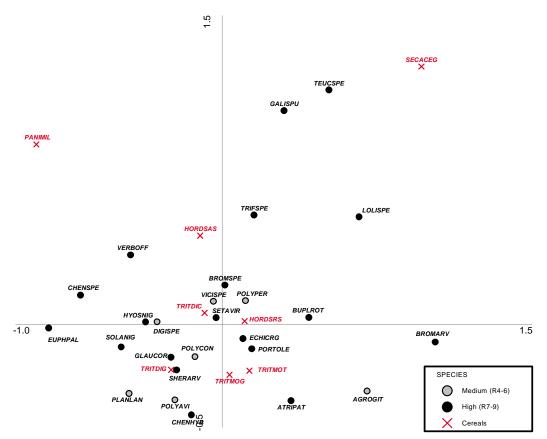



Fig 7.16. Correspondence analysis of the proportion of weed species without CHENSPE according to their moisture indicator value for samples identified as unsieved spikelets (after Borhidi 1995): LBA Feudvar

Fig 7.17. Correspondence analysis of crops and weed species for samples identified as unsieved spikelets showing the ecological indicator values for reaction (after Borhidi 1995): LBA Feudvar

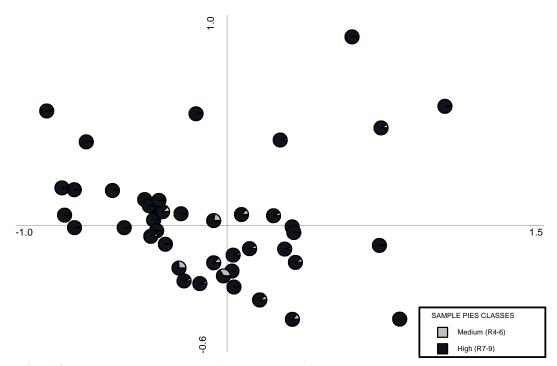
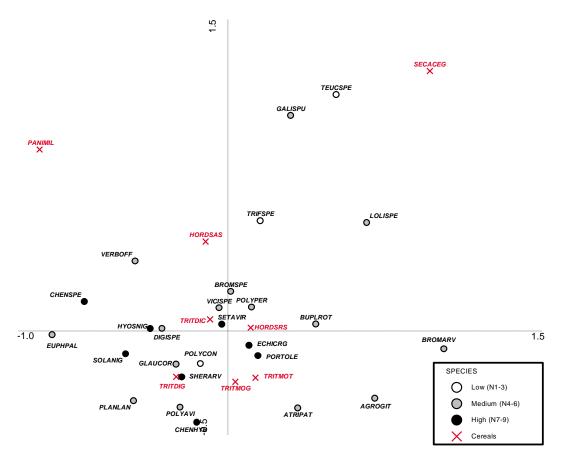



Fig 7.18. Correspondence analysis of the proportion of weed species according to their reaction indicator value for samples identified as unsieved spikelets (after Borhidi 1995): LBA Feudvar

Fig 7.19. Correspondence analysis of crops and weed species for samples identified as unsieved spikelets showing the ecological indicator values for nitrogen (after Borhidi 1995): LBA Feudvar

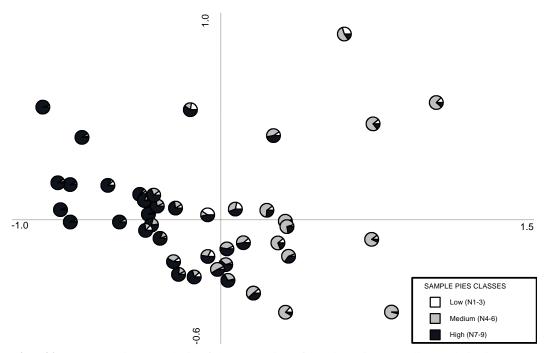


Fig 7.20. Correspondence analysis of the proportion of weed species according to their nitrogen indicator value for samples identified as unsieved spikelets (after Borhidi 1995): LBA Feudvar

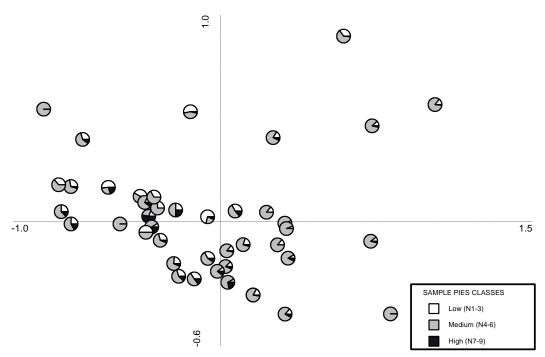


Fig 7.21. Correspondence analysis of the proportion of weed species without CHENSPE according to their nitrogen indicator value for samples identified as unsieved spikelets (after Borhidi 1995): LBA

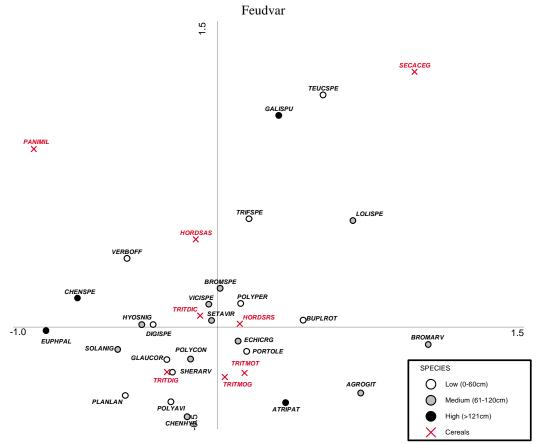


Fig 7.22. Correspondence analysis of crops and weed species for samples identified as unsieved spikelets showing the maximum flowering height for each weed (after Bojňanský and Fargašová 2007): LBA Feudvar

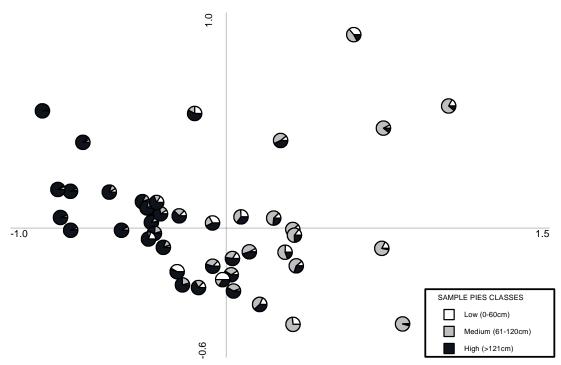
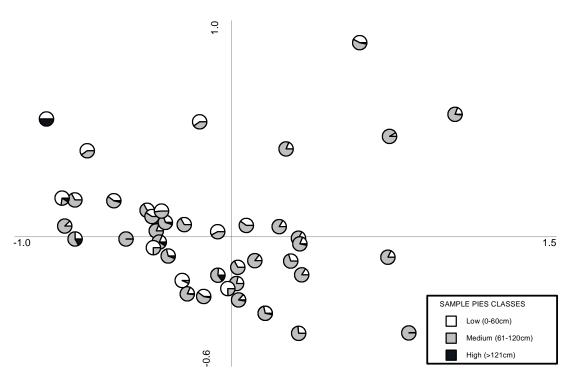



Fig 7.23. Correspondence analysis showing the proportions of weed species according to their maximum flowering height for samples identified as unsieved spikelets (after Bojňanský and Fargašová 2007): LBA Feudvar

Fig 7.24. Correspondence analysis showing the proportions of weed species without CHENSPE according to their maximum flowering height for samples identified as unsieved spikelets (after Bojňanský and Fargašová 2007): LBA Feudvar

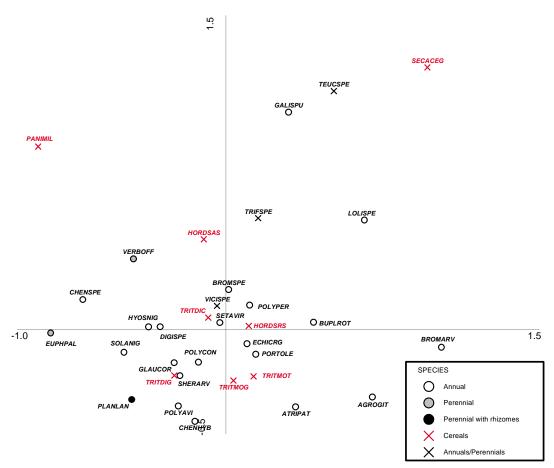
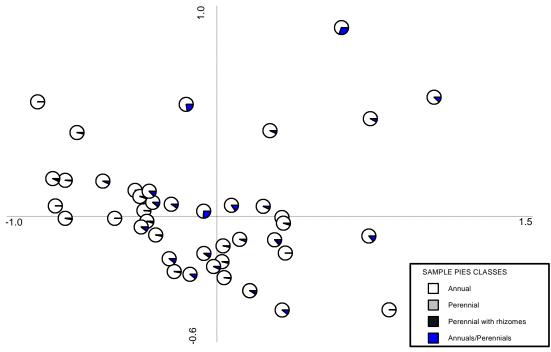
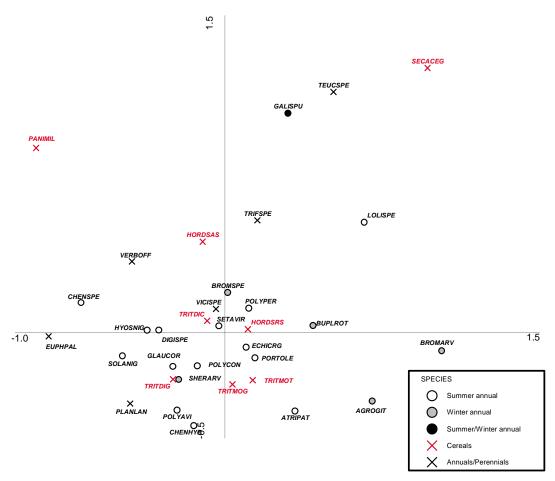
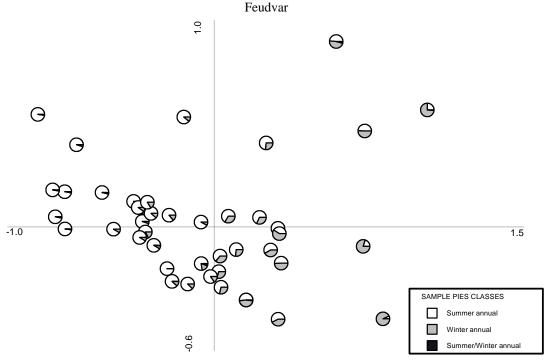
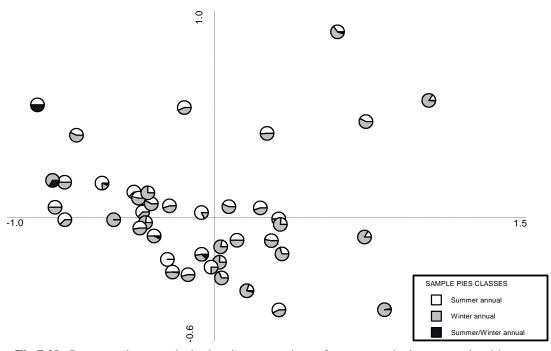
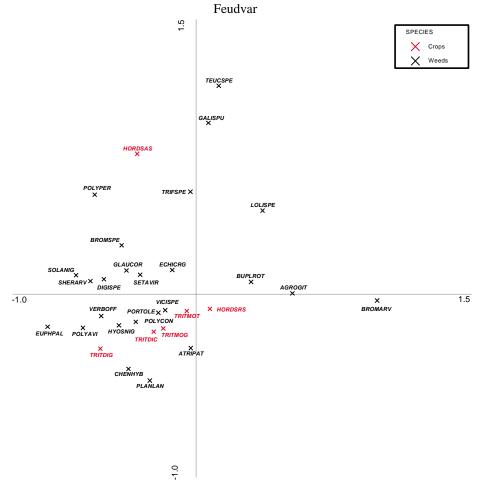




Fig 7.25. Correspondence analysis of crops and weed species for samples identified as unsieved spikelets showing the life cycle of each weed i.e. whether they are an annual, perennial with or without rhizomes (after Bojňanský and Fargašová 2007): LBA Feudvar

Fig 7.26. Correspondence analysis showing proportions of annuals and perennials for samples identified as unsieved spikelets spikelets (after Bojňanský and Fargašová 2007): LBA Feudvar

Fig 7.27. Correspondence analysis of crops and weed species for samples identified as unsieved spikelets showing the germination time of each weed (after Bojňanský and Fargašová 2007): LBA

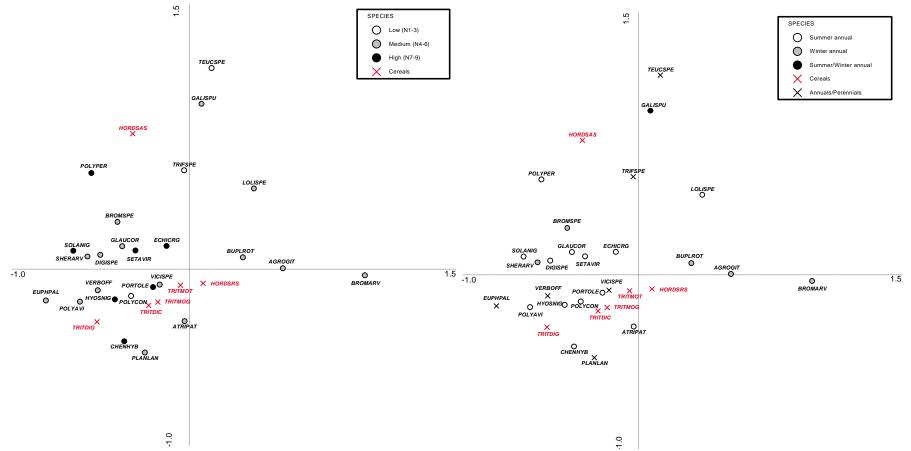

Fig 7.28. Correspondence analysis showing proportions of summer and winter annuals for samples identified as unsieved spikelets (after Bojňanský and Fargašová 2007): LBA Feudvar

Fig 7.29. Correspondence analysis showing proportions of summer and winter annuals without CHENSPE for samples identified as unsieved spikelets (after Bojňanský and Fargašová 2007): LBA

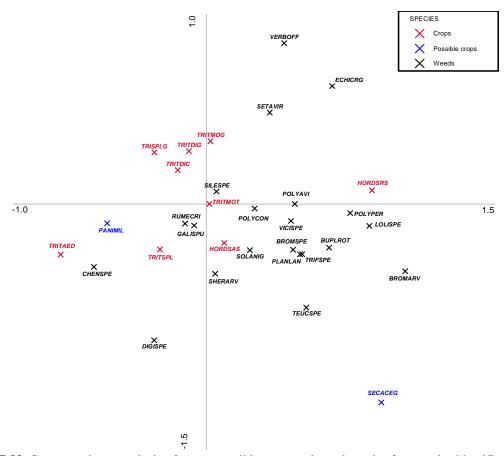


Fig 7.30. Correspondence analysis of crops, possible crops and weed species, without CHENSPE, SECACEG AND PANMIL, for samples identified as unsieved spikelets: LBA Feudvar

Fig 7.31. Correspondence analysis of crops and weed species, without CHENSPE, SECACEG AND PANMIL, for samples identified as unsieved spikelets showing the ecological indicator values for nitrogen (after Borhidi 1995): LBA Feudvar

Fig 7.32. Correspondence analysis of crops and weed species, without CHENSPE, SECACEG AND PANMIL, for samples identified as unsieved spikelets showing the germination time of each weed (after Bojňanský and Fargašová 2007): LBA Feudvar

Fig 7.33. Correspondence analysis of crops, possible crops and weed species for samples identified as unsieved fine sieving by-products on the first two principal axes (axis 1 horizontal, axis 2 vertical):

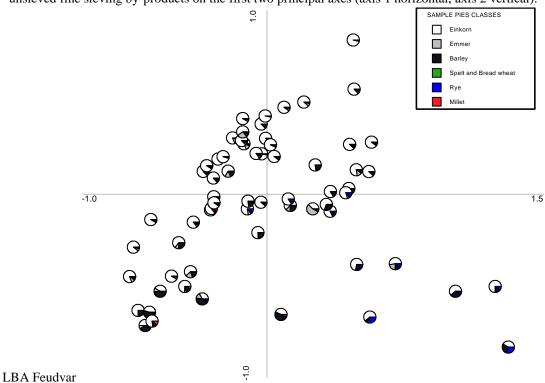


Fig 7.34. Correspondence analysis of the proportion of cereals per sample identified as unsieved fine sieving by-products: LBA Feudvar

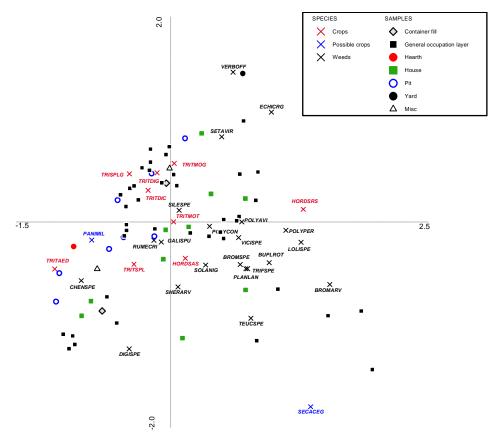


Fig 7.35. Correspondence analysis of crops, possible crops and weed species for samples identified as unsieved fine sieving by-products per feature type: LBA Feudvar

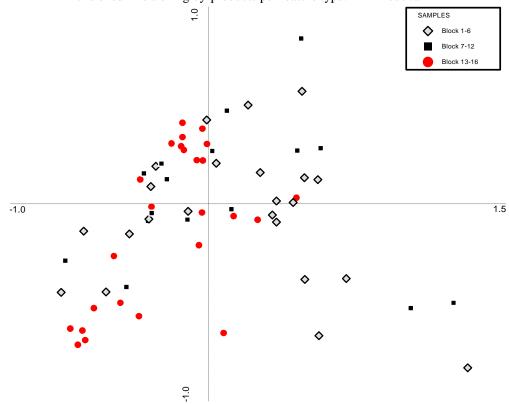


Fig 7.36. Correspondence analysis of each sample identified as unsieved fine sieving by-product per block group: LBA Feudvar

Fig 7.37. Correspondence analysis of crops and weed species for samples identified as unsieved fine sieving by-products showing the ecological indicator values for light (after Borhidi 1995): LBA

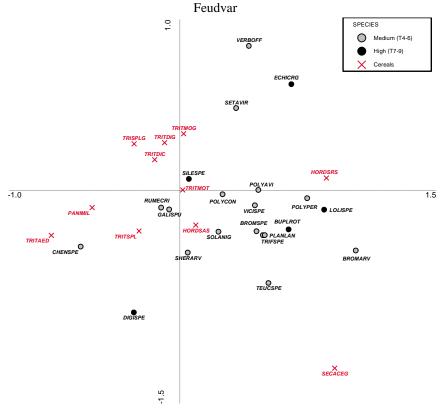


Fig 7.38. Correspondence analysis of crops and weed species for samples identified as unsieved fine sieving by-products showing the ecological indicator values for temperature (after Borhidi 1995): LBA Feudvar

