
Essential Sentences for Navigating Stack Overflow
Answers

Sarah Nadi
University of Alberta

Edmonton, AB, Canada
nadi@ualberta.ca

Christoph Treude
University of Adelaide

Adelaide, SA, Australia
christoph.treude@adelaide.edu.au

Abstract—Stack Overflow (SO) has become an essential re-
source for software development. Despite its success and preva-
lence, navigating SO remains a challenge. Ideally, SO users
could benefit from highlighted navigational cues that help them
decide if an answer is relevant to their task and context. Such
navigational cues could be in the form of essential sentences
that help the searcher decide whether they want to read the
answer or skip over it. In this paper, we compare four potential
approaches for identifying essential sentences. We adopt two
existing approaches and develop two new approaches based on
the idea that contextual information in a sentence (e.g., “if using
windows”) could help identify essential sentences. We compare
the four techniques using a survey of 43 participants. Our
participants indicate that it is not always easy to figure out
what the best solution for their specific problem is, given the
options, and that they would indeed like to easily spot contextual
information that may narrow down the search. Our quantitative
comparison of the techniques shows that there is no single
technique sufficient for identifying essential sentences that can
serve as navigational cues, while our qualitative analysis shows
that participants valued explanations and specific conditions, and
did not value filler sentences or speculations. Our work sheds
light on the importance of navigational cues, and our findings
can be used to guide future research to find the best combination
of techniques to identify such cues.

I. INTRODUCTION

With more than 18 million questions and 28 million answers
as of October 2019, Stack Overflow (SO) has become a
critical knowledge asset for the software development industry.
However, navigating the amount of data available on Stack
Overflow is challenging. While lots of previous work focused
on identifying the most relevant threads for a given query [1],
[2], [3], [4], navigation is not complete after a suitable thread
has been identified. In a survey with 72 developers from two
IT companies, Xu et al. [5] identified “the answers in long
posts are hard to find” as one of the challenges. Almost 6.5
million questions (37% of all questions) have more than one
answer, and the average length of an answer is 789 characters.
Identifying useful information from this amount of data is
not trivial. Thus, in this paper, we focus on the next stage of
the navigation process. Specifically, we assume that the user
has already identified the relevant threads and now needs to
navigate them to identify relevant information.

Stack Overflow threads that contain many and/or long
answers often discuss alternatives or opinions [6], [7], [8].
A user browsing such threads may want to quickly spot certain

Fig. 1: Motivating Example from SO Thread 10990. The
sentence mentioning SELinux is an essential sentence for
navigating this thread. Our work compares four approaches for
automatically identifying such sentences.

information about an answer to decide if it fits their needs. We
refer to this information as essential sentences, because clearly
seeing these sentences can help the user quickly decide if they
should skip over this answer or carefully read it. The question
is how can we identify such essential sentences?

We could think of two possibilities from existing work.
The first, wordpattern, is a pattern-based approach used
to identify indispensable information in software documenta-
tion [9]. The second is lexrank, which is a standard text
summarization algorithm that identifies the most important
sentence(s) in a document. If we assume that the developer
has a certain context in mind when navigating information
(e.g., a particular platform, technology stack, or non-functional
requirement), then another possibility for identifying essential
sentences is looking for conditional sentences. For example,

Figure 1 shows a screenshot of Stack Overflow question 10990
along with one of its answers 11025 . At the time of writing,
this answer appears as the sixth out of eight answers in Stack
Overflow’s default ordering of answers by votes, i.e., the user
would have to scroll past five other answers, including an
accepted one, to see the sentence which indicates that this
answer might be relevant to their particular context: For users
using Security-Enhanced Linux (SELinux), it is important to
know that type context needs to be tmp_t as part of setting
the permissions for an upload folder. Thus, “I will add that
if you are using SELinux...” is an essential sentence which if
highlighted could help with navigating the information.