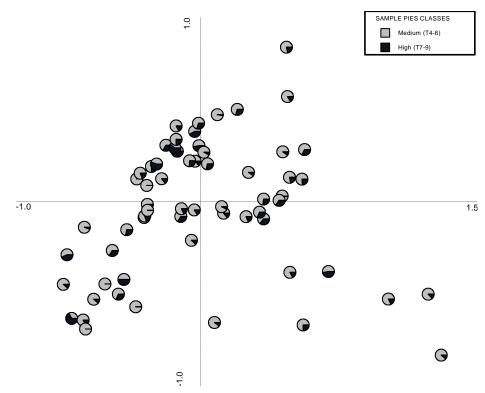


Fig 7.39. Correspondence analysis of crops and weed species without CHENSPE for samples identified as unsieved fine sieving by-products showing the ecological indicator values for temperature (after Borhidi 1995): LBA Feudvar

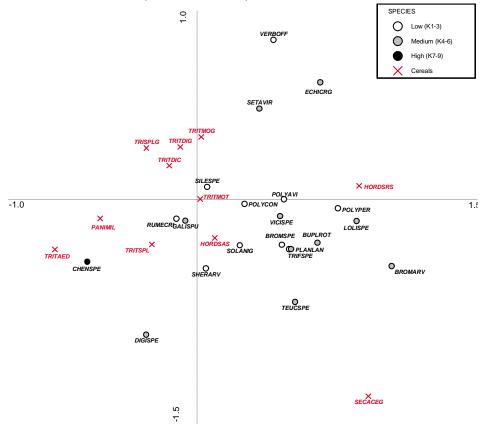


Fig 7.40. Correspondence analysis of crops and weed species for samples identified as unsieved fine sieving by-products showing the ecological indicator values for continentality (after Borhidi 1995): LBA Feudvar

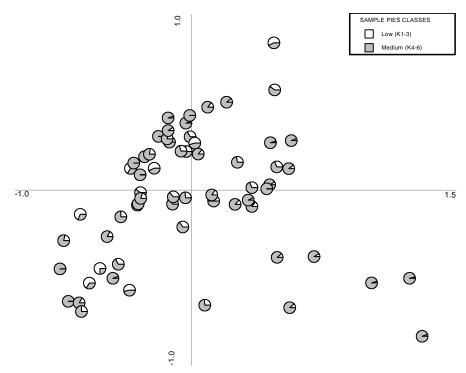


Fig 7.41. Correspondence analysis of crops and weed species without CHENSPE for samples identified as unsieved fine sieving by-products showing the ecological indicator values for continentality (after Borhidi 1995): LBA Feudvar

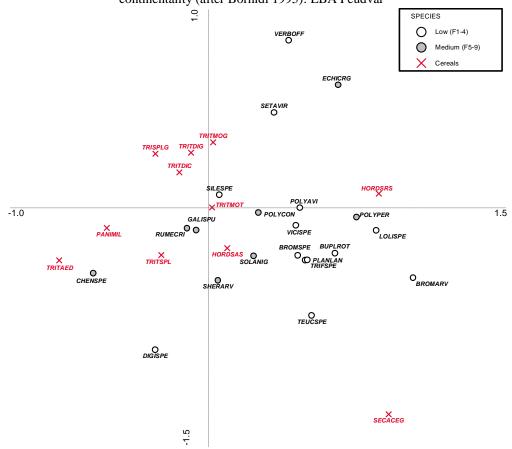
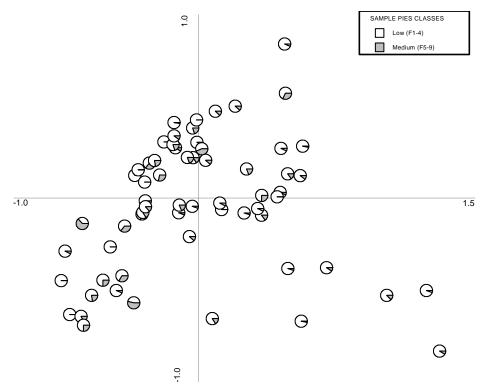



Fig 7.42. Correspondence analysis of crops and weed species for samples identified as unsieved fine sieving by-products showing the ecological indicator values for moisture (after Borhidi 1995): LBA Feudvar

Fig 7.43. Correspondence analysis of the proportion of weed species according to their moisture indicator value for samples identified as unsieved fine sieving by-products (after Borhidi 1995): LBA

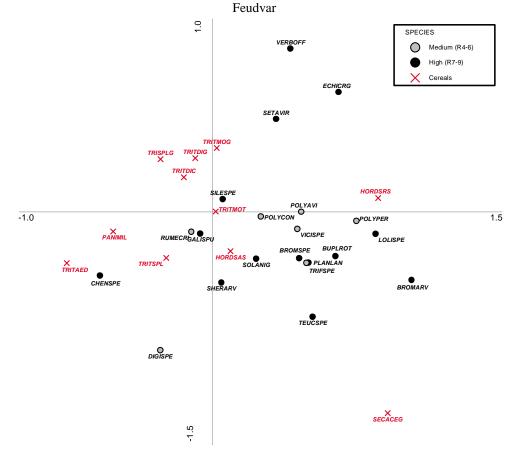


Fig 7.44. Correspondence analysis of crops and weed species for samples identified as unsieved fine sieving by-products showing the ecological indicator values for reaction (after Borhidi 1995): LBA Feudvar

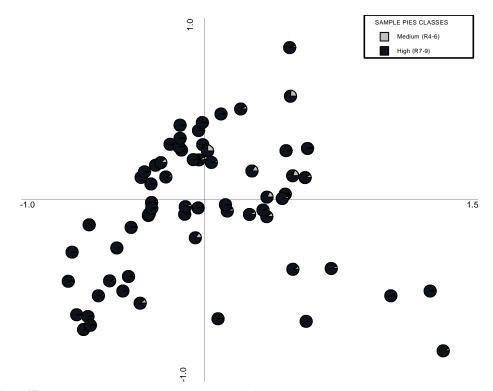


Fig 7.45. Correspondence analysis of the proportion of weed species according to their reaction indicator value for samples identified as unsieved fine sieving by-products (after Borhidi 1995): LBA

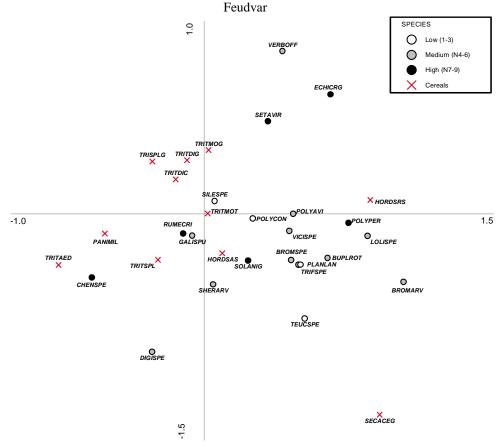
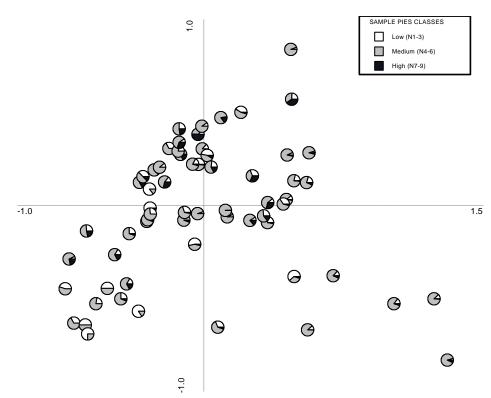



Fig 7.46. Correspondence analysis of crops and weed species for samples identified as unsieved fine sieving by-products showing the ecological indicator values for nitrogen (after Borhidi 1995): LBA Feudvar

Fig 7.47. Correspondence analysis of the proportion of weed species, without CHENSPE, according to their nitrogen indicator value for samples identified as unsieved fine sieving by-products (after Borhidi 1995): LBA Feudvar

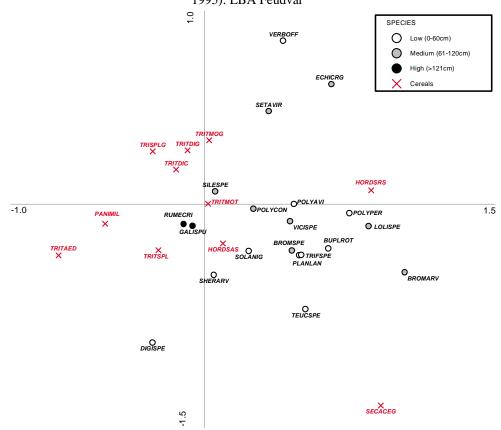
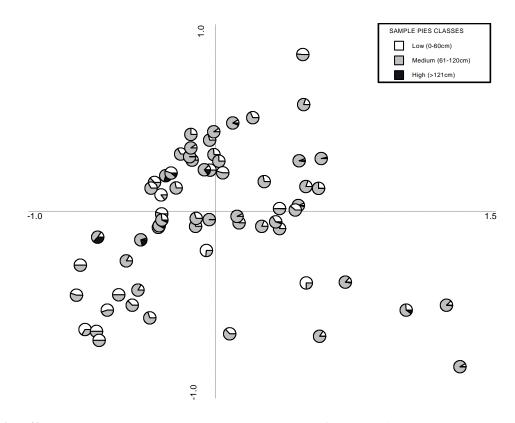
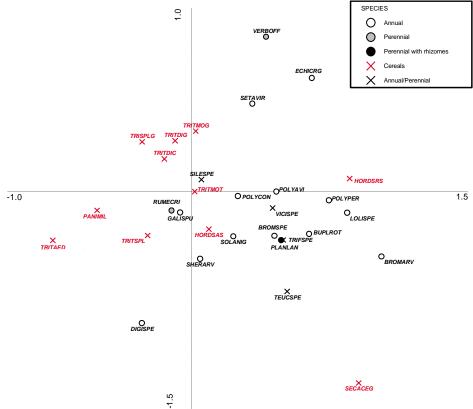




Fig 7.48. Correspondence analysis of crops and weed species for samples identified as unsieved fine sieving by-products, without CHENSPE, showing the maximum flowering height for each weed (after Bojňanský and Fargašová 2007): LBA Feudvar

Fig 7.49. Correspondence analysis showing the proportions of weed species, without CHENSPE, according to their maximum flowering height for samples identified as unsieved fine sieving by-products spikelets (after Bojňanský and Fargašová 2007): LBA Feudvar

Fig 7.50. Correspondence analysis of crops and weed species for samples identified as unsieved fine sieving by-products, without CHENSPE, showing the life cycle of each weed i.e. whether they are an annual, perennial with or without rhizomes (after Bojňanský and Fargašová 2007): LBA Feudvar

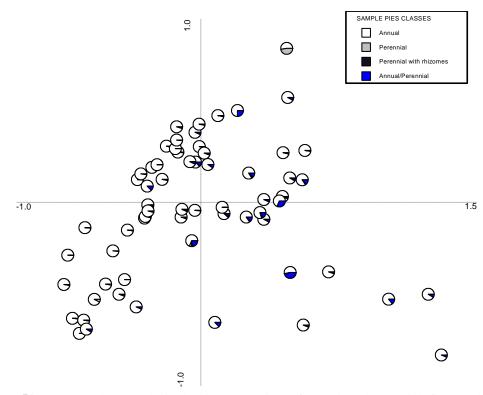


Fig 7.51. Correspondence analysis showing proportions of annuals and perennials for samples identified as unsieved fine sieving by-products, without CHENSPE (after Bojňanský and Fargašová 2007): LBA Feudvar

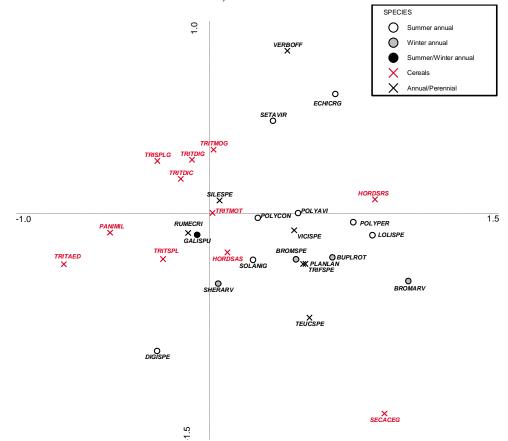
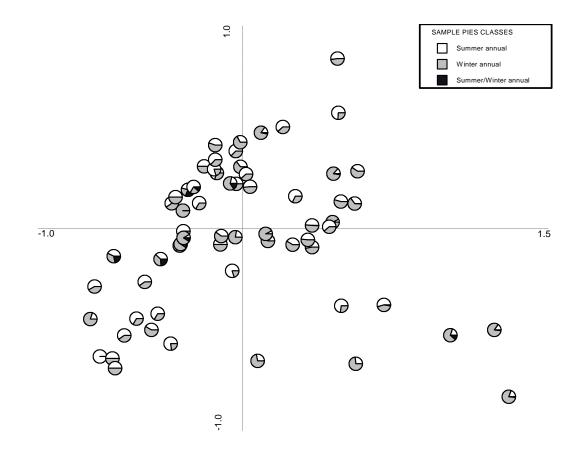
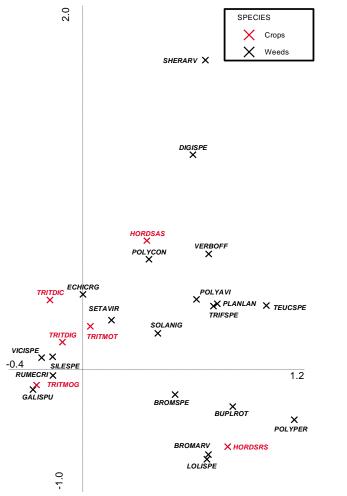
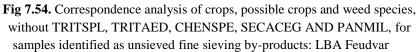
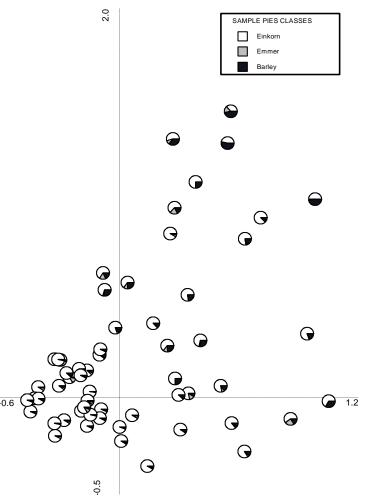
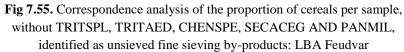
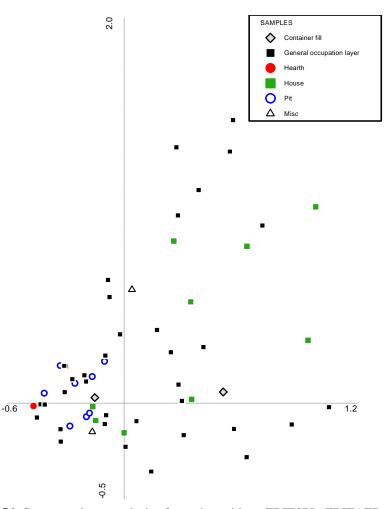


Fig 7.52. Correspondence analysis of crops and weed species for samples identified as unsieved fine sieving by-products, without CHENSPE, showing the germination time of each weed (after Bojňanský and Fargašová 2007): LBA Feudvar


Fig 7.53. Correspondence analysis showing proportions of summer and winter annuals for samples, without CHENSPE, identified as unsieved fine sieving by-products (after Bojňanský and Fargašová 2007): LBA

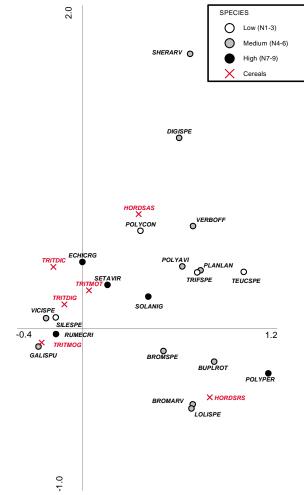


Fig 7.56. Correspondence analysis of samples, without TRITSPL, TRITAED, CHENSPE, SECACEG AND PANMIL, identified as unsieved fine sieving by-products per feature type: LBA Feudvar

Fig 7.57. Correspondence analysis of crops and weed species, without TRITSPL, TRITAED, CHENSPE, SECACEG AND PANMIL, for samples identified as unsieved fine sieving by-products showing the ecological indicator values for nitrogen (after Borhidi 1995): LBA Feudvar

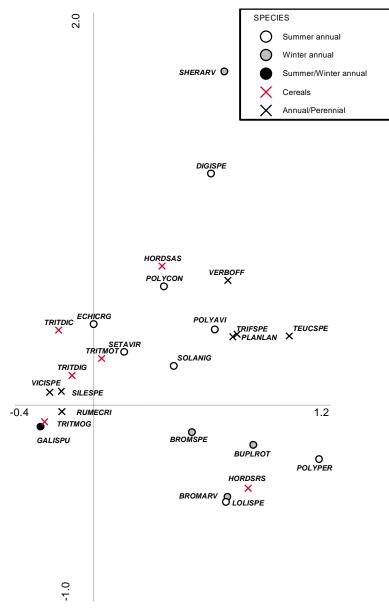
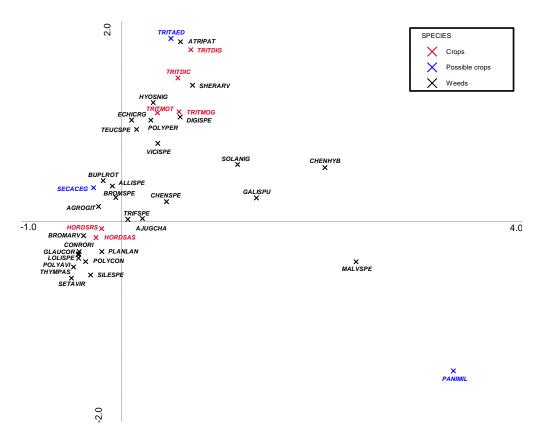
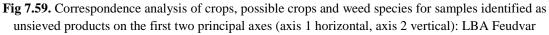
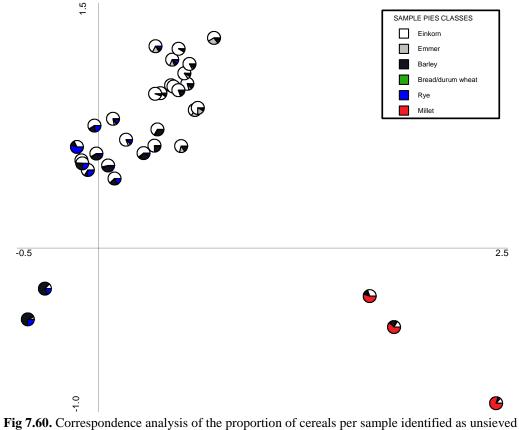





Fig 7.58. Correspondence analysis of crops and weed species, without TRITSPL, TRITAED, CHENSPE, SECACEG AND PANMIL, for samples identified as unsieved fine sieving by-products showing the germination time of each weed (after Bojňanský and Fargašová 2007): LBA Feudvar

products: LBA Feudvar

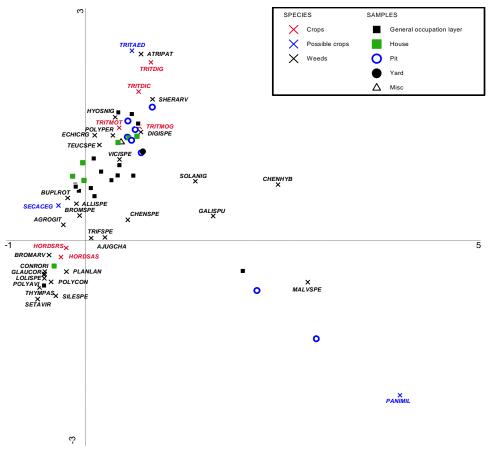
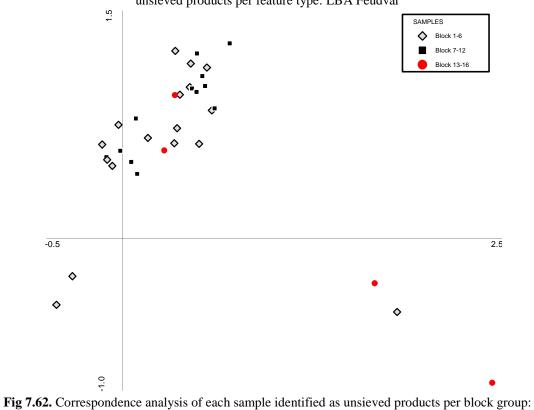



Fig 7.61. Correspondence analysis of crops, possible crops and weed species for samples identified as unsieved products per feature type: LBA Feudvar

LBA Feudvar

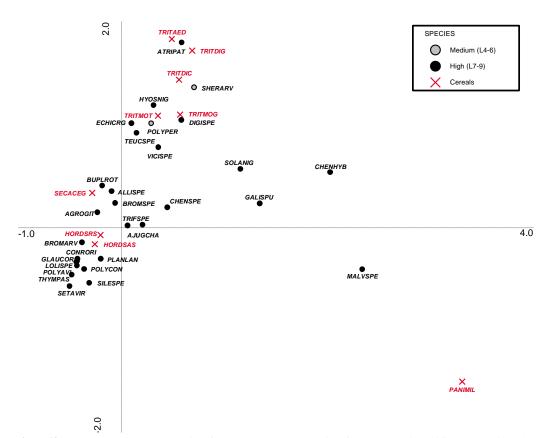


Fig 7.63. Correspondence analysis of crops and weed species for samples identified as unsieved products showing the ecological indicator values for light (after Borhidi 1995): LBA Feudvar

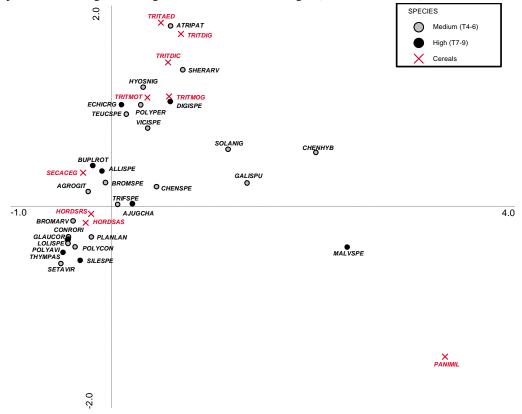
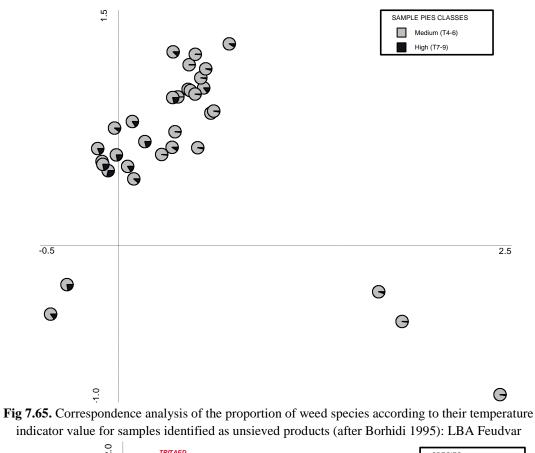
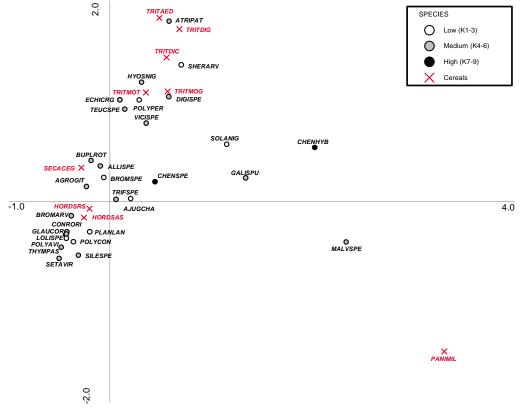
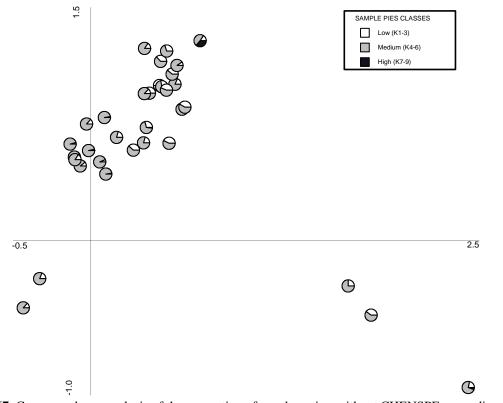





Fig 7.64. Correspondence analysis of crops and weed species for samples identified as unsieved products showing the ecological indicator values for temperature (after Borhidi 1995): LBA Feudvar

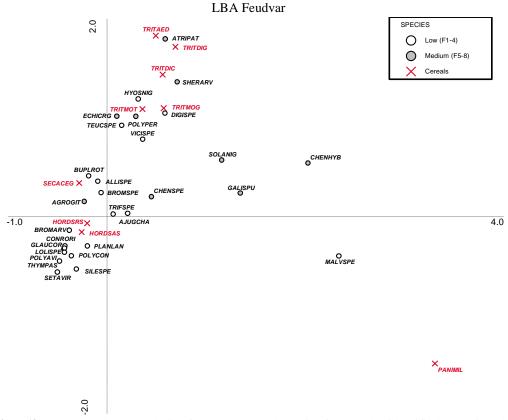
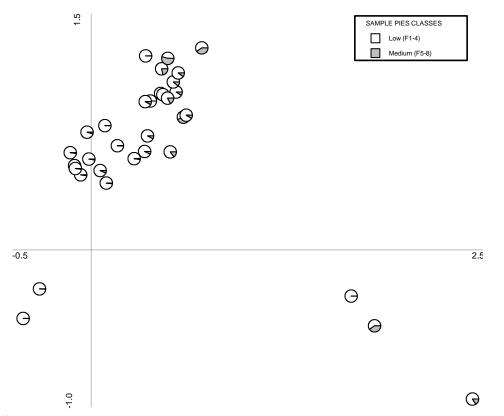
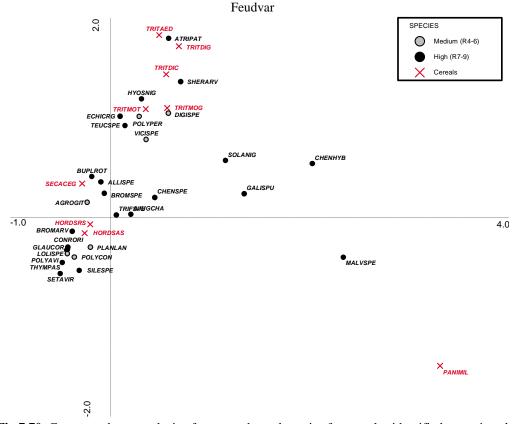


Fig 7.66. Correspondence analysis of crops and weed species for samples identified as unsieved products showing the ecological indicator values for continentality (after Borhidi 1995): LBA Feudvar

Fig 7.67. Correspondence analysis of the proportion of weed species, without CHENSPE, according to their continentality indicator value for samples identified as unsieved products (after Borhidi 1995):

Fig 7.68. Correspondence analysis of crops and weed species for samples identified as unsieved products showing the ecological indicator values for moisture (after Borhidi 1995): LBA Feudvar

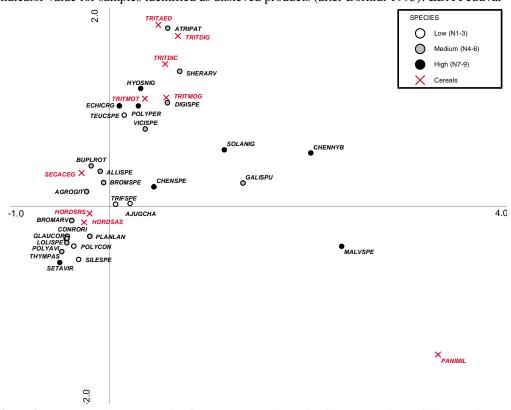

Fig 7.69. Correspondence analysis of the proportion of weed species, without CHENSPE, according to their moisture indicator value for samples identified as unsieved products (after Borhidi 1995): LBA

Fig 7.70. Correspondence analysis of crops and weed species for samples identified as unsieved products showing the ecological indicator values for reaction (after Borhidi 1995): LBA Feudvar

Fig 7.71. Correspondence analysis of the proportion of weed species according to their reaction indicator value for samples identified as unsieved products (after Borhidi 1995): LBA Feudvar

Fig 7.72. Correspondence analysis of crops and weed species for samples identified as unsieved products showing the ecological indicator values for nitrogen (after Borhidi 1995): LBA Feudvar

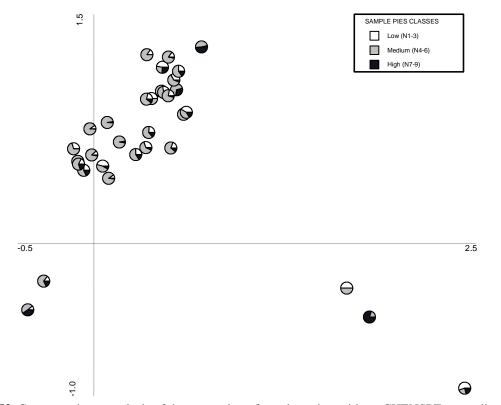


Fig 7.73. Correspondence analysis of the proportion of weed species, without CHENSPE, according to their nitrogen indicator value for samples identified as unsieved products (after Borhidi 1995): LBA Feudvar

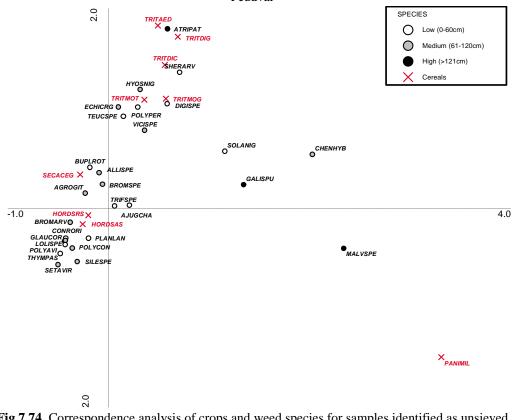


Fig 7.74. Correspondence analysis of crops and weed species for samples identified as unsieved products, without CHENSPE, showing the maximum flowering height for each weed (after Bojňanský and Fargašová 2007): LBA Feudvar

CHAPTER 7: FIGURES

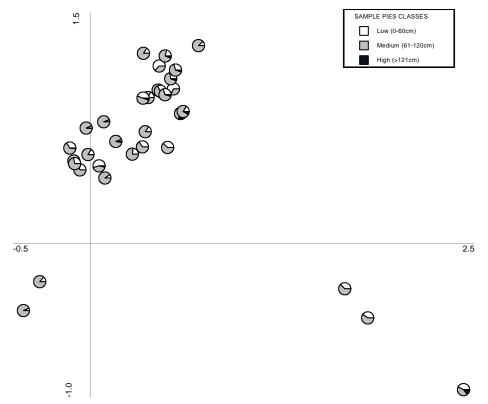
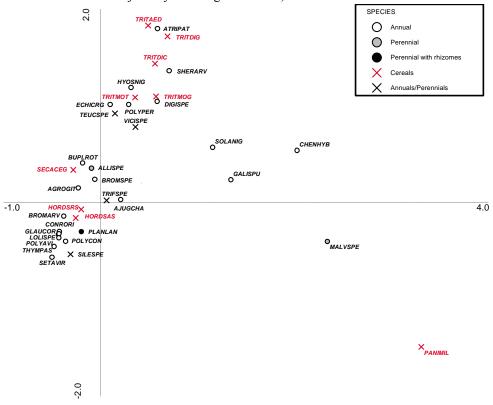



Fig 7.75. Correspondence analysis showing the proportions of weed species, without CHENSPE, according to their maximum flowering height for samples identified as unsieved products (after Bojňanský and Fargašová 2007): LBA Feudvar

Fig 7.76. Correspondence analysis of crops and weed species for samples identified as unsieved products, without CHENSPE, showing the life cycle of each weed i.e. whether they are an annual, perennial with or without rhizomes (after Bojňanský and Fargašová 2007): LBA Feudvar

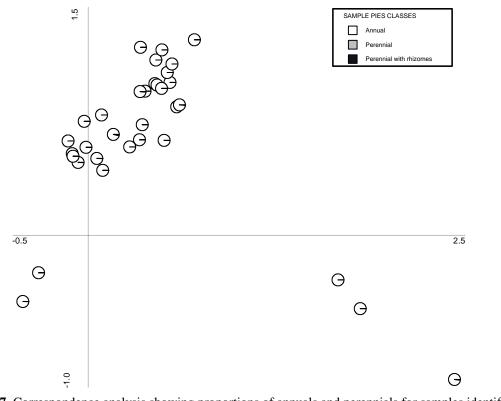


Fig 7.77. Correspondence analysis showing proportions of annuals and perennials for samples identified as unsieved products, without CHENSPE (after Bojňanský and Fargašová 2007): LBA Feudvar

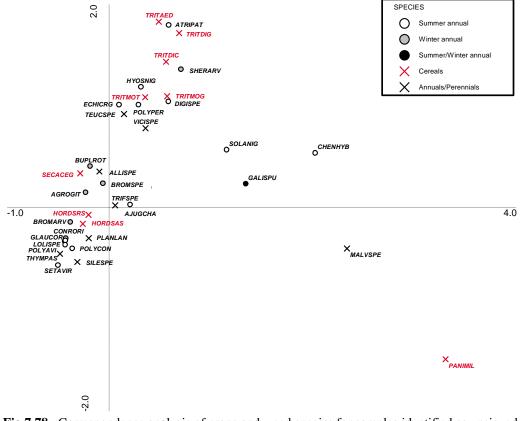


Fig 7.78 . Correspondence analysis of crops and weed species for samples identified as unsieved products, without CHENSPE, showing the germination time of each weed (after Bojňanský and Fargašová 2007): LBA Feudvar

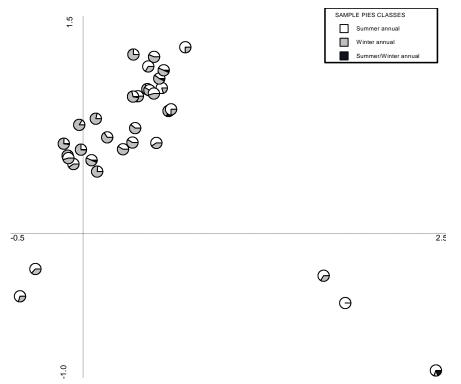
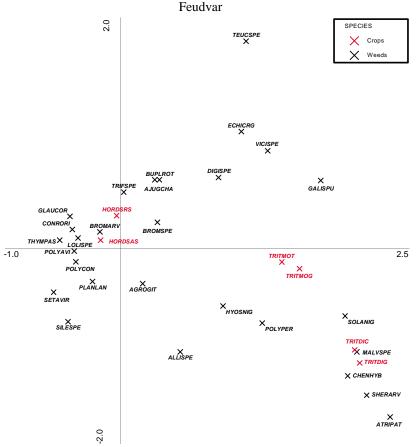
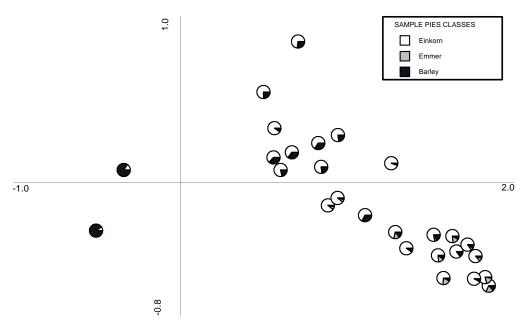




Fig 7.79. Correspondence analysis showing proportions of summer and winter annuals, without CHENSPE, for samples identified as unsieved products (after Bojňanský and Fargašová 2007): LBA

Fig 7.80. Correspondence analysis of crops, possible crops and weed species, without TRITAED, CHENSPE, SECACEG AND PANMIL, for samples identified as unsieved products: LBA Feudvar

Fig 7.81. Correspondence analysis of the proportion of cereals per sample, without TRITAED, CHENSPE, SECACEG AND PANMIL, identified as unsieved fine products: LBA Feudvar

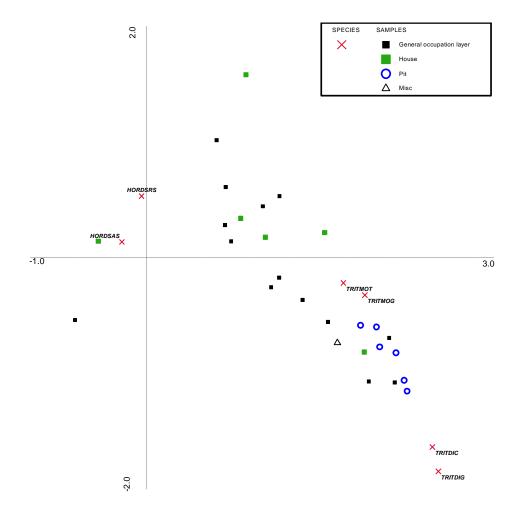
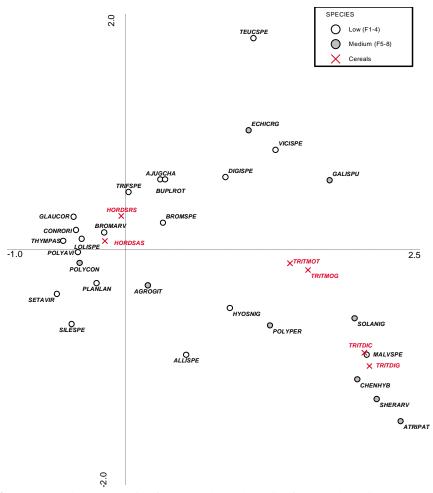



Fig 7.82. Correspondence analysis of samples, without TRITAED, CHENSPE, SECACEG AND PANMIL, identified as unsieved products per feature type: LBA Feudvar

Fig 7.83. Correspondence analysis of crops and weed species for samples, without TRITAED, CHENSPE, SECACEG AND PANMIL, identified as unsieved products showing the ecological indicator values for moisture (after Borhidi 1995): LBA Feudvar