In this paper, we compare four approaches for identifying
essential sentences in Stack Overflow answers. The first two are
wordpattern and lexrank mentioned above. The other
two approaches are both built on the above intuition that
contextual information is often expressed as a condition in
the sentence. Thus, the third approach, simpleif, simply
relies on identifying any sentence with an if condition, or
in other words conditional sentences. The fourth approach
contextif aims to identify the subset of conditional sen-
tences that specifically express a relevant condition or that
provide contextual information, such as “..if you are using
SELinux” from Figure 1. We evaluate 76 sentences identified
by the four approaches through a survey with 43 participants.
Our survey answers the following research questions:
RQ1 What navigation challenges do SO users face?
RQ2 Can highlighting navigational cues help SO users?
RQ3 Are essential sentences identified by different approaches

perceived as helpful navigational cues?
RQ4 What information is available in essential sentences?

Our participants indicate that sifting through information on
Stack Overflow to find the most suitable answer they can
adapt to their specific context is a challenge. The results
also suggest that highlighting relevant information, including
contextual information, may help. Our quantitative results show
that while lexrank has the highest percentage of highly rated
sentences, each technique finds a different set of highly rated
sentences. This suggests that there is no single technique that
is clearly suitable for identifying essential sentences. However,
our qualitative analysis shows that the majority of positively
rated essential sentences contained explanations or specific
conditions, which can help future work create more techniques
for identifying essential sentences for navigation cues.

II. RELATED WORK

To the best of our knowledge, there is no existing work on
the extraction of essential sentences to be used as navigational
cues. However, there is a lot of relevant work on identifying
various types of information in Stack Overflow or software
documentation, which we review in the following.

a) Identifying relevant information on Stack Overflow:
Gottipati et al. [10] argue that it is hard for developers to
find relevant answers in question-and-answer forums. They
introduced a semantic search engine to recover relevant answers.
The motivation of our work follows a similar thought, but at a

finer level of granularity: Not only is it hard to find relevant
answers on SO, but it is also challenging to navigate the
information in these answers. Nasehi et al. [11] found that
explanations accompanying SO code examples are as important
as the examples themselves, further motivating our work on
helping users navigate these textual explanations to identify
relevant information.

Ye et al. [12] and Zou et al. [13] investigated the types
of interrogatives (e.g., how-to, what, and where) in questions
and answers and leverage this information to re-rank search
results. Bagheri and Ensan [14] propose a semantic tagging
approach based on Wikipedia data to improve Stack Overflow
tags, eventually improving the search process. Soliman et
al.’s [15] approach on the other hand is more domain-specific,
focusing on how architects search for architecturally relevant
information on Stack Overflow. CROKAGE by Silva et al. [16]
takes the description of a programming task and provides a
comprehensive solution for this task by searching multiple
threads. In contrast, our work focuses on the navigation of
a single thread, with the goal of identifying navigational
cues. Finally, Opiner [17] and POME [8] identify Stack
Overflow sentences that specifically contain opinions about
Application Programming Interfaces (APIs), with the end-goal
of recommending an API that matches a specific aspect (e.g.,
performance). In our work, we focus on sentences that help
developers navigate answers regardless of whether they contain
a positive or negative sentiment.

b) Identifying relevant information in software docu-
mentation: In an approach to bridge documentation from
different sources, Treude and Robillard [18] augmented API
documentation with insight sentences from Stack Overflow,
i.e., sentences that are related to a particular API type and
that provide insights not contained in the API documentation
of that type. While some insight sentences may also be
navigational cues, the application is fundamentally different:
we focus on highlighting navigational cues in Stack Overflow
threads instead of extracting them to complement a different
information source; we do not rely on API documentation
to identify sentences. However, given the somewhat similar
goals, we use their same baselines. Specifically, we use the
wordpattern approach by Robillard and Chhetri [9], who
argued that information useful to programmers can be buried
in irrelevant text, making it difficult to discover. To overcome
that, they detected fragments of API documentation potentially
important to a programmer, based on a tool which supports
both information filtering and discovery. We also use the same
lexrank summarization technique they compare to.

Outside of SO, Petrosyan et al. [19] use supervised text
classification based on linguistic and structural features to
discover tutorial sections explaining a given API type. Their
approach uses supervised text classification. Jiang et al. [20]
presented a similar approach, discovering two important
indicators to complement traditional text-based features, namely
co-occurring APIs and knowledge-based API extensions. They
later refined their work [21] by identifying APIs in tutorial
fragments and replacing ambiguous pronouns and variables

http://stackoverflow.com/questions/10990
http://stackoverflow.com/a/11025

with related ontologies and API names. Specifically focus-
ing on the challenge of navigating software documentation,
Treude et al. [22] automatically extracted tasks from software
documentation and suggested them to developers. Tian et
al. [23] developed a bot to answer API questions given
API documentation as an input. Zhong et al. [24] inferred
specifications from API documentation by detecting actions
and resources through machine learning.

Different to these approaches which are generally aimed at
more structured documentation, such as API specifications, we
focus on identifying navigational cues in SO threads.

III. IDENTIFYING ESSENTIAL SENTENCES

In this paper, we compare four techniques for identifying
essential sentences in Stack Overflow answers. Essential
sentences can be used as navigational cues that allow a user
to easily find the information they are looking for.

The first two techniques we use are wordpattern and
lexrank, which have been used as the baselines in previous
work on identifying insight sentences for API documenta-
tion [18]. Since both techniques try to identify various forms
of valuable information, which may in turn be relevant for
navigating Stack Overflow threads, we evaluate their application
in our context of identifying essential sentences.

We also develop two new techniques that rely on the concept
of conditions in sentences. The first, simpleif, simply
identifies all sentences with the word “if”, regardless of the
contents of the condition. The second technique, contextif,
finds conditional sentences whose conditional phrase contains
relevant technical context. We develop several heuristics to
determine whether the condition in the sentence is useful. We
now present the details of all four techniques, first discussing
the common pre-processing steps we apply for all of them.

A. Common Pre-processing Steps

Given a SO thread, we use BeautifulSoup [25] to
process each answer’s html code. We identify all paragraphs
by searching for <p> tags. For each paragraph, we replace all
html links (identified by the <a> tag) with the word LINK to
enable the processing of the sentence through natural language
processing tools later. For similar reasons, we also replace all
in-text code (identified by the <code> tag) with the word
CW. Afterwards, we use the Stanford CoreNLP toolkit [26]
to identify the sentences in each paragraph. All techniques
work on the same set of identified sentences. When parsing
a paragraph using CoreNLP, we use the part-of-speech tagger
(pos) and parse annotator, which provide full syntactic analysis
using both the constituent and the dependency representations.
Such annotators extract the tree structure of the sentence,
allowing us to later identify any conditional phrases.

B. Technique 1: wordpattern

As a potential technique for identifying essential sentences,
we use the work by Robillard and Chhetri [9], who developed
a set of 360 word patterns for identifying sentences containing
indispensable knowledge in documentation pages. The word

patterns they created typically consist of a set of words and
a code word that must appear in a sentence. An example of
such a word pattern is {should, value, CW, be}. This pattern
indicates that these three words must appear in the sentence,
as well as any code word. An example matching this pattern
is “Providing the contentType parameter with the value
of json will tell jQuery that the response should be json and
it should auto parse it before giving it to a callback.”

Given a sentence, as identified through the common pre-
processing steps, we lemmatize all words in the sentence to
increase the chances of a pattern match. Since some users
may use code words such as a class or a function name in
their text without necessarily formatting it as code using the
<code> html tag, we also use the list of regular expressions
from Treude and Robillard’s work [18] to identify additional
code elements in the sentence and replace them with CW to
further increase the chance of matching code words. We then
look for the existence of any word pattern by searching for
all the words in the pattern list, including CW. If the sentence
matches any of the given 360 patterns, we mark this sentence
as a wordpatttern sentence.