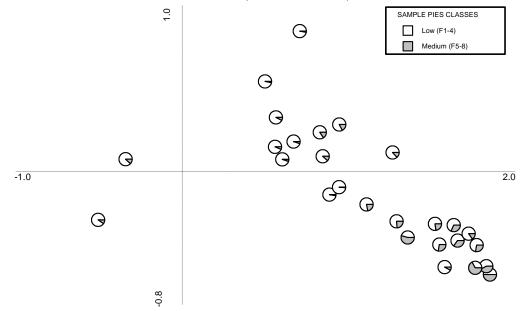
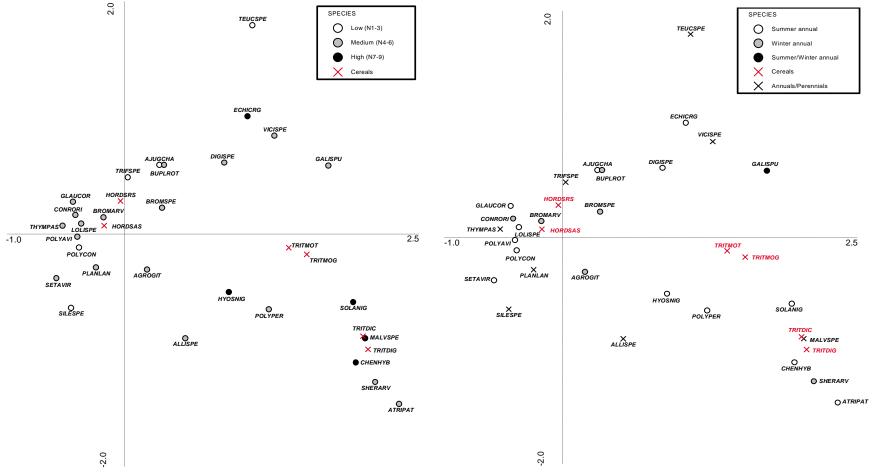



Fig 7.84. Correspondence analysis of the proportion of weed species, without TRITAED, CHENSPE, SECACEG AND PANMIL, according to their moisture indicator value for samples identified as unsieved products (after Borhidi 1995): LBA Feudvar

Fig 7.85. Correspondence analysis of crops and weed species, without TRITAED, CHENSPE, SECACEG AND PANMIL, for samples identified as unsieved products showing the ecological indicator values for nitrogen (after Borhidi 1995): LBA Feudvar

Fig 7.86. Correspondence analysis of crops and weed species , without TRITSPL, TRITAED, CHENSPE, SECACEG AND PANMIL, for samples identified as unsieved fine sieving by-products showing the germination time of each weed (after Bojňanský and Fargašová 2007): LBA Feudvar

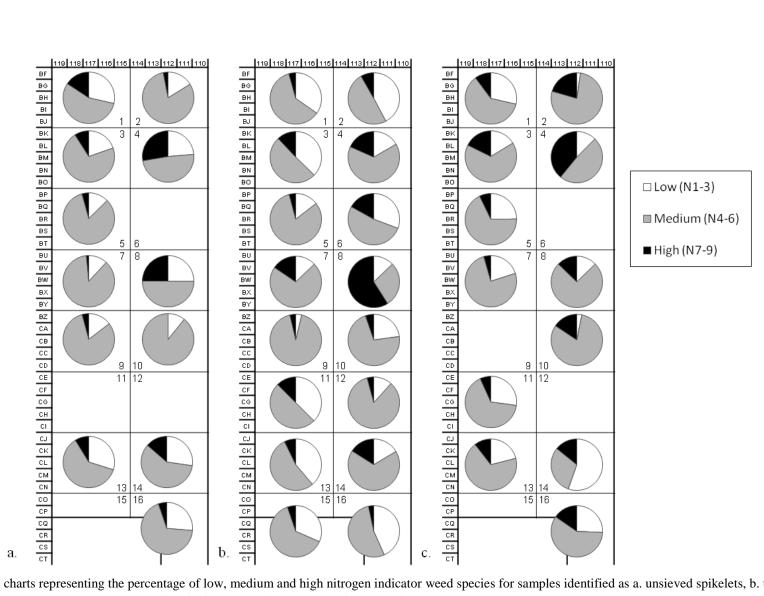


Fig 7.87. Pie charts representing the percentage of low, medium and high nitrogen indicator weed species for samples identified as a. unsieved spikelets, b. unsieved fine sieving by-products and c. unsieved products per 5x5m area: LBA Feudvar

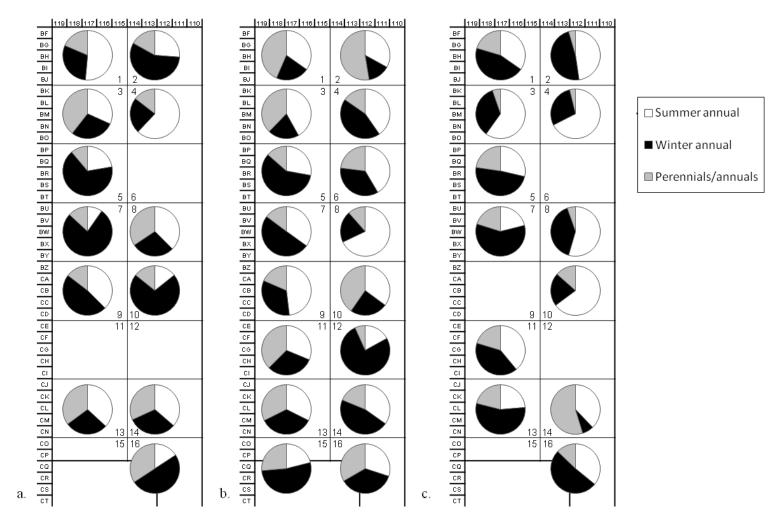


Fig 7.88. Pie charts representing the percentage of summer annuals, winter annuals and perennial/annuals for samples identified as a. unsieved spikelets, b. unsieved fine sieving by-products and c. unsieved products per 5x5m area: LBA Feudvar

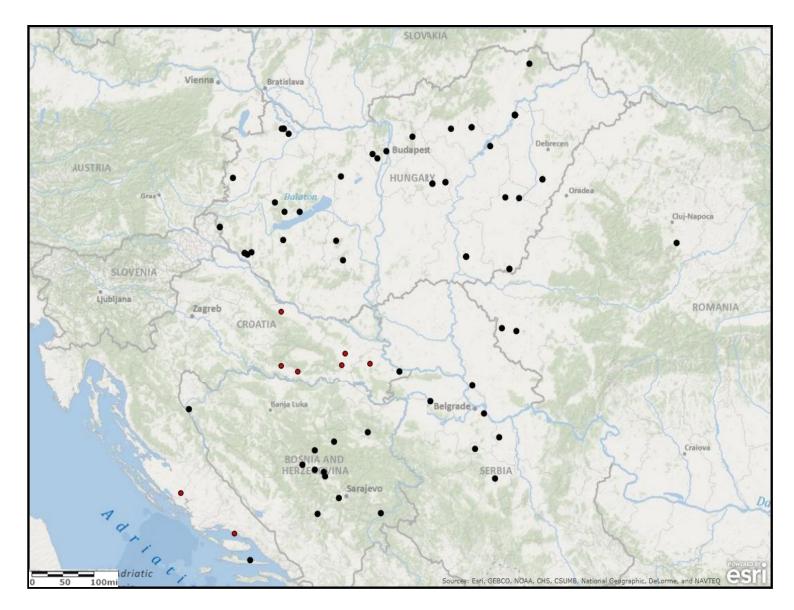


Fig 8.1. Map of sites with archaeobotanical material dating to the Mid/Late Neolithic in the Carpathian Basin. (Red = Croatian study sites)

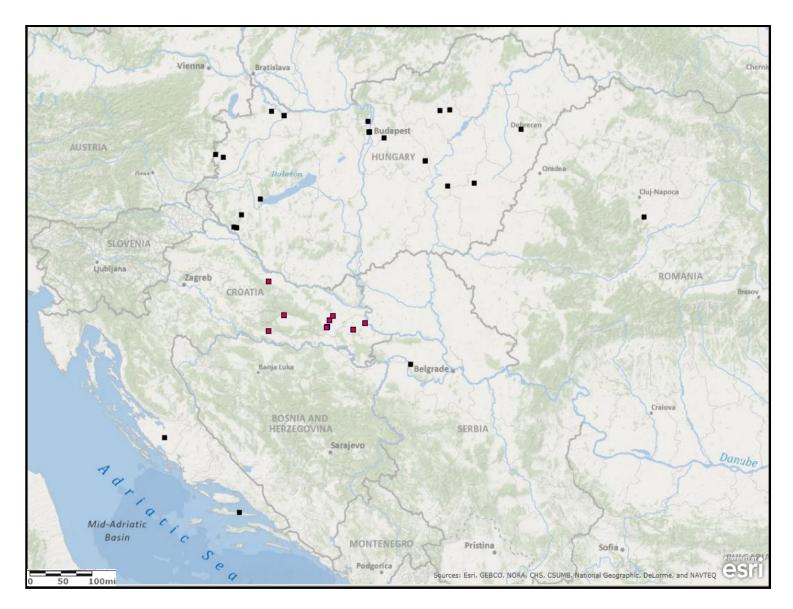


Fig 8.2. Map of sites with archaeobotanical material dating to the Copper Age in the Carpathian Basin. (Red = Croatian study sites)

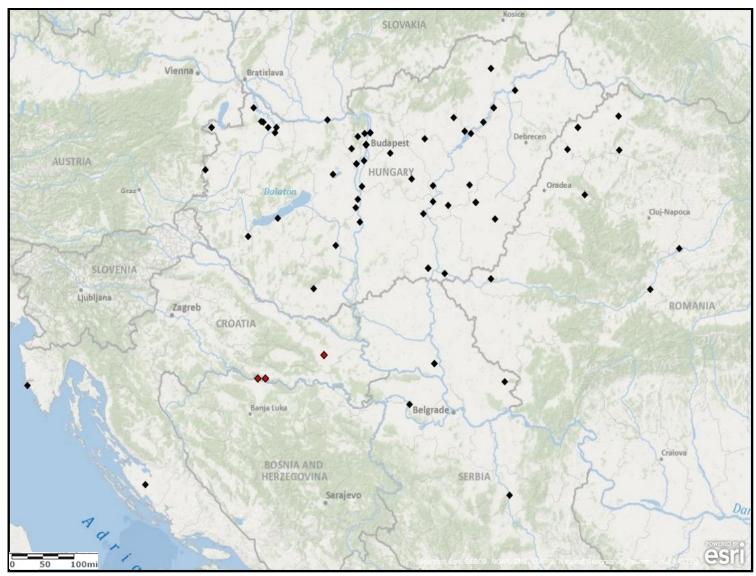


Fig 8.3. Map of sites with archaeobotanical material dating to the Bronze Age in the Carpathian Basin. (Red = Croatian study sites)

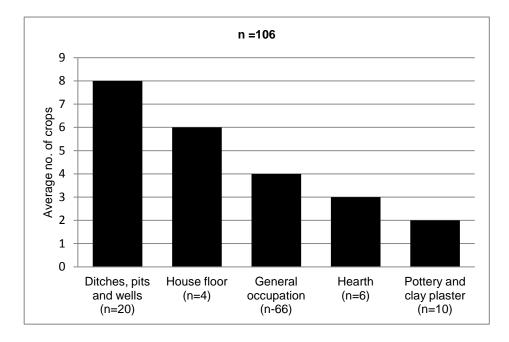


Fig 8.4. Average number of carbonised crop species recovered from each main feature type: Carpathian Basin

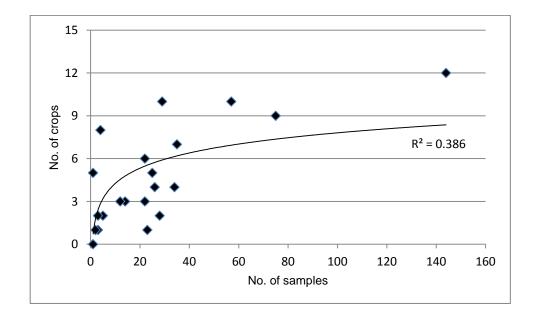


Fig 10.1. Correlation between number of samples and number of crops for all 18 Croatian sites including r² value

TABLES

5230 – 4750 BC	Mixed deciduous floodplain forest dominated by Quercus robur and Fraxinus
	angustifolia; coppiced lakeshore of Corylus avellana stand and possibly Ulmus trees.
4750 - 3810 BC	Mixed deciduous-coniferous floodplain forest of Quercus robur, Corylus avellana,
	Ulmus, Picea abies, Carpinus betulus and Fraxinus angustifolia.
3810 – 1735 BC	Mixed deciduous floodplain woodland dominated by Corylus avellana, Ulmus and
	Quercus robur; gradual spread of Carpinus betulus and Fagus sylvatica in the
	floodplain; Alnus fen-woods expand around the lake.
1735 - 620 BC	Carpinus betulus - Quercus robur woodland with the admixture of Fagus sylvatica.
	Anthropogenic woodland clearances, grazing and pastureland.

Table 2.1. Pollen record from Báb-tava northeast Hung	gary (Magyari et al. 2008: 37, Table 3)	

	Greece	Bulgaria	Albania	Romania	Serbia	Bosnia Herzegovina	Croatia	Slovenia	Hungary
No. of sites	19	5	1	2	7	9	1	4	24
Hordeum vulgare	+	+	+	+	+	+		+	+
T. monococcum	+	+	+	+	+	+	+	+	+
Triticum dicoccum	+	+	+	+	+	+		+	+
T. aestivum/durum/compactum	+	+			+	+			+
Triticum spelta									+
'New' glume wheat	+								+
Panicum miliaceum		+		+	+	+			+
Setaria italica									+
Secale cereale	+								+
Avena sativa							cf.		
Lathyrus sativus	+	+			+			+	+
Lens culinaris				+	+				+
Pisum sativum	+	+		+	+	+		+	+
Vicia ervilia	+	+	+	+	+				+
Vicia faba	+								+
Cicer arietinum									
Linum usitatissimum	+					+		+	+
Camelina sativa									+
Vitis vinifera ssp. silvestris	+							+	+

Table 2.2. Presence of crop remains recovered from Late Neolithic sites in Southeast Europe

	Greece	Albania	Bulgaria	Romania	Serbia	Bosnia Herzegovina	Croatia	Slovenia	Hungary		Greece	Albania	Bulgaria	Romania	Serbia	Bosnia Herzegovina	Croatia	Slovenia	Hungary
No. of sites	7	-	29	1	1	-	2	2	26	No. of sites	27	-	8	8	2	-	2	2	56
Hordeum vulgare	+		+		+				+	Hordeum vulgare	+		+	+	+		+	+	+
T. monococcum	+		+	+	+		+		+	T. monococcum	+		+	+	+		+	+	+
Triticum dicoccum	+		+	+	+		+		+	Triticum dicoccum	+		+	+	+				+
T. aestivum/durum/compactum	+		+	+	+			+	+	T. aestivum/durum/compactum	+		+	+	+			+	+
Triticum spelta			+	+					+	Triticum spelta	+		+	+	+				+
'New' glume wheat	+									'New' glume wheat	+				+				
Panicum miliaceum			+	+	+			+	+	Panicum miliaceum	+		+	+	+			+	+
Setaria italica	+						cf.			Setaria italica	+				+				+
Secale cereale				+					+	Secale cereale	+		+	+	cf.				+
Avena sativa										Avena sativa								+	
Lathyrus sativus	+				+					Lathyrus sativus	+		+		+				+
Lens culinaris			+		+				+	Lens culinaris	+		+	+	+		+	+	+
Pisum sativum	+		+		+				+	Pisum sativum	+		+	+	+				+
Vicia ervilia	+		+		+					Vicia ervilia	+		+	+	+				+
Vicia faba										Vicia faba	+			+	+		+	+	+
Cicer arietinum			+							Cicer arietinum	+				+				+
Linum usitatissimum	+		+		+				+	Linum usitatissimum	+				+				+
Camelina sativa										Camelina sativa	+				+				+
Vitis vinifera ssp. silvestris	+							+	+	Vitis vinifera ssp. silvestris	+				+		+	+	+

 Table 2.3. Presence of crop remains recovered from Copper Age sites in

 Southeast Europe

 Table 2.4. Presence of crop remains recovered from Bronze Age sites in

 Southeast Europe

Full site name	Period	Site type	No. of Samples	Average sample size	Recovery method	Sieve size	Features sampled	Representativeness
Virovitica-Brekinja	MN	Flat	5	11	MF	1mm	Pits	4
Ivandvor-Gaj	LN	Flat	14	11	MF	1mm	Pits	4
Čista Mala -Velištak	LN	Flat	34	11	BF	250µm	Multiple	3
Turska Peć	LN	Cave	22	11	BF	250µm	Multiple	3
Sopot	LN	Tell	144	20	MF	250µm	Multiple	2
Ravnjaš-Nova Kapela	LN	Tell	57	11	BF	250µm	Multiple	4
Slavča	LN, LN/CA, CA	Tell	24 51 22	11	BF	250µm	Pits	4
Đakovo-Franjevac	CA	Flat	29	11	MF	1mm	Pits	4
Pajtenica-Velike Livade	CA	Flat	23	11	MF	1mm	Pits	4
Potočani	CA	Flat	1	11	MF	1mm	Pits	4
Jurjevac-Stara Vodenica	CA	Flat	12	11	MF	1mm	Pits	4
Tomašanci-Palača	LN, CA, EBA	Flat	1 26 28	11	MF	1mm	Pits	4
Vučedol	CA	Tell	35	11	MF	1mm	Pits	4
Vinkovci/Matije Gupca 14	CA	Flat	4	11	MF	250µm	Pits	4
Virovitica-Batelije	CA	Flat	3	11	MF	1mm	Multiple	3
Crišnjevi-Oštrov	LBA	Necropolis	3	11	BF	250µm	Pits	4
Orubica-Veliki Šeš	LBA	Flat	2	11	BF	250µm	Pits	4
Mačkovac-Crišnjevi	LBA	Flat	25	11	BF	250µm	Multiple	3
Feudvar	LBA	Tell	524	10	BF	300µm	Multiple	2

Table 3.1. Summary of sampling, recovery and representativeness of the samples from each siteAbbreviations: MN = Middle Neolithic, LN = Late Neolithic, CA = Copper Age, EBA = Early BronzeAge, LBA = LBA. Machine flotation (MF), bucket flotation (BF). (Representativeness: seeMethodology, pp. 36)

		C11 datas		
Site code	Full site name	C14 dates (cal BC)	Cultural group	Reference
VIRBRE	Virovitica-Brekinja	5400-5200	Late Starčevo	Sekelj-Ivančan and Balen 2006
IVAGAJ	Ivandvor-Gaj	5050-4780 4730-4490	Sopot	Balen <i>et al.</i> 2009; Lipovac Vrkljan and Šiljeg 2006
CISMAV	Čista Mala -Velištak	4900-4700	Hvar	Podrug 2010
TURPEC	Turska Peć	-	Hvar	Kliškić 2006a, b, 2007
SOPOT	Sopot	5050-4550 4790-4320 4340-3940	Sopot	Škrivanko 2003, 2003, 2011
RAVNJA	Ravnjaš-Nova Kapela	-	Sopot	Mihaljević 2006a, 2007b, 2008a
SLAVCA	Slavča	-	Sopot, Lasinja, Kostolac, Vučedol	Mihaljević 2004, 2005, 2006b 2007c, 2008b, 2009
TOMPAL	Đakovo-Franjevac	4300-3900 3700-3600	Sopot, Lasinja, Baden, Retz-gajary, Kostolac, Vinkovačka	Balen 2008c
ÐAKFRA	Pajtenica-Velike Livade	3300-2700	Kostolac	Balen 2007a, 2008a, 2011
JURSTV	Potočani	4320-3960	Lasinja	Balen 2008a
PAJVEL	Jurjevac-Stara Vodenica	4350-3540	Lengyel	Balen 2006a
POTOCA	Tomašanci-Palača	4200	Lasinja	Balen 2007b
VUCEDO	Vučedol	2900-2600	Vučedol	Balen 2004, 2005b, 2007c, 2008b
VINMAG	Vinkovci/Matije Gupca 14	-	Vučedol	Krznarić Škrivanko 2007; Miloglav 2007
VIRBAT	Virovitica-Batelije	3700-3400	Retz-gajary/Boleraz	Balen 2006b
MACCRI	Mačkovac-Crišnjevi	-	Barice-Gređani	Karavanić et al. 2002
CRIOST	Crišnjevi-Oštrov	-	Barice-Gređani	Mihaljević and Kalafatić 2005, 2008, 2009; Mihaljević 2007a
ORUVES	Orubica-Veliki Šeš	-	13 th -12 th century BC	Mihaljević and Kalafatić 2007