C. Technique 2: lexrank
Text summarization identifies the most important sentences

from a given document [27]. We could think of navigational
cues as sentences that contain important information relevant
to their surrounding sentences, and thus interpret the task as
a text summarization task. Lexrank [27] is a commonly used
unsupervised text summarization approach. We use lexrank
here as another potential technique for identifying navigational
cues in a thread. We apply the common pre-processing steps
and then lemmatize all words in the sentences. Finally, we
pass the whole pre-processed thread to an existing open-source
implementation of lexrank [28], and indicate the number of
sentences it should return (1 sentence, see Section IV-A). For
example, for thread 50957609 , lexrank identifies the sentence
“You’re not looping over an Array, you are looping over the
properties of an Object with a for...in loop”.

D. Technique 3: simpleif
Essential sentences may contain contextual information

which may often be expressed in the form of conditions, such
as that shown in the example in the introduction. Thus, as a
third potential technique for identifying essential sentences, we
propose simpleif, which identifies all sentences that simply
have the word “if” in them and thus contain a conditional phrase.
We apply the common pre-processing steps and then keep
sentences with the word “if” in them. An example simpleif
sentence from thread 52853048 is “If not, you could insert
an extra trailing value, e.g. null, if it doesn’t hurt.”

E. Technique 4: contextif
simpleif finds all conditional sentences. In contextif,

the goal is to automatically identify conditional sentences that
carry technical context and are useful. We do this based on a
set of heuristics that we identified through manually analyzing
118 randomly selected conditional sentences from our corpus.

http://stackoverflow.com/questions/50957609
http://stackoverflow.com/questions/52853048

(1) Conditional Phrase Extraction: Given a simpleif
sentence, we extract the conditional phrase from the parse tree
produced by CoreNLP. Specifically, we look for subordinate
clauses (SBAR) with an “if” in the left subtree, and then extract
the conditional phrase from the simple declarative clause that is
in the corresponding right subtree. For example, the conditional
phrase of “...., which will outperform the sync method if your
server is under load” is “if your server is under load.” We then
identify all nouns in the conditional phrase, load and server
in the example sentence. We also treat any code elements in
the sentence, again identified by the regular expressions from
Treude and Robillard [18], as nouns. We then compare this
noun list to the set of all Stack Overflow tags, with the goal
of ensuring that the condition has some technical context. If
any of the nouns are also SO tags, then we proceed to the
next steps. Otherwise, we discard this sentence. In our example
sentence, both nouns are also SO tags.

(2) Grammatical-relationship filtering: Based on our
manual analysis, we noticed that the sentence’s grammar
structure can often be an indication of its usefulness. We thus
follow intuition from Wang et al. [29] about using grammatical
dependencies to identify higher quality sentences from Stack
Overflow. We keep only sentences whose conditional phrase
(1) has a verb phrase where the verb has a dependency on a
noun (e.g., if you want a good UI) or (2) where the “if” has a
direct dependency on a noun (e.g., if file exists).

(3) Final heuristic filtering: As a final step, we further
remove sentences: ending in a question mark, with first person
or “you” references but no modal verb (e.g., “if you look at
the data”), containing unsure phrases (e.g., I’m not sure if
that’s...) or with conditions surrounded by parentheses. An
example contextif sentence from thread 52703976 is “If
your expected value is an array, consider using map, especially
if there will always be a value”.

IV. EVALUATION SETUP

In this section, we describe the setup we use to evaluate the
sentences identified by each of the four techniques.

A. Thread Selection

We select json as our subject domain, because it is a general
data exchange format that is used in multiple programming
languages and technologies. This increases our chance to get
meaningful ratings, as opposed to using a specific technology
that only few participants would be familiar with. We use the
StackExchange API to find json-tagged threads that (1) have
a question score of zero or more to filter out questions that
have been explicitly marked as negative and (2) have been
asked between March 29, 2018 to March 29, 2019.

The search returned 29,420 threads. We consider only threads
that have a minimum of two answers, to ensure there are at
least two alternative answers such that highlighting essential
sentences makes sense. This leaves us with 7,920 threads. We
processed 19,427 answers for these threads, with a mean of
2.45 answers per thread, and some threads having up to 13
answers. We run all techniques on all text from these answers,

processing a total of 68,331 sentences. In the end, we identified
1,200 wordpattern sentences, 3,441 simpleif sentences,
and 761 contextif sentences.

Since evaluating thousands of sentences in a survey is
infeasible, we sample the threads for evaluation. To avoid
being biased towards one technique, our criteria for selecting
a thread for evaluation is that all techniques detected at least
one sentence in that thread. lexrank needs the number of
sentences to select for a summary, which guarantees that it
will always identify at least one sentence per thread. Thus,
we look only at the results of wordpattern, contextif,
and simpleif for our sample selection. We identified 79
threads for which all three techniques detected at least one
sentence. From these, we randomly select 20 threads for
evaluation. To avoid bias, we want to balance the number
of sentences being evaluated for each technique. Therefore, we
first randomly select 20 threads. We then look at the number
of total sentences identified from each of the three techniques
in those 20 threads. If there is a big imbalance (e.g., a thread
with 6 wordpattern sentences vs. 3 contextif and 3
simpleif or a thread with 5 simpleif sentences and only
one sentence from each of the other techniques), we replace
the thread with another randomly selected one until we get a
reasonable and balanced number of sentences in each technique.
To avoid over-burdening participants, we also focus on threads
with at most a total of 5 sentences selected by all approaches. To
determine the number of sentences to provide to the lexrank
algorithm, we use the median number of sentences detected
by each technique for these 20 threads. Since this median is 1
sentence, we configure lexrank to select one sentence per
thread.

Our final 20 selected threads, along with their descriptive
statistics, are available on our artifact page [30]. The minimum
number of answers per thread was 2, median 3, and maximum
7. Table I shows the number of sentences identified by each
technique across the 20 selected threads. Note that the same
sentence may be identified by multiple techniques. In total,
we have 76 unique sentences for evaluation in the survey. As
shown in Figure 2, only 13 out of the 76 unique sentences
are identified by more than one technique. Furthermore, the
majority of sentences identified by each category of techniques
are unique to that technique, suggesting that these techniques
detect different kinds of information.

B. Survey Design

We design a custom web application that shows highlighted
sentences within the context and GUI of a Stack Overflow
thread. Participants see a page that contains the full thread, but
without the extra controls/buttons/information on SO pages to
reduce unrelated clutter. When they start the survey, participants
are provided with an information page that describes the study
(including ethics clearance information) and then proceed to
an instructions page that explains their task. We now describe
the flow of the survey.

c) Background Questions: Participants first see the back-
ground questions page, with the following questions.

http://stackoverflow.com/questions/52703976

12 2

23

13

41

lexrank word pattern

41

15

1

simpleif

contextif

sentences

simpleif

contextif

1

Fig. 2: Venn diagram illustrating the overlap between the 76
sentences identified across the four techniques

(BQ1) Is developing software part of your job? Yes, no
(BQ2) What is your job title? Free text
(BQ3) For how many years have you been developing soft-

ware? Free text
(BQ4) What is your area of software development? Free text
(BQ5) How would you rate your json expertise? No experience

at all using json, Beginner, Intermediate, Expert
(BQ6) Have you used Stack Overflow to search for information

before? Yes, no
(BQ7) Have you contributed to Stack Overflow before? (ques-

tions, answers, comments, discussion etc.) Yes, no

d) Sentence Review Questions: After answering the
background questions, participants proceed to review three
threads plus one quality gate thread (explained shortly). The
sentences identified by the four techniques are highlighted in
each thread. All sentences are highlighted in the same color
and format, regardless of the technique that detected them to
avoid any bias. Thus, each participant evaluates sentences from
all four techniques without actually knowing which technique
they are evaluating. Once participants click on a highlighted
sentence, the following questions appear in the right margin
beside the sentence (as shown in Figure 3).