Table 4.1. Summary of Croatian sites with associated C14 dates and cultural groups

Total no. of sites	18
Total no. of samples	565
Total volume (litres)	7,826
Total no. of seed items	
(not including indet. frags)	18,910
Mean seed density per litre	2.4
Median seed density per litre	0.6
St. deviation	

Table 4.2. Summary statistics for the 18 Croatian sites

	Mid- Late Neolithic	Copper Age	Bronze Age
No. of sites	8	9	4
No. of samples	352	155	58
Volume floated (I)	5,240	1,915	671
No. of identified seeds	14,052	4,385	472
No. of crops	14	13	10
Mean seed density per litre	3.1	1.7	0.7
Median seed density per litre	0.5	0.5	0.1
St. deviation	19	4.6	3

Table 4.3. Summary statistics of the Croatian sites per period

Site code	Total number of samples	Total volume sampled (I)	Mean charcoal density (cm³/l)	Total no. of seed items (not inc. indet. frags)	Mean seed density per litre	Median seed density per litre	St. deviation	Feature type
VIRBRE	5	55	-	15	0.3	0.1	0.4	Pits only
IVAGAJ	14	154	0	22	0.1	0.1	0.2	Pits only
CISMAV	34	268	0.4	152	0.7	0.2	2.2	Multiple
TURPEC	22	304	1.3	5,391	21	2	74	Occupation levels
SOPOT	144	2,842	0.2	2,581	0.9	0.3	2	Multiple
SLAVCA	75	825	0.6	3,718	4.5	1.5	7.5	Multiple
RAVNOK	57	627	0.3	2,176	3.5	1.5	6.8	Multiple
TOMPAL	1	11	0	1	0.2	0.2	0	Pits only

 Table 4.4. Summary table of the charcoal and seed densities per litre for each site: Middle/late

 Neolithic Croatia

Site code	Total number of samples	Total volume sampled (I)	Total no. of seeds (not inc. indet.)	Grain	Chaff	Pulse	Oil plant	Fruit	Wild/weed
VIRBRE	5	55	15	0.1	0	0	0	0	0
IVAGAJ	14	154	22	0.1	0	0	0	0	0
CISMAV	34	268	152	0.1	0	0	0	0	0
TURPEC	22	304	5,391	0	0	0	0	0	0.6
SOPOT	144	2,842	2,581	0.2	0.1	0	0	0	0
SLAVCA	75	825	3,718	0.1	1.4	0	0	0	0
RAVNOK	57	627	2,176	0.3	0.6	0	0	0	0
TOMPAL	1	11	1	0	0	0	0	0.1	0

 Table 4.5. Summary table of the median seed densities (per litre) for each plant category per site:

 Mid/Late Neolithic Croatia

Site code	Total number of samples	Total volume sampled (I)	Mean charcoal density (cm³/l)	Total no. of seed items (not inc. indet. frags)	Mean seed density per litre	Median seed density per litre	St. deviation	Feature type
ÐAKFRA	29	302	1	275	1	0.7	1	Pits only
JURSTV	12	132	0.1	50	0.4	0.3	0.4	Pits only
PAJVEL	23	253	0.06	25	0.1	0.1	0.1	Pits only
POTOCA	1	55	-	70	1	1	-	Pits only
SLAVCA	22	242	1.1	466	1.9	1.5	1.7	Pits only
TOMPAL	27	297	0.1	188	0.7	0.2	1.2	Pits only
VINMAG	4	216	2	1,734	8	8	3	Pits only
VIRBAT	3	33	-	14	0.4	0.4	0.5	Pits only
VUCEDO	35	385	1	1,580	4	1	9	Multiple

Table 4.6. Summary table of the charcoal and seed densities per litre for each site: Copper Age Croatia

Site code	Total number of samples	Total volume sampled (I)	Total no. of seeds (not inc. indet.)	Grain	Chaff	Pulse	Oil plant	Fruit	Wild/weed
ÐAKFRA	29	302	275	0.5	0	0	0	0	0.1
JURSTV	12	132	50	0.2	0	0	0	0	0
PAJVEL	23	253	25	0.1	0	0	0	0	0
POTOCA	1	55	70	1	0.1	0.02	0	0	0.02
SLAVCA	22	242	466	0.2	1.1	0	0	0	0
TOMPAL	27	297	188	0.2	0	0	0	0	0
VINMAG	4	216	1,734	2	0	0	0.2	0.03	6
VIRBAT	3	33	14	0.1	0.2	0	0	0	0
VUCEDO	35	385	1,580	0.6	0	0	0	0	0.2

 Table 4.8. Summary table of the median seed densities (per litre) for each plant category per site:

 Copper Age Croatia

Site code	Total number of samples	Total volume sampled (I)	Mean charcoal density (cm³/l)	Total no. of seed items (not inc. indet. frags)	Mean seed density per litre	Median seed density per litre	St. deviation	Feature type
CRIOST	3	33	0.2	20	0.6	0.3	0.7	Occupation levels
MACCRI	25	275	0.9	412	1.5	0.2	5	Multiple
ORUVES	3	33	0.1	4	0.2	0.2	0.5	Pits only
TOMPAL	28	308	-	36	0.1	0	0.2	Pits only

Table 4.9. Summary table of the charcoal and seed densities per litre for each site: Bronze Age Croatia

Site code	Total number of samples	Total volume sampled (I)	Total number of seeds (not inc. indet.)	Grain	Chaff	Pulse	Oil plant	Fruit	Wild/weed
CRIOST	3	33	20	0.1	0	0	0	0	0
MACCRI	25	275	412	0	0	0	0	0	0
ORUVES	3	33	4	0	0	0	0	0	0
TOMPAL	28	308	36	0	0	0	0	0	0

 Table 4.11. Summary table of the median seed densities (per litre) for each plant category per site:

 Bronze Age Croatia

	Period		P	reserva	ation cla	ass		Total no.
Site code	i onou	1	2	3	4	5	N/A	samples
VIRBRE	MN	-	-	-	1	2	2	5
IVAGAJ	LN	-	-	1	-	7	6	14
CISMAV	LN	1	-	5	10	10	8	34
TURPEC	LN	-	4	7	6	4	1	22
SOPOT	LN	-	2	7	21	107	7	144
RAVNOK	LN	-	1	11	20	23	2	57
TOMPAL	LN	-	-	-	1	-	-	1
SLAVCA	LN/CA	-	6	6	27	29	7	75
SLAVCA	CA	-	3	2	8	7	2	22
PAJVEL	CA	-	-	1	3	12	7	23
POTOCA	CA	-	-	-	-	1	-	1
JURSTV	CA	-	-	-	-	8	4	12
TOMPAL	CA	-	-	1	2	16	7	26
ÐAKFRA	CA	-	-	1	6	19	3	29
VIRBAT	CA	-	-	-	1	2	-	3
VINMAG	CA	-	-	2	2	-	-	4
VUCEDO	CA	-	2	10	10	12	1	35
TOMPAL	EBA	-	1	-	3	14	10	28
MACCRI	LBA	1	2	2	5	4	11	25
CRIOST	LBA	-	-	-	3	-	-	3
ORUVES	LBA	-	-	-	2	-	-	2
Total no. sa	mples	2	21	56	131	277	78	565

Table 4.12. Summary of samples identified to a preservation class per site: All 18 Croatian sites

NB: Preservation classes per sample. All classes based on >50% of the whole identified plant remains from a sample (including indet frag) being allocated to one class. 1= Perfect, 2= epidermis virtually intact (>75% epidermis present), 3=epidermis incomplete (>25% <75% epidermis present), 4=fragments of epidermis remaining (<25% epidermis), 5= identifiable by gross morphology only, N/A= no seed remains present in sample. (See Chapter 3 for more details).

	1	2	3	4	5	N/A
Tell/cave	0%	5%	13%	27%	54%	2%
Flat	1%	2%	9%	26%	63%	10%

Table 4.14. Percentage of samples identified to a preservation class per site type: All 18 Croatian sites

Density	0-5	5.1-10	10.1-25	25.1+	No. of samples
No. of samples	519	22	16	8	565
Feature type					
Ditch (inc. canal)	95%	-	5%	-	38
General occupation layer	93%	2%	2%	2%	122
Hearth	89%	11%	-	-	9
House area (inc. floor)	89%	5%	3%	3%	73
Outside House	100%	-	-	-	5
Pit (inc. hole, mass grave pit)	91%	5%	3%	1%	317
Pot fill	100%	-	-	-	1

Table 4.15. Percentage of samples from each feature type per density group: All 18 Croatian sites

Feature type	Period	Sample no.	Grain density	Chaff density	Pulse density	Oil plant density	Fruit density	Wild/weed density	Dominant component
General occupation layer	LN	TPEC01	0	0	0	0	0	347	Weed
General occupation layer	LN	TPEC02	0	0	0	0	0	31	Weed
General occupation layer	LN	TPEC03	0	0	0	0	0	41	Weed
Pit	LN	SLAV37	1	27	0	0	0	0	Chaff
Pit	LN	SLAV30	4	38	0	0	0	0	Chaff
Pit	LN	SLAV70	4	48	0	0	0	0	Chaff
House	CA	VUCE10	29	0	0	0	0	0	Grain
House	CA	VUCE21	39	0	0	0	0	1	Grain

 Table 4.16. Samples from the Croatian sites with >25.1 seed density (per litre) and details of the dominant component of each sample

Feature types	Grain	Chaff	Pulses	Oil plants	Fruits	Wild/weed	Total no. of seeds
Ditch	30%	54%	0.2%	0.1%	2%	14%	1,013
General occupation layer	23%	5%	1%	0.1%	1%	70%	7,516
Hearth	83%	2%	1%	-	3%	11%	152
House	80%	6%	1%	0.2%	7%	7%	2,088
Outside House	68%	30%	-	-	I	2%	44
Pit	21%	58%	1%	1%	1%	18%	8,098

Table 4.17. Percentage of seeds identified to each plant category per feature type: All 18 Croatian sites

Site code	CISMAV	IVAGAJ	RAVNOK	SLAVCA	SOPOT	TOMPAL	TURPEC	VIBBRE	Total frequency
No. of samples	34	14	57	75	144	1	22	5	352
GRAIN									
Hordeum vulgare hulled					1%		18%		2%
Hordeum vulgare var. nudum	18%		14%	12%	8%				10%
Triticum dicoccum	9%	14%	47%	13%	23%		41%		24%
Triticum monococcum	24%	14%	39%	9%	22%		14%	20%	21%
<i>T. monococcum</i> 2-g			4%		1%				1%
Triticum mono/dicoc	6%		14%		19%		5%	20%	11%
Triticum spelta			12%		3%		9%		4%
Triticum cf. spelta							5%		0.3%
T. aestivum/durum			2%	3%	2%		9%		2%
T. spelta/new glume wheat				3%					1%
Triticum spp.		21%	53%	21%	35%		27%	20%	30%
Secale cereale			2%	3%	2%		5%		2%
Secale cf. cereale					2%				1%
cf. Secale sp.	3%								0.3%
Avena sp.	3%		2%		3%				2%
Cerealia indet.	35%	29%	72%	47%	76%		36%	20%	60%
Panicum miliaceum			2%						0.3%
cf. Panicum miliaceum							5%		0.3%
Setaria italica				1%					0.3%
CHAFF									
Hordeum vulgare rachis				3%	2%				1%
<i>T. dicoccum</i> g/b	3%		18%	21%	10%		5%		12%
<i>T. monococcum</i> g/b	6%		5%	20%	8%				9%
T. mono/dicoc/ 'new' g/b	15%	7%	2%	11%	2%				5%
<i>Triticum spelta</i> g/b			4%	4%	1%		5%		2%
<i>cf. Triticum spelta</i> g/b					1%				1%
<i>"New glume wheat"</i> g/b	3%		2%	8%	1%				3%
cf. "New glume wheat" g/b					1%				1%
<i>Triticum</i> sp. g/b	6%		84%	80%	54%		14%		54%
T.aestivum/durum rachis				1%					0.3%
Cerealia rachis			2%	4%	1%				2%
PULSES									
Lathyrus sativus					1%		9%	20%	1%
Lens culinaris	6%	14%	14%	1%	3%		5%		5%
cf. Lens culinaris					3%				1%
Pisum sativum			9%	1%	2%				3%
Pisum cf. sativum					1%				1%
Vicia ervilia				3%			5%		1%
Large legumes indet.	6%	7%		11%	8%			20%	7%
OIL PLANTS									
Linum usitatissimum				3%	6%				3%
Linum sp.	3%								0.3%
FRUITS									
Cornus mas				5%	3%	100%			3%
Physalis alkekengi				3%	23%				10%

Table 4.18. Frequency of species per site: Mid-Late Neolithic Croatia

Site code	CISMAV	IVAGAJ	RAVNOK	SLAVCA	SOPOT	TOMPAL	TURPEC	VIBBRE	Total frequency
No. of samples	34	14	57	75	144	1	22	5	352
Prunus sp.							5%		0.3%
<i>Rosa</i> sp.							5%		0.3%
Rosa canina	3%								0.3%
Rubus fruticosus			2%				5%		1%
Sambucus ebulus			2%		3%				1%
Indet Fruit				3%	1%				1%
WILD/WEED SPECIES									
cf. Astragalus cicer							55%		3%
Ajuga reptans			2%	1%					1%
Asteraceae				3%	1%				1%
Bromus sp.				5%	29%				13%
Carex sp.							5%		0.3%
Cerastium sp.							9%		1%
Chenopodiaceae			2%	5%	22%		5%		11%
Chenopodium album				4%	1%		36%		3%
Chenopodium sp.				1%	1%				1%
Compositae				1%	1%				1%
Coronilla varia							5%		0.3%
Cyperaceae							9%		1%
Echinochloa crus-galli					1%				1%
Galium aparine				4%	1%				1%
Galium sp.	3%			3%			9%		1%
Gramineae large	9%			7%	16%		18%		10%
Gramineae small				3%	2%		5%		2%
Hyoscyamus sp.							9%		1%
Lolium sp.					1%				0.3%
Medicago sativa							9%		1%
Papaver sp.					1%				0.3%
Phleum sp.					1%				0.3%
Phalaris/Phleum sp.				1%					0.3%
Polygonum sp.			4%	3%	3%		5%		3%
Potentilla sp.			2%		2%				1%
Rumex sp.	3%						5%		1%
Rumex/Polygonum sp.				5%	8%		5%		5%
Setaria viridis				1%	1%		14%		1%
cf. Sherardia arvensis				1%					0.3%
small seeded legumes					1%		9%		1%
large seeded legume							18%		1%
Solanaceae	1			1%					0.3%
Solanum sp.							5%		0.3%
Teucrium sp.							9%		1%
Trifolium sp.					1%		27%		2%
Trigonella sp.	1						14%		1%
Urtica urens					1%				0.3%
Urtica dioica					1%				0.3%
Urtica sp.				1%					0.3%
INDETERMINATE	68%	43%	93%	81%	90%		82%	40%	83%

Table 4.18. (Continued)

	<u> </u>									
Unique sample no.	ĐAKFRA	JURSTV	PAJVEL	РОТОСА	SLAVCA	TOMPAL	VIRBAT	VINMAG	VUCEDO	Total frequency
No. of samples	<u>ш</u> 29	12	23	1	22	26	3	4	35	r ,⊒ 155
GRAIN	23	12	20	1	22	20	5	-	55	100
Hordeum vulgare hulled								75%	9%	4%
Hordeum vulgare var. nudum	10%		9%	100%		4%		100%	6%	8%
Triticum dicoccum		25%		100%	18%	8%		100%		16%
Triticum monococcum	41%			100%		4%		100%		28%
T. monococcum 2-g						4%			3%	1%
Triticum mono/dicoc	17%		4%		5%	4%		100%		13%
Triticum spelta								100%	3%	3%
Triticum cf. spelta									3%	1%
T. aestivum/durum	3%					4%		50%	3%	3%
Triticum spp.	24%		4%	100%	32%	12%	33%	100%		26%
Secale cereale				100%				25%		1%
Cerealia indet.	90%	58%	48%	100%	64%	62%	33%	100%	71%	68%
Panicum miliaceum	3%							50%		1%
Setaria italica				100%					6%	2%
CHAFF										
T. dicoccum g/b		8%		100%	18%	8%	33%			6%
T. monococcum g/b	7%				32%	4%	33%		14%	10%
T. mono/dicoc/ 'new' g/b	7%				23%				9%	6%
<i>Triticum spelta</i> g/b		8%			5%					1%
Triticum sp. g/b	3%	17%		100%	73%	23%	33%	25%		18%
T.aestivum/durum rachis		0%							3%	1%
Cerealia rachis					5%	4%				1%
Straw					5%					1%
PULSES					I	1		1		
Lathyrus sativus	3%									1%
Lens culinaris	3%									1%
cf. Lens culinaris										
Pisum sativum	17%								11%	6%
Vicia ervilia										
Large legumes indet.	10%			100%				25%	3%	4%
OIL PLANTS		T		r	1			1		
Linum usitatissimum	10%							100%	14%	8%
Linum cf. usitatissimum					5%					1%
Linum sp.										
FRUITS										
Cornus mas	14%	8%			9%	12%		25%		7%
Corylus sp.						4%				1%
Physalis alkekengi	21%				9%	8%		50%	3%	8%
Prunus cf. spinosa		8%								1%
Rubus fruticosus	7%				5%					2%
Rubus sp.	3%							0.501		1%
Sambucus ebulus	7%					8%		25%	9%	5%
Indet Fruit	3%					8%				2%

Table 4.19. Frequency of species per site: Copper Age Croatia

Unique sample no.	ĐAKFRA	JURSTV	PAJVEL	РОТОСА	SLAVCA	TOMPAL	VIRBAT	VINMAG	VUCEDO	Total frequency
No. of samples	29	12	23	1	22	26	3	4	35	155
WILD/WEED SPECIES										
Ajuga reptans									3%	1%
Agrostemma githago	3%							50%	11%	5%
Asteraceae								25%		1%
Bromus sp.	21%				9%	4%		100%	26%	14%
Carex sp.					9%	4%		25%	3%	3%
cf. Carpinus betulus	3%									1%
Chenopodiaceae/Caryophylaceae									3%	1%
Chenopodium sp.					5%			25%		1%
Chenopodium album	7%							100%	3%	5%
cf. Convolvulus arvensis	1								3%	1%
Cyperaceae								25%		1%
Festuca sp.									3%	1%
Galium aparine						8%		25%	3%	3%
Galium sp.	7%		4%			4%			3%	3%
Gramineae large	14%		9%	100%	5%	8%		100%		15%
Gramineae small	3%							50%	6%	3%
Hypericum sp.								25%	3%	1%
Lolium sp.	3%							25%	3%	2%
Mentha sp.									3%	1%
Phalaris sp.									9%	2%
Phalaris/Phleum sp.									3%	1%
Phleum sp.	3%							50%	9%	4%
Plantago lanceolata									3%	1%
Plantago sp.									3%	1%
Poa sp.									3%	1%
Polygonum sp.	14%				5%			50%	11%	7%
Polygonum aviculare									3%	1%
Potentilla sp.					5%			25%	3%	2%
Rumex sp.									3%	1%
Rumex/Polygonum sp.	10%									2%
Setaria viridis	7%				5%				9%	4%
Silene sp.	3%								6%	2%
Salvia sp.									3%	1%
small seeded legumes	7%							100%	3%	5%
Solanaceae	3%									1%
<i>Teucrium</i> sp.	3%							25%	14%	5%
Teucrium chamaedrys									9%	2%
Trifolium sp.									9%	2%
Urtica sp.	1								3%	1%
Verbena officinalis								25%		1%
Viola sp.					5%			25%		1%
INDETERMINATE	90%	67%	57%	100%		62%	100%	1	83%	

Table 4.19. (Continued)

Unique sample no.	MACCRI	CRIOST	ORUVUS	TOMPAL	Total frequency
	<u>≥</u> 25	3	2	 28	<u>⊢_</u> 58
No. of samples	20	3	2	20	56
Hordeum vulgare var. nudum				4%	2%
Triticum dicoccum	4%			7/0	2%
Triticum mono/dicoc	470			4%	2%
T. aestivum/durum				4%	2%
Triticum spp.	4%			170	2%
Avena sativa	20%				9%
Cerealia indet.	20%	33%		36%	28%
Panicum miliaceum	24%	67%	50%		16%
Setaria italica	8%	0170			3%
CHAFF					
<i>Triticum</i> sp. g/b	4%				2%
Avena sativa floret base	8%				3%
Straw				4%	2%
PULSES					
Lens culinaris	4%				2%
FRUITS					
Cornus mas			50%	4%	3%
Prunus spinosa	8%				3%
Vitis vinifera				4%	2%
WILD/WEED SPECIES					
Bromus sp.	4%				2%
Carex sp.	8%		50%		5%
Chenopodiaceae	4%			4%	3%
Cyperaceae	4%				2%
Digitaria sanguinalis	4%	33%			3%
Gramineae large	16%	33%			9%
Gramineae small	8%				3%
Lamiaceae	4%				2%
Papaver sp.	4%				2%
Phleum sp.	4%			4%	3%
Plantago sp.	4%				2%
Polygonum sp.	16%	33%			9%
Prunella vulgaris	4%				2%
Scirpus sp.	4%				2%
<i>Setaria</i> sp.	4%				2%
small seeded legumes	8%				3%
INDETERMINATE	40%	33%	50%	39%	40%

Table 4.20. Frequency of species per site: Bronze Age Croatia

Phase	Site code	No. of samples	GRAIN	Hordeum vulgare	Triticum dicoccum	Triticum monococcum	Triticum spelta	T. aestivum/durum	"New glume wheat"	Secale cereale	Avena sativa	Panicum miliaceum	Setaria italica	СНАFF	H. vulgare rachis	T. dicoccum g/b	T. monococcum g/b	T. mono/dicoc g/b	T. spelta g/b	T.aestivum/durum rachis	"New glume wheat" g/b	PULSES	Lathyrus sativus	Lens culinaris	Pisum sativum	Vicia ervilia	OIL PLANTS	Linum usitatissimum
MN	VIRBRE	5							-												-					-		
LN	IVAGAJ	14																										
LN	CISMAV*	34																										
LN	TURPEC*	22																										
LN	SOPOT*	144																										
LN	RAVNOK*	57																										
LN/CA	SLAVCA*	75																										
CA	SLAVCA*	22																										
CA	PAJVEL	23																										
CA	POTOCA	1																										
CA	JURSTV	12																										
CA	TOMPAL	26																										
CA	ÐAKFRA	29																										
CA	VIRBAT	3																										
CA	VINMAG*	4																										
CA	VUCEDO	35																										
EBA	TOMPAL	28																										
LBA	MACCRI*	25																										
LBA	CRIOST*	3																										
LBA	ORUVES*	2																										

 Table 4.21. Presence/absence of crops per site: All 18 Croatian sites

Abbreviations: MN = Middle Neolithic; LN = Late Neolithic; CA = Copper Age; EBA= Early Bronze Age LBA = Late Bronze Age.

* Samples collected with flot mesh of 250 μ m (Shaded boxes = species present at site)

Period	M/LN	CA	BA
No. sites	8	9	4
No .of samples	352	155	58
GRAIN			
Hordeum vulgare	10%	8%	2%
Triticum dicoccum	24%	16%	2%
Triticum monococcum	21%	28%	2%
T. monococcum 2-g	1%	1%	-
Triticum spelta	4%	3%	-
T. aestivum/durum	2%	3%	2%
Secale cereale	2%	1%	-
Avena sativa	-	-	9%
Panicum miliaceum	0.3%	1%	16%
Setaria italica	0.3%	2%	3%
CHAFF		-	
Hordeum vulgare rachis	1%	-	-
<i>Triticum dicoccum</i> g/b	12%	6%	-
Triticum monococcum g/b	9%	10%	-
<i>Triticum spelta</i> g/b	2%	1%	-
"New glume wheat" g/b	3%	-	-
T.aestivum/durum rachis	0.3%	1%	-
PULSES			
Lathyrus sativus	1%	1%	-
Lens culinaris	5%	1%	2%
Pisum sativum	3%	6%	-
Vicia ervilia	1%	-	-
OIL PLANTS			

Table 4.22. Frequency of each crop per period: All 18 Croatian sites

Total no. of samples	524
Total volume (litres)	5,240
Total no. of seed items (not inc. indet. frags)	329,535
Mean seed density per litre	63
Median seed density per litre	20
St. deviation	268

Table 5.1. Summary statistics: Late Bronze Age Feudvar

	Total no. of samples	Total volume sampled (I)	Grain	Chaff	Pulse	Oil plant	Fruit	Wild/weed	Feature type
Total no. of items	524	5240	104,448	144,578	8,195	817	1,717	69,780	Multiple
Mean			194	276	19	6	4	133	
Median			58	45	4	2	1	48	
St. deviation			744	1,924	143	21	40	512	

 Table 5.2. Summary table of seed densities (per litre) of plant remains, grouped by plant category:

 Late Bronze Age Feudvar

Density	0-5	5.1-10	10.1-25	25.1+	Total no. of samples
No. samples	39	71	205	209	524
Feature type					
House floor deposits	18%	17%	32%	32%	115
Container fill	33%	22%	17%	28%	18
Pits	7%	7%	38%	49%	74
Yard	-	25%	50%	25%	12
Hearth	14%	10%	33%	43%	21
Street deposits	-	15%	31%	54%	13
General occupation level	1%	13%	46%	40%	257
Miscellaneous	7%	21%	36%	36%	14

Table 5.3. Percentage of samples from each feature type per density group: Late Bronze Age Feudvar

Unique sample no.	Sample volume (I)	Grain	Chaff	Pulse	Oil plant	Fruit	Wild/weed	Feature type	Dominant component
FEU487	10	27	78	0.4	0.6	0.4	17	General occupation layer	Chaff
FEU385	10	22	89	1	-	0.8	30	General occupation layer	Chaff
FEU441	10	20	83	0.2	0.5	0.4	48	General occupation layer	Chaff
FEU034	10	5	172	0.1	-	0.1	4	General occupation layer	Chaff
FEU084	10	26	171	0.3	-	0.1	11	House	Chaff
FEU057	10	51	152	0.2	-	-	47	General occupation layer	Chaff
FEU056	10	18	271	0.1	-	-	16	General occupation layer	Chaff
FEU425	10	80	277	1	-	0.2	26	General occupation layer	Chaff
FEU219	10	92	559	3	4	-	78	House	Chaff
FEU244	10	10	764	0.2	-	-	1	Pit	Chaff
FEU350	10	199	2,200	50	16	9	504	General occupation layer	Chaff
FEU217	10	646	3,595	5	18	-	313	House	Chaff
FEU128	10	776	659	-	-	0.1	9	Layer	Chaff/Grain
FEU079	10	4	3	280	-	-	13	Container fill	Pulse
FEU342	10	5	19	0.7	-	90	9	N-W house floor	Fruit
FEU220	10	79	10	5	-	-	6	Fish house floor	Grain
FEU205	10	92	6	1	-	0.3	23	House	Grain
FEU190	10	93	47	0.6	-	0.4	7	Pit - baker house	Grain
FEU209	10	192	1	-	-	-	9	Floor between hearth	Grain
FEU083	10	198	2	-	-	-	3	Next to hearth	Grain
FEU042	10	138	59	0.2	0.3	0.1	17	General occupation layer	Grain
FEU047	10	295	-	2	-	-	4	General occupation layer	Grain
FEU328	10	352	2	-	-	-	1	House	Grain
FEU092	10	252	163	-	-	-	3	House	Grain
FEU206	10	729	259	0.4	2	-	12	General occupation layer	Grain
FEU207	10	871	424	1	-	1	36	Fish house	Grain
FEU316	10	464	3	0.1	-	-	298	Yard	Grain
FEU013	10	57	46	0.3	-	0.1	4	Pit	Grain/Chaff
FEU403	10	60	39	0.2	0.8	0.2	11	General occupation layer	Grain/Chaff
FEU019	10	63	4	5	-	0.2	54	Pit	Grain/Weeds
FEU237	10	11	34	0.6	-	0.1	68	Pit	Weeds
FEU138	10	21	22	2	0.7	0.1	70	Pit	Weeds
FEU483	10	28	5	0.2	-	6	87	N-W house	Weeds
FEU408	10	20	45	2	1.5	0.1	61	General occupation layer	Weeds
FEU477	10	21	34	-	-	3	98	General occupation layer	Weeds
FEU396	10	8	2	0.2	-	2	161	General occupation layer	Weeds
FEU353	10	41	1	0.2	-	-	384	General occupation layer	Weeds
FEU485	10	159	7	0.4	0.1	0.3	927	North house	Weeds

Table 5.4. Density per litre of main plant categories, given for samples with a seed density of > 100per litre: Late Bronze Age Feudvar

Period	LBA	
No of sites	1	
No. of samples	524	
GRAIN		
Hordeum vulgare	97%	
Triticum dicoccum	73%	
Triticum monococcum	99%	
T. monococcum 2-g	1%	
Triticum spelta	2%	
T. aestivum/durum	9%	
"New glume wheat"	-	
cf. Secale cereale	63%	
Avena sativa	-	
Panicum miliaceum	31%	
Setaria italica	-	
CHAFF		
Hordeum vulgare rachis	22%	
Triticum dicoccum g/b	61%	
Triticum monococcum g/b	96%	
Triticum spelta g/b	9%	
"New glume wheat" g/b	-	
T.aestivum/durum rachis	5%	
PULSES		
Lathyrus sativus	4%	
Lens culinaris	64%	
Pisum sativum	22%	
Vicia ervilia	40%	
Vicia faba	1%	
OIL PLANTS		
Linum usitatissimum	4%	
Camelina sativa	20%	

Table 5.5. Presence/absence of crops per site and taxa frequency (i.e. percentage of samples for each phase, with each crop): Late Bronze Age Feudvar (Abbreviations: LBA = Late Bronze Age, Shaded boxes = species present at site)

Period	M/LN	CA	BA
No. sites	8	9	5
No .of samples	352	155	582
GRAIN			
Hordeum vulgare	11%	8%	87%
Triticum dicoccum	24%	16%	66%
Triticum monococcum	21%	28%	90%
T. monococcum 2-g	1%	1%	1%
Triticum spelta	4%	3%	2%
T. aestivum/durum	2%	3%	8%
"New glume wheat"	-	-	-
Secale cereale	2%	1%	56%
Avena sativa	-	-	1%
Panicum miliaceum	0.3%	1%	30%
Setaria italica	0.3%	2%	0.3%
CHAFF			
Hordeum vulgare rachis	1%	-	19%
<i>Triticum dicoccum</i> g/b	12%	6%	66%
<i>Triticum monococcum</i> g/b	9%	10%	87%
<i>Triticum spelta</i> g/b	2%	1%	8%
"New glume wheat" g/b	3%	-	-
T.aestivum/durum rachis	0.3%	1%	4%
PULSES			
Lathyrus sativus	1%	1%	3%
Lens culinaris	5%	1%	57%
Pisum sativum	3%	6%	20%
Vicia ervilia	1%	-	36%
Vicia faba	-	-	1%
OIL PLANTS			
Linum usitatissimum	3%	8%	4%
Camelina sativa	-	-	18%

Table 5.6. Frequency of each crop per period: All 18 Croatian sites and LBA Feudvar

		Crop processing stage		
Stage	Ratio	High value	Low value	
1	Cereal straw nodes: grains	By-product from early processing stage	Grain product	
2	Glume wheat glume bases: grains	By-product from late processing stage	Grain product	
3	Free threshing cereal rachis internodes: grains (barley, durum and bread wheat)	By-product from early processing stage	Grain product	
4	Weed seeds: cereal grains	By-product from late processing stage	Grain product	
5	Small: large weed seeds	By-product from sieving	Product from sieving or by-product of hand cleaning	
6	Number of crop items per litre of deposit	Rapid/single deposition (usually result of accident)	Slow/repeated deposition (usually day-to-day activity)	

Table 6.1. The grain, chaff and weed ratios used to identify crop processing stages and theirinterpretation. After Van der Veen 1992: chapter 7 and Van der Veen and Jones 2006: 223, Table 2.The 'high' and 'low' value for ratios 1-3 refers to the degree to which they differ from the completecereal plant. Ratios 4-6 refer to the relative value compared to other samples within thesite/region/period.

Species	Length	Width	Jones (1984)	Van der Veen (1992)	Peña- Chocarro (1999)	Bogaard (2002)	Group A >3mm <2.5mm)	Group B >2.5mm <2mm)
Adonis sp.	4.13	2.96	(/				BFH	BFH
Agrimonia eupatoria	3.87	2.09				BHH	BHH	внн
Agrimonia odorata	3.93	2.57					BHH	внн
Agrimonia sp.	3.9	2.33					BHH	BHH
Agrostemma githago	4.21	3.14		BFH	BFH	BFH	BFH	BFH
Ajuga chamaepitys	3.95	1.54					BFH	BFH
Allium sp.	3.27	2.01					BHH	BHH
Althaea officinalis	3.98	3.5					BFH	BFH
Anagallis arvensis	1.29	1.02					SHH	SHH
Anethum sp.	4.14	2.21					BFH	BFH
Anthemis tinctoria	2.29	1.1					SFH	SFH
Anthemis sp.	2.07	1.01			SHH		SFH	SFH
Aphanes sp.	1.01	0.71					SFH	SFH
Asperula arvensis	2.34	2.28			BFH		SFH	IBT
Atriplex hastate	2.27	1.77		SFH		SFH	SFH	SFH
Atriplex patula	2.18	2.03		SFH		SFH	SFH	IBT
Avena fatua	7.9	2.24		BFH			BFH	BFH
Avena sp.	8.25	2.37		BFH	BHH		BFH	BFH
cf. <i>Barbarea</i> sp.	1.9	1.29					SHH	SHH
<i>Berteroa</i> sp.	1.94	1.47					SHH	SHH
Bromus arvensis	5.78	0.98				BFH	BFH	BFH
Bromus mollis type	6.88	2.26		BFH		BFH	BFH	BFH
Bromus secalinus	6.61	2.15		BFH		BFH	BFH	BFH
Bromus sp.	5.58	1.68					BFH	BFH
Bupleurum rotundifolium	3.51	1.51					BHH	BHH
Carduus sp.	4.21	1.78					BFH	BFH
Carex vulpina	1.88	1.33					SFH	SFH
Carex subsp. Eucarex	3.75	1.59					BFH	BFH
Carex subsp. Vignea	2.15	1.12					SFH	IBT
Carthamus lanatus	6.98	4.43					BFH	BFH
Centaurea sp.	3.89	1.78					BFH	BFH
Cerastium sp.	0.69	1.33			SFH		SFH	SFH
Chenopodium album	1.69	1.54		SFH		SFH	SFH	SFH
Chenopodium glaucum/rubrum	0.9	0.82				SFH	SFH	SFH
Chenopodium hybridum	1.89	1.73				BFH	SFH	SFH
Chenopodium polyspermum	1.16	1.07				SFH	SFH	SFH
Chenopodium sp.	1.41	1.29		SFH	SFH	SFH	SFH	SFH
Cichorium intybus	3.8	1	SHH				BHH	BHH
Conringia sp.	2.96	1.56					IBT	BHH

Table 6.2. Classification of wild/weed taxa into physical weed categories per author, (BFH= big freeheavy, BHH = big headed heavy, SFH = small free heavy, SFL = small free light, SHH = small headedheavy, SHL = small headed light)

			Jones	Van der Veen	Peña- Chocarro	Bogaard	Group A >3mm	Group B >2.5mm
Species	Length	Width	(1984)	(1992)	(1999)	(2002)	<2.5mm)	<2mm)
Conringia orientalis	2.96	1.56					IBT	BHH
Consolida sp.	2.3	1.69			SFH		SFH	IBT
Convolvulus arvensis	4.17	3.09					BHH	BHH
Coronilla sp.	3.9	0.9			SHH		BHH	BHH
<i>Cyperus</i> sp.	1.24	0.58					SFH	SFH
<i>Daucus</i> sp.	4.4	2.83			BFH		BFH	BFH
<i>Dianthus</i> sp.	1.81	1.26					SFL	SFL
<i>Digitaria</i> sp.	1.74	0.82					SFH	SFH
Echinochloa crus-galli	1.66	1.39				SFH	SFH	SFH
<i>Echium</i> sp.	2.98	1.8					SFH	SFH
Euphorbia helioscopia	2.35	1.77					SFH	IBT
<i>Euphorbia</i> sp.	2.34	1.64			SFH		SFH	IBT
Euphorbia palustris	3.25	3.03					BFH	BFH
Galeopsis sp.	2.95	2.16		BFH			IBT	BFH
Galium aparine	4.13	3.75	BFH	BFH		BFH	BFH	BFH
Galium spurium	2.62	2.33				SFH	IBT	BFH
Galium sp.	2.05	1.77			SFH		SFH	SFH
<i>Geranium</i> sp.	2.56	1.53			SFH		IBT	BFH
Glaucium corniculatum	0.81	0.74					SHH	SHH
Hyoscyamus niger	1.61	1.31		SFH		SFH	SFH	SFH
Hypericum sp.	0.9	0.37					SFL	SFL
Juncus sp.	0.57	0.29					SFL	SFL
Kickxia cf. spuria	1.37	0.78					SHH	SHH
Knautia sp.	4.8	2					BFH	BFH
Lactuca sp.	4.26	1.27					BFH	BFH
Lallemantia iberica	4	1.5					BFH	BFH
Lapsana communis	4.06	1.09					BFH	BFH
<i>Luzula</i> sp.	1.75	1.01					SFH	SFH
<i>Legousia</i> sp.	1.35	0.81					SFH	SFH
Leontodon cf. hispidus	6.01	0.83					BFH	BFH
Lithospermum arvense	2.92	2.05	SFH				IBT	BFH
Lithospermum officinale	3.27	2.49					BFH	BFH
Lolium cf. remotum	3.96	1.34					BFH	BFH
Lolium temulentum	5.03	2.29	BFH				BFH	BFH
Lolium sp.	4.36	1.63			BFH		BFH	BFH
Malva sylvestris	1.95	1.78	SHH			SHH	SHH	SHH
Malva sp.	2.43	2.18				SHH	BHH	IBT
Mentha sp.	0.77	0.6					SFL	SFL
Neslia paniculata	2.95	2.49					IBT	BFH
Onopordum acanthium	5.81	3.2					BFH	BFH
Papaver dubium	0.8	0.62				SHL	SHL	SHL
Papaver somniferum	0.89	0.68					SHL	SHL