(SR1) Which of the following statements best describes this
highlighted sentence? (a) The sentence is meaningful
and provides important/useful information needed to
correctly accomplish the task in question1, (b) The
sentence is meaningful, but does not provide any im-
portant/useful information to correctly accomplish the
task in question, (c) The sentence does not make sense
to me. Note that we ask this question to differentiate
wording/grammar issues from actual usefulness.

(SR2) Given this highlighted sentence, indicate whether you
agree with the following statement “When reading this
thread, I would like to be able to quickly locate this
sentence” (a) strongly agree, (b) agree, (c) neither agree
or disagree, (d) disagree, (e) strongly disagree.

(SR3) Given this highlighted sentence, indicate whether you
agree with the following statement “Highlighting this
sentence helps me navigate to relevant solutions and
disregard irrelevant solutions” (a) strongly agree, (b)
agree, (c) neither agree or disagree, (d) disagree, (e)
strongly disagree.

(SR4) Please justify your above ratings. Free text.

1Refers to the question being asked in the current SO thread

Fig. 3: Sentence questions displayed to survey participants

As a quality gate, we fix one thread that we selected
beforehand with the following sentence highlighted: “Hope this
helps.” We expect participants who are not randomly answering
the questions to rate this sentence negatively since it does not
provide any useful information. The quality gate thread appears
in a random order for each participant and looks the same as
any of the other threads.

e) Exit Questions: After evaluating four threads, partici-
pants proceed to the following final set of exit questions.
(EQ1) Thinking of the highlighted sentences you observed, and

specifically the ones you thought were useful/important,
are there any specific properties of these sentences that
affected your rating? Free form

(EQ2) Thinking of the highlighted sentences you observed,
and specifically the ones you thought were NOT
useful/important, are there any specific properties of
these sentences that affected your rating? Free form

(EQ3) Thinking of your general experience as a software
developer: after you have identified a relevant Stack
Overflow thread that you need to look at, what
challenges (if any) do you encounter in navigating
the information in the thread? Free form

(EQ4) Assuming Stack Overflow could highlight certain in-
formation for you in a given thread, what kind of
information would you like to see? Free form

(EQ5) Some of the sentences you saw were conditional sen-
tences (i.e., sentences with an if clause) that contained
conditions related to programming languages, tech-
nologies, operating systems, or situations a developer
would face. Do you think highlighting such sentences
could be useful to find relevant information in a thread
more quickly? Free form

While the threads each participant sees are randomly selected
from the thread pool and appear in a random order, we use
a balancing algorithm to ensure that we get at least 3 ratings
per thread. Thus, our algorithm tries to select from the threads
with the lowest number of responses first.

C. Participant Recruitment

We used Amazon Mechanical Turk [31] (MT) to recruit
participants, using the premium option of “Employment In-
dustry – Software & IT Services” as a required qualification

9%

47%
16% 12% 7% 9%

Mangerial Developer Software
Engineer

IT Support Analyst Other

(a) Job title

14% 21% 23% 23%
9% 9%

<=1 1-3 3-5 5-10 10-20 20+

(b) Years of software development

28%
51%

21%

No
Experience

Beginner Intermediate Expert

(c) What is your experience using json?

Fig. 4: Participant Background

and a compensation of USD$3. Our web application generates
a unique token for each participant to submit on MT. We
accepted only responses which provide this token and where the
participant has (at least) minimal knowledge of JSON (BQ5)
and has used SO to search for information before (BQ6). Each
participant can answer the survey only once.

We also performed post-filtering of the responses to ensure
that we consider results only from participants who understood
the task. We use our quality gate thread to filter out participants.
Specifically, we look at the answers to (SR3) for the sentence
“Hope this helps.” and filter out all participants who did not
answer “Disagree” or “Strongly disagree”.

To ensure that there are no issues with our survey application,
we first conducted a pilot study with 5 MT participants. We
fixed some technical issues that arose from the pilot. We do
not include the pilot data in the results presented in this paper,
and only base our results on the full run.