Table 6.2. (Continued)

Species	Length	Width	Jones (1984)	Van der Veen (1992)	Peña- Chocarro (1999)	Bogaard (2002)	Group A >3mm <2.5mm)	Group B >2.5mm <2mm)
Pastinaca sativa	5.49	4.66	()	//	(/	BFH	BFH	BFH
Petrorhagia saxifraga	1.38	0.91					SFL	SFL
Phragmites australis	1.46	0.51					SFH	SFH
Picris hieracioides	4.34	1.13				SFH	BFH	BFH
Plantago lanceolata	3.01	1.42		SFH		SHH	BFH	BFH
Plantago sp.	2.13	1.04			SHL		SFH	IBT
Polygonum aviculare	3	1.79		SFH		BFH	BFH	BFH
Polygonum convolvulus	3.64	2.69		BFH		BFH	BFH	BFH
Polygonum hydropiperoide	2.5	2					SFH	BFH
Polygonum lapathifolium	3.15	2.54		SFH		BFH	BFH	BFH
Polygonum persicaria	2.91	1.98		SFH		BFH	IBT	BFH
Portulaca oleracea	1.33	1.16					SHH	SHH
Potamogeton sp.	3.12	2.15					BFH	BFH
Ranunculus acris type	3.56	2.32					BFH	BFH
Rorippa type	0.89	0.68					SHL	SHL
Rumex crispus type	2.5	1.63				SFH	SFH	BFH
Rumex sp.	2.48	1.4		SFH	SFH	SFH	SFH	IBT
Schoenoplectus lacustris	3.2	2.17					BFH	BFH
Scirpus sp.	1.65	1.12					SFH	SFH
Scleranthus annuus	2.14	1.07					SHH	IBT
Scrophularia sp.	1.03	0.68					SHH	SHH
Setaria viridis	1.63	1.07				SFH	SFH	SFH
Sherardia arvensis	2.84	1.37	SFH				IBT	BFH
Silene sp.	1.15	0.97				SHH	SHH	SHH
Sisymbrium officinale	1.4	0.83				SFH	SFH	SFH
Solanum nigrum	2.24	1.5				SFH	SFH	IBT
Spergula sp.	1.59	1.47					SFH	SFH
Stachys annua	1.95	1.56					SFH	SFH
Stellaria media	1.27	1.17		SFH			SFH	SFH
<i>Teucrium</i> sp.	1.64	1.24			SFH		SFH	SFH
Thymelaea passerina	1.79	1					SFH	SFH
<i>Trifolium</i> sp.	1.67	1.21			SHH	SFH	SFH	SFH
Torilis arvensis	4.67	3.16					BFH	BFH
Urtica dioica	1.27	0.91				SFH	SFH	SFH
Valerianella dentata	2.99	1.5				SFH	IBT	BFH
Verbascum sp.	1.04	0.67			SFH	SFL	SFL	SFL
Verbena officinalis	1.82	0.66				SFH	SFH	SFH
Veronica sp.	1.29	0.94					SFL	SFL
<i>Vicia</i> sp.	3.52	3.06				BFH	BFH	BFH

Table 6.2. (Continued)

Cereal	Avg. length (mm)	Avg. width (mm)
Hordeum vulgare	8.00	3.37
Triticum aestivum/durum	7.00-9.00	3.50
Triticum dicoccum	7.50	2.50
Triticum monococcum	7.50	2.75
Triticum spelta	8.56	2.84
Secale cereale	8.95	3.48
Avena sativa	8.95	2.92
Panicum miliaceum	2.29	2.19

Table 6.3. The average length and width (mm) of grain per cereal species. Measurements fromCappers et al. 2006

		•			
Ratio stage	Species	Ratio	Value	Low value	High value
2	Einkorn glume base: grain	2:1	2	< 0.4	> 2.2
2	Emmer glume base: grain	2:2	1	< 0.6	> 1.5
2	Spelt glume base: grain	2:2	1	< 0.6	> 1.5
3	Bread/durum wheat rachis: grain	1:2-6	0.2-0.6	< 0.1	> 1
3	Barley rachis: grain	1:3	0.3	< 0.2	> 1
3	Rye rachis: grain	1:3	0.3	< 0.2	> 1
2	Broomcorn millet spikelet: grain	1:1	1	< 0.6	> 1.5
4	Weed: grain		1	< 0.8	> 1.2
5	Small: large weed		1	< 0.8	> 1.2

Table 6.4. Ratio table for crop processing analysis, showing the whole plant ratio per cereal, the grain, chaff and weed ratio values and what constitutes a low and high value.

	Spikelets – sieved	Spikelets- unsieved	Fine sieving by- product- sieved	Fine sieving by- product- unsieved	Product - sieved	Product - unsieved	Total
Einkorn	21 (64)	22 (32)	79	87 (3)	103 (4)	26 (4)	445
Einkorn/Emmer	-	-	1	-	-	-	1
Einkorn/Barley	-	-	-	-	3 (5)	-	8
Einkorn/Barley/ Bread/ durum wheat	-	-	(2)	-	-	-	2
Emmer	-	-	3	-	2	-	5
Barley	-	-	-	-	12	2	14
Barley/broomcorn millet	-	-	-	-	1	-	1
Broomcorn millet	-	-	-	-	2 (1)	(3)	6
Rye	-	-	-	-	1	1	2
Total	85	54	85	90	134	36	484

Table 6.6. Summary of the number of samples identified for each crop processing stage, based on the ratio analysis. () = tentative identifications: Late Bronze Age Feudvar

Ajuga chamaepitys AJU Allium sp. ALL	ROGIT JGCHA LISPE RIPAT	Panicum miliaceum Plantago lanceolata Polygonaceae	PANIMIL PLANLAN POLYGON
Allium sp. ALL	ISPE	Polygonaceae	
	-	,0	POLYGON
	RIPAT	D / / /	. 5210011
Atriplex patula type ATR		Polygonum aviculare	POLYAVI
Bromus arvensis BR	OMARV	Polygonum convolvulus	POLYCON
Bromus sp. BR	OMSPE	Polygonum persicaria t	POLYPER
Bupleurum rotundifolium BU	PLROT	Portulaca oleracea	PORTOLE
Caryophyllaceae CA	RYOPH	Rumex crispus type	RUMECRI
cf. Secale cereale SEC	CACEG	Schoenoplectus lacustris	SCHOLAC
Chenopodium hybridum CH	ENHYB	Setaria viridis	SETAVIR
Chenopodium sp. CH	ENSPE	Sherardia arvensis	SHERARV
Conringia orientalis CO	NRORI	Silene sp.	SILESPE
Cruciferae CR	UCIFE	Solanum nigrum	SOLANIG
Cyperaceae CY	PERAC	T. aestivum/durum	TRITAED
Digitaria sp. DIG	SISPE	<i>Teucrium</i> sp.	TEUCSPE
Echinochloa crus-galli EC	HICRG	Thymelaea passerina	THYMPAS
Euphorbia palustris EU	PHPAL	<i>Trifolium</i> sp.	TRIFSPE
Galium spurium GA	LISPU	Triticum dicoccum	TRITDIC
Glaucium corniculatum GL	AUCOR	<i>Triticum dic</i> g/b	TRITDIG
Gramineae GR	AMINE	Triticum monococcum	TRITMOT
Hordeum vulgare HO	RDSAS	<i>Triticum mon</i> g/b	TRITMOG
Hordeum vulgare rachis HO	RDSRS	Triticum spelta	TRITSPL
Hyoscyamus niger HY	OSNIG	<i>Triticum spelta</i> g/b	TRISPLG
Labiatae LAE	BIATA	Verbena officinalis	VERBOFF
Lolium sp. LOI	LISPE	Vicia sp.	VICISPE
Malva sp. MA	LVSPE		

 Table 6.7. Species codes used in the correspondence analysis of the archaeobotanical data: Late

 Bronze Age Feudvar

		Einkorn	Einkorn/Emmer	Einkorn/Barley	Einkorn/Barley/ Bread/durum	Emmer	Barley	Barley/Broomcorn millet	Broomcorn millet	Rye	Tot	al
On illustato e si su se d	Ratio	21 (64)	-	-	-	-	-	-	-	-	85	
Spikelets - sieved	CA	82	-	-	-	-	-	-	-	-		82
Spikelets-	Ratio	22 (32)	-	-	-	-	-	-	-	-	54	
unsieved	CA	57	-	-	-	-	-	-	-	-		57
Fine sieving by-	Ratio	79	1	-	(2)	3	-	-	-	-	85	
product- sieved	CA	79	1	-	2	3	-	-	-	-		85
Fine sieving by-	Ratio	87 (3)	-	-	-	-	-	-	-	-	90	
product- unsieved	CA	90	-	-	-	-	-	-	-	-		90
Droduct sigurd	Ratio	103 (4)	-	3 (5)	-	2	12	1	2 (1)	1	134	
Product - sieved	CA	107	-	8	-	2	12	1	3	1		134
Product -	Ratio	26 (4)	-	-	-	-	2	-	(3)	1	36	
unsieved	CA	30	-	-	-	-	2	-	3	1		36
Total	Ratio	445	1	8	2	5	14	1	6	2	484	
Total	CA	445	1	8	2	5	14	1	6	2		484

Table 6.8. Summary of the number of samples identified for each crop processing stage from the ratio analysis and after correspondence analysis. () = tentative identifications: Late Bronze Age Feudvar

Chenopodium sp. content	USP	UFS	UP
> 90%		FEU135 FEU165	
	FEU023	FEU005	FEU396
	FEU136	FEU006	FEU461
	FEU208	FEU041	
	FEU233	FEU053	
> 70%	FEU468	FEU070	
10,0		FEU094	
		FEU182	
		FEU279	
		FEU395	

Table 6.9. Samples with > 90% and >70% *Chenopodium* sp. content per identified crop processing group. USP= Unsieved spikelets, UFS = Unsieved fine sieving by-products, UP= Unsieved products

Feature type	Spikelets	Fine sieving by-products	Products	Total no. of samples
Container fill	27%	64%	9%	11
General occupation layer	29%	38%	33%	253
Hearth	22%	50%	28%	18
House	33%	33%	34%	94
Miscellaneous	15%	46%	38%	13
Pit	27%	33%	40%	70
Street	15%	15%	69%	13
Yard	33%	8%	58%	12
Total no. of samples	139	175	170	484

 Table 6.10. Percentage of samples per feature type based on their crop processing identifications: LBA

 Feudvar

Block	Container fill	General occupation layer	Hearth	House	Pit	Street	Yard	Total no. of samples
1	-	55%	-	35%	10%	-	-	20
2	-	39%	-	33%	28%	-	-	18
3	3%	59%	13%	15%	10%	-	-	39
4	-	43%	9%	18%	25%	5%	-	44
5	10%	65%	2%	18%	5%	2%	-	62
6	-	43%	10%	30%	7%	10%	-	60
7	-	56%	-	34%	3%	6%	-	32
8	3%	69%	-	19%	9%	-	-	32
9	-	64%	-	4%	20%	-	12%	25
10	-	60%	-	10%	10%	-	20%	20
11	-	33%	-	13%	33%	7%	13%	15
12	-	70%	-	-	20%	-	10%	20
13	11%	32%	-	21%	32%	5%	-	19
14	-	64%	-	18%	18%	-	-	33
15	-	29%	29%	29%	14%	-	-	7
16	14%	73%	-	9%	9%	-	-	11

Table 6.11. Percentage of samples per block in relation to feature type: LBA Feudvar

	Container fill	General occupation layer	Hearth	House	Miscellaneous	Pit	Street	Yard	Total no. of samples
Einkorn	10	241	14	82	12	62	13	11	445
Emmer	-	1	1	1	-	1	-	1	5
Barley	-	4	3	6	-	1	-	-	14
Broomcorn millet and Rye	-	2	-	1	1	4	-	-	8
Mix	1	5	-	4	-	2	-	-	12
Total no. of samples	11	253	18	94	13	70	13	12	484

Table 6.12. The number of samples identified to each cereal per feature type: LBA Feudvar

	Container fill	General occupation layer	Hearth	House	Pit	Street	Yard	Total no. of items
Barley grain	1%	52%	4%	30%	9%	2%	1%	15102
Barley rachis	-	45%	-	50%	3%	1%	-	1232
Einkorn grain	1%	35%	1%	40%	6%	3%	1%	73491
Einkorn glume base	1%	39%	1%	39%	11%	1%	-	135994
Emmer grain	1%	26%	48%	11%	10%	1%	2%	4208
Emmer glume base	1%	51%	1%	33%	9%	1%	1%	6602
Bread/durum grain	-	89%	-	2%	2%	-	-	471
cf. Rye	1%	42%	-	45%	4%	1%	1%	3264
Broomcorn millet	-	23%	1%	3%	63%	-	1%	2660
Weeds	1%	50%	2%	30%	12%	1%	1%	62220

Table 6.13. Percentage of each cereal per feature type: LBA Feudvar

House	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Barley grain	2%	2%	4%	10%	4%	2%	7%	16%	5%	-	-	-	6%	23%	-	-
Barley rachis	-	-	-	-	-	-	-	-	1%	-	-	-	-	-	-	-
Einkorn grain	26%	19%	19%	23%	26%	55%	30%	25%	14%	-	-	-	24%	8%	-	-
Einkorn glume base	27%	40%	17%	32%	47%	38%	26%	23%	21%	-	-	-	41%	13%	-	-
Emmer grain	1%	2%	1%	1%	2%	-	1%	-	5%	-	-	-	6%	-	-	-
Emmer glume base	1%	3%	1%	3%	1%	-	-	1%	-	-	-	-	9%	-	-	-
Broomcorn millet grain	-	1%	1%	-	2%	1%	-	-	-	-	-	-	-	1%	-	-
cf. Rye grain	1%	1%	3%	1%	1%	-	-	1%	12%	-	-	-	-	-	-	-
Weeds	41%	32%	54%	30%	16%	4%	36%	34%	43%	-	-	-	15%	55%	-	-
Total no. of seeds	866	530	720	412	438	5,058	1,069	398	161	-	-	-	93	167	-	-
Pit																
Barley grain	7%	4%	2%	2%	-	3%	7%	3%	4%	-	-	31%	12%	4%	-	-
Barley rachis	1%	1%	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Einkorn grain	24%	14%	8%	23%	-	53%	33%	26%	20%	-	-	19%	17%	8%	-	-
Einkorn glume base	29%	21%	16%	31%	-	35%	24%	37%	19%	-	-	38%	23%	8%	-	-
Emmer grain	11%	3%	1%	1%	-	2%	1%	3%	15%	-	-	2%	-	-	-	-
Emmer glume base	4%	10%	1%	4%	-	-	-	8%	14%	-	-	-	-	-	-	-
Broomcorn millet grain	1%	1%	4%	-	-	-	12%	-	-	-	-	2%	4%	2%	-	-
cf. Rye grain	2%	2%	-	-	-	-	4%	1%	-	-	-	-	-	1%	-	-
Weeds	23%	45%	67%	39%	-	6%	18%	22%	27%	-	-	9%	44%	76%	-	-
Total no. of seeds	497	135	1,789	647	-	1,657	304	174	250	-	-	173	464	190	-	-

Table 6.14. Percentage of each cereal per block for house and pit features from samples identified as spikelets: LBA Feudvar

House	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Barley grain	-	4%	3%	6%	2%	7%	1%	1%	-	-	4%	-	4%	16%	5%	2%
Barley rachis	-	-	1%	-	-	-	1%	-	-	-	1%	-	-	-	-	-
Einkorn grain	3%	14%	8%	13%	21%	13%	13%	6%	-	-	13%	-	10%	12%	7%	4%
Einkorn glume base	8%	54%	56%	35%	61%	62%	78%	2%	-	-	63%	-	31%	2%	50%	-
Emmer grain	1%	1%	4%	1%	1%	1%	0%	6%	-	-	0%	-	1%	3%	1%	-
Emmer glume base	1%	1%	1%	7%	1%	2%	0%	77%	-	-	2%	-	-	-	26%	-
Broomcorn millet grain	-	-	-	-	-	-	-	-	-	-	2%	-	-	-	-	-
cf. Rye grain	-	1%	-	1%	-	-	1%	-	-	-	3%	-	1%	-	2%	-
Weeds	87%	24%	28%	38%	14%	15%	6%	8%	-	-	12%	-	53%	67%	9%	95%
Total no. of seeds	774	1,050	335	204	649	1,743	52,720	2,192	-	-	231	-	236	89	853	55
Pit	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Barley grain	-	-	1%	3%	-	1%	-	13%	0%	5%	1%	11%	2%	6%	15%	-
Barley rachis	-	1%	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Einkorn grain	-	7%	2%	11%	-	4%	-	12%	1%	13%	13%	8%	5%	12%	14%	-
Einkorn glume base	-	82%	23%	29%	-	88%	-	51%	95%	36%	71%	39%	16%	45%	49%	-
Emmer grain	-	1%	1%	1%	-	1%	-	0%	1%	0%	0%	1%	3%	1%	2%	-
Emmer glume base	-	1%	2%	1%	-	1%	-	3%	0%	1%	1%	2%	18%		3%	-
Broomcorn millet grain	-	1%		1%	-		-	1%	-	-	-	-	-	2%	-	-
cf. Rye grain	-			1%	-		-	2%	-	1%	1%	-	2%	-	1%	-
Weeds	-	8%	69%	53%	-	5%	-	19%	2%	44%	14%	39%	54%	34%	16%	-
Total no. of seeds	-	1,659	207	439	-	520	-	75	8,907	318	260	2,049	1,242	194	152	-

Table 6.15. Percentage of each cereal per block for house and pit features from samples identified as fine sieving by-products: LBA Feudvar

House	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Barley grain	-	-	11%	5%	5%	16%	2%	19%	-	16%	5%	-	2%	54%	-	-
Barley rachis	-	-	-	-	-	-	-	-	-	1%	-	-	-	-	-	-
Einkorn grain	-	-	18%	62%	38%	43%	87%	28%	-	34%	32%	-	26%	6%	-	-
Einkorn glume base	-	-		29%	6%	11%	2%	17%	-	11%	5%	-	8%	9%	-	-
Emmer grain	-	-	-	1%	-	2%	-	1%	-	6%	6%	-	-	-	-	-
Emmer glume base	-	-	-	-	-	2%	-	2%	-	6%	-	-	-	-	-	-
Broomcorn millet grain	-	-	-	-	-	1%	-	0%	-	1%	-	-	-	-	-	-
cf. Rye grain	-	-	3%	-	13%	1%	1%	0%	-	2%	3%	-	-	-	-	-
Weeds	-	-	68%	3%	37%	24%	8%	33%	-	24%	50%	-	64%	30%	-	-
Total no. of seeds	-	-	12,213	15,828	3,198	1,163	4,438	1,023	-	142	101	-	154	806	-	-
Pit	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Barley grain	1%	7%	-	16%	6%	11%	-	18%	12%	5%	17%	-	-	2%	-	7%
Barley rachis	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Einkorn grain	61%	6%	-	30%	46%	62%	-	39%	41%	22%	18%	-	-	6%	-	28%
Einkorn glume base	16%	19%	-	11%	15%	13%	-	7%	1%	12%	7%	-	-	20%	-	18%
Emmer grain	2%	1%	-	1%	1%	3%	-	2%	8%	1%	3%	-	-	1%	-	2%
Emmer glume base	-	2%	-	3%	-	-	-	11%	3%	15%	1%	-	-	2%	-	3%
Broomcorn millet grain	1%	32%	-	1%	-	-	-	2%	1%	1%	13%	-	-	45%	-	8%
cf. Rye grain	1%	-	-	1%	1%	-	-	2%	2%	2%	1%	-	-	-	-	2%
Weeds	17%	33%	-	37%	31%	11%	-	20%	32%	41%	40%	-	-	25%	-	32%
Total no. of seeds	352	506	-	1,620	878	238	-	106	125	146	1,490	-	-	2,437	-	77

Table 6.16. Percentage of each cereal per block for house and pit features from samples identified as products: LBA Feudvar

Crop processing groups	Original no. of species present	No. of species in >10% of samples	Total no. of samples	No. of samples with >25 weed seeds
Spikelets - sieved	84	16 (19%)	83	51 (61%)
Spikelets - unsieved	89	27 (30%)	56	54 (96%)
Fine sieving by-product- sieved	89	16 (18%)	85	59 (69%)
Fine sieving by-product- unsieved	94	22 (23%)	90	83 (92%)
Products - sieved	96	18 (19%)	134	86 (64%)
Products - unsieved	80	30 (38%)	36	35 (97%)

Table 7.1. The number of species present in >10% of each of the six crop processing groups and thenumber of samples with >25 weed seeds: LBA Feudvar

Spikelets - unsieved	Fine sieving by- products - unsieved	Products - unsieved
FEU023	FEU005	FEU396
FEU136	FEU006	FEU461
FEU208	FEU041	
FEU233	FEU053	
FEU468	FEU070	
	FEU094	
	FEU135	
	FEU165	
	FEU182	
	FEU279	
	FEU395	

 Table 7.2. Samples with >70% Chenopodium sp. content within the unsieved spikelets, fine sieving by-product and product groups: LBA Feudvar

		Ligh	t (L)	Tempera	ature (T)	Continen	tality (K)	Moistu	ıre (F)	Reacti	on (R)	Nitrog	en (N)
Таха	Taxa code	BOR95	ELL79	BOR95	ELL79	BOR95	ELL79	BOR95	ELL79	BOR95	ELL79	BOR95	ELL79
Agrostemma githago	AGROGIT	7	7	6	х	5	х	5	х	6	х	5	х
Ajuga chamaepitys	AJUGCHA	8	7	8	8	2	2	3	4	8	9	2	2
Allium sp.	ALLISPE	7	7	7	5	5	5	4	4	7	7	4	4
Atriplex patula	ATRIPAT	7	6	5	6	4	х	5	5	7	7	4	7
Bromus arvensis	BROMARV	7	6	6	х	4	4	4	4	8	8	5	4
<i>Bromus</i> sp.	BROMSPE	7	6	6	6	3	3	4	x	7	6	5	x
Bupleurum rotundifolium	BUPLROT	8	8	7	7	4	4	3	3	8	9	4	4
Chenopodium hybridum	CHENHYB	7	7	6	6	7	7	6	5	8	8	8	8
Chenopodium sp.	CHENSPE	7	8	6	6	7	7	6	6	8	x	8	8
Conringia orientalis	CONRORI	7	7	6	6	5	5	3	3	9	9	4	4
<i>Digitaria</i> sp.	DGISPE	7	7	7	7	4	4	4	4	5	4	4	4
Echinochloa crus-galli	ECHICRG	8	6	7	7	5	5	7	5	7	х	8	8
Euphorbia palustris	EUPHPAL	8	8	6	6	6	6	9	8	8	8	5	х
Galium spurium	GALISPU	7	7	6	х	5	5	5	5	7	8	5	5
Glaucium corniculatum	GLAUCOR	9	7	8	7	6	6	4	4	8	9	4	4
Hyoscyamus niger	HYOSNIG	8	8	6	6	4	х	4	4	7	7	9	9
Lolium sp.	LOLISPE	7	7	7	7	4	4	4	5	8	6	4	х
Malva sp.	MALVSPE	8	8	7	6	5	5	4	4	7	7	8	7
Plantago lanceolata	PLANLAN	7	6	5	х	3	3	4	х	6	х	5	х
Polygonum aviculare	POLYAVI	9	7	5	х	3	х	4	х	6	х	5	х
Polygonum convolvulus	POLYCON	7	7	5	х	3	х	5	х	5	х	3	х
Polygonum persicaria	POLYPER	6	6	5	5	3	3	7	3	6	х	7	7
Portulaca oleracea	PORTOLE	7	7	8	8	3	3	4	4	7	7	7	7
Rumex crispus type	RUMECRI	7	7	5	5	3	3	6	7	6	х	7	6
Setaria viridis	SETAVIR	7	7	6	6	5	х	4	4	7	х	7	7
Sherardia arvensis	SHERARV	6	6	6	6	3	3	5	5	8	8	5	5
Silene sp.	SILESPE	8	8	7	5	5	4	3	4	7	7	3	3
Solanum nigrum	SOLANIG	7	7	6	6	3	3	6	5	7	7	8	8
Teucrium sp.	TEUCSPE	8	7	6	6	4	4	4	3	8	7	2	2
Thymelaea passerina	THYMPAS	8	7	7	7	6	6	4	4	8	8	4	4
Trifolium sp.	TRIFSPE	8	7	6	5	5	4	4	4	7	6	3	3
Verbena officinalis	VERBOFF	9	9	6	6	3	3	4	5	8	7	6	7
<i>Vicia</i> sp.	VICISPE	7	7	6	6	5	4	4	4	6	6	4	4

Table 7.3. Ecological indicator values per species and genus. After Borhidi 1995 (BOR95) and Ellenberg 1979 (ELL79). italics i.e. 6 = uncertain, X = indifferent

Таха	Taxa code	Height (cm)	Annual (A)/ Biennial (B)/ Perennial (P)	Summer (S)/ Winter (W) annuals
Agrostemma githago	AGROGIT	30-100	A	W
Ajuga chamaepitys	AJUGCHA	10-40	A, B	S
Allium sp.	ALLISPE	20-100	Р	
Atriplex patula type	ATRIPAT	30-150	А	S
Bromus arvensis	BROMARV	30-100	А, В	W
Bromus sp.	BROMSPE	30-120	А, В	W
Bupleurum rotundifolium	BUPLROT	10-60	А	W
Chenopodium hybridum	CHENHYB	30-100	А	S
Chenopodium sp.	CHENSPE	30-150	А	S
Conringia orientalis	CONRORI	10-60	А	W
Digitaria sp.	DGISPE	10-60	А	S
Echinochloa crus-galli	ECHICRG	30-100	А	S
Euphorbia palustris	EUPHPAL	50-150	Р	
Galium spurium	GALISPU	40-150	А	S/W
Glaucium corniculatum	GLAUCOR	30-40	А, В	S
Hyoscyamus niger	HYOSNIG	20-100	А, В	S
Lolium sp.	LOLISPE	30-120	А	S
<i>Malva</i> sp.	MALVSPE	30-200	Р	
Plantago lanceolata	PLANLAN	10-50	P (with rhizome)	
Polygonum aviculare	POLYAVI	10-50	А	S
Polygonum convolvulus	POLYCON	>100	А	S
Polygonum persicaria	POLYPER	20-60	А	S
Portulaca oleracea	PORTOLE	<50	А	S
Rumex crispus type	RUMECRI	30-150	Р	
Setaria viridis	SETAVIR	10-100	А	S
Sherardia arvensis	SHERARV	>40	А	W
Silene sp.	SILESPE	5-100	A, B, P	
Solanum nigrum	SOLANIG	10-70	А	S
<i>Teucrium</i> sp.	TEUCSPE	10-60	A, P	
Thymelaea passerina	THYMPAS	10-40	А	?
<i>Trifolium</i> sp.	TRIFSPE	5-60	A, P	
Verbena officinalis	VERBOFF	30-60	Р	
<i>Vicia</i> sp.	VICISPE	20-120	A, B, P	

Table 7.4. The height, life cycle and germination times of each species: LBA Feudvar. AfterBojnanský and Fargaová 2007; Ellenberg *et al.* 1991; Häfliger and Brun-Hool 1968–1977.

Phytosociological Class	Species
Chenopodietea	Atriplex patula
	Bromus arvensis
	Chenopodium hybridum
	<i>Digitaria</i> sp. (various)
	Echinochloa crus-galli
	Hyoscyamus niger
	Polygonum aviculare
	Polygonum persicaria
	Portulaca oleracea
	Setaria viridis
	Solanum nigrum
	Verbena officinalis
Secalinetea	Agrostemma githago
	Ajuga chamaepitys
	Bupleurum rotundifolium
	Conringia orientalis
	Galium spurium
	Glaucium corniculatum
	Sherardia arvensis
	Thymelaea passerine
Molinio-Arrhenatheretea	Plantago lanceolata
Plantaginetea	Rumex crispus

 Table 7.5. Character species identified within Feudvar assemblage under the Phytosociological Classes. After Ellenberg 1979

	Romania	Hungary	Bosnia Herzegovina	Croatia	Serbia	Total no. of records
Mid/Late Neolithic	3	49	10	1	7	70
Copper Age	1	26	-	2	1	30
Bronze Age	8	55	-	2	4	69
Total no. of records	12	130	10	5	12	168

Table 8.2. Number of records per country and period: Carpathian Basin

	Mid/Late Neolithic	Copper Age	Bronze Age	Total no. of records
No. of records with species presence/absence only	20	2	10	19%
No. of records with presence/absence and the overall no. of remains per site	46	27	57	77%
No. of records with full sample details	4	1	2	4%
Total no. of records	70	30	69	169

Table 8.3. The level of information available for each record per period: Carpathian Basin

	Romania	Hungary	Bosnia Herzegovina	Croatia	Serbia	Total no. of crops
	(n=12)	(n=130)	(n=10)	(n=5)	(n=12)	(n=169)
Mid/Late Neolithic	13	15	10	4	9	16
Copper Age	6	10	-	1	8	10
Bronze Age	11	16	-	8	13	16

 Table 8.4. Number of crops identified per country and period: Carpathian Basin (n= total no. of records per country)

	Romania	Hungary	Bosnia Herzegovina	Croatia	Serbia	Total no. of crops
	(n=12)	(n=130)	(n=10)	(n=5)	(n=12)	(n=169)
Mid/Late Neolithic	10	10	10	2	12	20
Copper Age	2	4	-	1	2	6
Bronze Age	2	8	-	3	12	15

 Table 8.5. Number of fruits/nuts identified per country and period: Carpathian Basin (n= total no. of records per country)

	Romania	Hungary	Bosnia Herzegovina	Croatia	Serbia	Total no. of crops
	(n=12)	(n=130)	(n=10)	(n=5)	(n=12)	(n=169)
Mid/Late Neolithic	41	110	34	2	23	188
Copper Age	-	24	-	8	22	44
Bronze Age	11	149	-	4	30	155

 Table 8.6. Number of wild/weed species identified per country and period: Carpathian Basin (n= total no. of records per country)

		Romania	Hungary	Bosnia Herzegovina	Croatia	Serbia	Total no.
		(n=12)	(n=130)	(n=10)	(n=5)	(n=12)	(n=169)
	Tell	2	8	5	-	6	21
Mid/Late Neolithic	Flat	1	41	5	-	1	48
	Cave	-	-	-	1	-	1
	Tell	-	1	-		1	2
Copper Age	Flat	-	25	-	1	-	26
	Cave	1	-	-	1	-	2
	Tell	7	18	-	1	4	30
Bronze Age	Flat	1	37	-	1	-	39
	Cave	-	-	-	-	-	-

 Table 8.7. Number of records identified as a tell, flat or cave settlement for each country per period (n= total no. of records per country)

Period	M/LN	CA	BA	Total
No. of records	78	39	73	190
GRAIN				
Hordeum vulgare	48%	60%	65%	56%
Triticum dicoccum	63%	58%	65%	62%
Triticum monococcum	54%	45%	51%	51%
Triticum spelta	14%	13%	19%	15%
T. aestivum/durum	19%	23%	41%	27%
"New glume wheat"	4%	-	1%	1%
Secale cereale	3%	5%	14%	4%
Avena sativa	-	-	1%	1%
Panicum miliaceum	17%	15%	38%	24%
Setaria italica	1%	8%	1%	4%
CHAFF				
Hordeum vulgare rachis	11%	8%	7%	9%
<i>Triticum dicoccum</i> g/b	19%	13%	36%	24%
<i>Triticum monococcum</i> g/b	17%	15%	34%	23%
<i>Triticum spelta</i> g/b	6%	13%	11%	8%
"New glume wheat" g/b	4%	3%	1%	3%
T.aestivum/durum rachis	1%	5%	5%	4%
PULSES				
Lathyrus sativus	10%	-	7%	7%
Lens culinaris	31%	10%	35%	28%
Pisum sativum	27%	8%	28%	24%
Vicia ervilia	5%	5%	19%	10%
Vicia faba	4%	-	11%	6%
Cicer arietinum	-	-	1%	1%
OIL PLANTS				
Camelina sativa	1%	-	7%	3%
Linum usitatissimum	11%	15%	4%	9%
Papaver somniferum	-	-	1%	1%

Table 8.8. Frequency of crop species per record for each period: Carpathian Basin

Deried	Romania	Hungary	Bosnia	Croatia	Serbia		
Period No. of records		49	Herzegovina				
GRAIN	2	49	10	9	10		
Hordeum vulgare	50%	57%	70%	56%	27%		
Triticum dicoccum	50%	55%			55%		
			100% 78%				
	100%	39%	80% 100%		55%		
Triticum spelta	50%	14%	- 33%		- 18%		
T. aestivum/durum	50%	24%	20%	20% 44%			
"New glume wheat"	100%	2%	-	-	-		
Secale cereale	50%	4%	-	11%	-		
Avena sativa	-	-	-	-	-		
Panicum miliaceum	50%	16%	30%	11%	9%		
Setaria italica	-	2%	-	11%	-		
CHAFF							
Hordeum vulgare rachis	50%	12%	-	22%	9%		
Triticum dicoccum g/b	50%	12%	-	22%	9%		
<i>Triticum monococcum</i> g/b	50%	2%	80%	44%	9%		
<i>Triticum spelta</i> g/b	-	2%	10%	44%	-		
"New glume wheat" g/b	-	-	-	44%	-		
T.aestivum/durum rachis	50%	-	-	-	-		
PULSES							
Lathyrus sativus	-	8% 10%		22%	9%		
Lens culinaris	50%	24%	40%	56%	27%		
Pisum sativum	50%	27%	30%	22%	27%		
Vicia ervilia	50%	2%	-	22%	-		
Vicia faba	50%	-	-	-	-		
Cicer arietinum	-	-	-	-	-		
OIL PLANTS							
Camelina sativa	-	2%	2% -		-		
Linum usitatissimum	50%	6%	30%	22%	9%		
Papaver somniferum	-	-	-	-	-		

 Table 8.9. Frequency of crop species per country: Mid/Late Neolithic Carpathian Basin

Period	Romania	Hungony	Bosnia Herzegovina	Croatia	Serbia		
No. of records	2	Hungary 26	0	11			
GRAIN	2	20	0	11	1		
Hordeum vulgare	_	81%	_	55%	100%		
Triticum dicoccum	50%	50%		64%	100%		
Triticum monococcum	100%	27%		64%	100%		
Triticum spelta	50%	8%	- 04%		100 /8		
T. aestivum/durum	100%	15%	-	36%	- 100%		
		13%	-	30%	100%		
"New glume wheat" Secale cereale	-	-	-	-	-		
	-	4%	-	18%	-		
Avena sativa	-	-	-	-	-		
Panicum miliaceum	50%	8%	-	18%	100%		
Setaria italica 18% -							
CHAFF		0.01					
Hordeum vulgare rachis	-	8%	-	-	-		
Triticum dicoccum g/b	-	-	-	36%	-		
Triticum monococcum g/b	-	-	-	45%	-		
<i>Triticum spelta</i> g/b	-	-	-	18%	-		
"New glume wheat" g/b	-	-	-	9%	-		
<i>T.aestivum/durum</i> rachis	-	-	-	9%	-		
PULSES				1			
Lathyrus sativus	-	-	-				
Lens culinaris	-	4%	-	9%	100%		
Pisum sativum	50%	4%	-	9%	-		
Vicia ervilia	-	-	-	9%	100%		
Vicia faba	-	-	-	-	-		
Cicer arietinum	-	-	-	-	-		
OIL PLANTS							
Camelina sativa	-	-	-	-	-		
Linum usitatissimum	-	4%	-	27%	100%		
Papaver somniferum	-	-	-	-	-		

Table 8.10. Frequency of crop species per country: Copper Age Carpathian Basin

			Bosnia				
Period	Romania	Hungary	Herzegovina	Croatia	Serbia		
No. of records	9	55	0	6	3		
GRAIN							
Hordeum vulgare	67%	91%	-	33%	67%		
Triticum dicoccum	67%	65%	-	33%	100%		
Triticum monococcum	67%	49%	-	17%	100%		
Triticum spelta	11%	20%	-	-	33%		
T. aestivum/durum	44%	36%	- 17%		100%		
"New glume wheat"	-	-	-	-	-		
Secale cereale	11%	15%	-	-	-		
Avena sativa	-	-	-	17%	-		
Panicum miliaceum	22%	35%	-	67%	67%		
Setaria italica	-	-	-	17%	-		
CHAFF							
Hordeum vulgare rachis	-	8%	-	-	-		
Triticum dicoccum g/b	-	44%	-	-	67%		
Triticum monococcum g/b	11%	38%	-	-	67%		
Triticum spelta g/b	-	13%	-	-	-		
"New glume wheat" g/b	-	-	-	-	33%		
T.aestivum/durum rachis	-			-	-		
PULSES							
Lathyrus sativus	-	5%	-	17%	-		
Lens culinaris	11%	36%	-	17%	100%		
Pisum sativum	11%	27%	-	17%	100%		
Vicia ervilia	11%	15%	-	17%	100%		
Vicia faba	11%	9%	-	17%	-		
Cicer arietinum	-	2%	-	-	-		
OIL PLANTS							
Camelina sativa	-	4%	-	-	67%		
Linum usitatissimum	-	2%	-	-	33%		
Papaver somniferum	-	2%	-	-	-		

 Table 8.11. Frequency of crop species per country: Bronze Age Carpathian Basin

Phase	Site	No. of samples	Average sample size	Median seed density per litre (not inc. indet)	100: total no. per sample	300: total no. per sample
MN	VIRBRE	5	11	0.1	1000	3000
LN	IVAGAJ	14	11	0.1	1000	3000
CA	PAJVEL	23	11	0.1	1000	3000
LN/CA/BA	TOMPAL	55	11	0.2	500	1500
LN	CISMAV*	34	8	0.2	500	1500
LBA	MACCRI*	25	11	0.2	500	1500
LBA	ORUVES*	2	11	0.2	500	1500
LN	SOPOT*	144	20	0.3	333	1000
CA	JURSTV	12	11	0.3	333	1000
LBA	CRIOST*	3	11	0.3	333	1000
CA	VIRBAT	3	11	0.4	250	750
CA	ÐAKFRA	29	11	0.7	143	429
CA	POTOCA	1	55	1	100	300
CA	VUCEDO	35	11	1	100	300
LN	TURPEC*	22	14	2	50	150
LN/CA	SLAVCA*	97	11	2	50	150
CA	RAVNOK*	60	11	2	50	150
CA	VINMAG*	4	54	8	13	38

 Table 10.1. The ideal sample volume for each site (based on the median seed density not including unidentified fragments) to achieve 100 and 300 seeds per sample: All 18 Croatian sites

 * 250 micron sieve used