D. Data Analysis

Qualitative Analysis: For RQs 1, 2, and 4, we use
qualitative methods, specifically open coding [32], to analyze
participants’ responses to the exit questions, as well as
the information contained in positively rated sentences. For
each analysis, one author first manually created meaningful
codes [32] for a random sample of the data. Then, using these
defined codes, both authors coded 10% of the data points
using the defined coding scheme. If our inter-rater reliability,
calculated using Fuzzy Kappa [33] to account for potentially
multiple labels per data point, was high (>= 0.75), the two
authors continued coding the rest of the data. If not, they
discussed the codes first and found potentials for code merging.

Quantitative Analysis: To answer RQ2, we need to
compare the ratings of (SR1), (SR2), and (SR3) for the
different techniques. A high median rating suggests that the
majority of participants thought that this sentence is “good”
according to the criteria the question asks about. Thus, to
evaluate the effectiveness of each technique, we look at the
percentage of sentences identified by that technique which
received a high rating. We use the question nature to determine

what a “high rating” means. For Question (SR1), we convert
the choices to ratings, where 1 corresponds to not meaningful,
2 corresponds to meaningful but not useful/helpful, and 3
corresponds to meaningful and useful/helpful. Since we are
interested in meaningful and helpful sentences, we consider
a sentence with a median score equal to 3 as a highly rated
sentence. For Questions (SR2) and (SR3), we convert the
choices to ratings from 1 (Strongly disagree) to 5 (Strongly
agree). For those questions, we are interested in sentences
where participants at least agree with the statement. Thus, we
consider sentences with median score >= 4 as highly rated.

V. SURVEY SUMMARY STATISTICS

We accepted submissions from 59 participants. We filter out
16 participants based on our quality gate thread, and use the
remaining 43 participants for our results.

Figure 4 shows the distribution of the background of the 43
survey participants. We group related job titles under common
categories. As Figures 4a and 4b show, our participants work in
various occupations related to the technology sector and have
a wide range of years of software development experience.
Figure 4c shows that the majority of our participants had
intermediate knowledge of json; recall that we did not accept
submissions from participants with no json experience.

As per our load balancing algorithm, all threads received at
least 3 ratings. The median number of ratings per thread was
7, with a maximum of 10. The median number of ratings per
sentence per technique was also 7, and the distribution of the
number of ratings per sentence across the four techniques was
similar, giving us confidence that the number of ratings will
not implicitly bias our results towards a certain technique.

VI. RQ1: NAVIGATION CHALLENGES

In RQ1, we want to understand what kind of navigation
challenges users face, if any. We look at the SO navigation
challenges participants mention in (EQ3). The codes we use
for these responses, along with the number of responses per
code, are: too much information to navigate (13), no problems
(11), not easy to adapt information to my specific problem
(6), outdated information (5), SO feature (2), need to combine
multiple solutions from different threads (2), duplicate content
(1), and archived threads (1). Our inter-rater agreement for
this coding task was 0.76.

While 11 participants have no problems navigating Stack
Overflow, more participants complain about the amount of
information they need to navigate (e.g., “It’s often finding the
useful info. There are some threads where there’s so much
useless stuff ”). This further motivates our research for helping
developers navigate Stack Overflow. The other challenges
mentioned are also quite interesting. For example, the difficulty
in adopting solutions to a user’s specific context or the need
to combine multiple solutions from different threads (e.g., “I
usually have to piece together multiple stack overflow threads
to find a solution to a particular situation”). Highlighting the
context under which a solution is relevant may help alleviate
the former challenge.

2%

4%

4%

5%

71%

65%

63%

60%

27%

31%

33%

35%

lexrank

wordpattern

contextif

simpleif

100 50 0 50 100
Percent of Responses

Not meaningful Not useful Useful

(a) (SR1)

11%

15%

19%

23%

75%

71%

63%

56%

14%

15%

18%

22%

lexrank

wordpattern

contextif

simpleif

100 50 0 50 100
Percent of Responses

Strongly disagree Disagree Neither agree or disagree Agree Strongly agree

(b) (SR2)

11%

16%

19%

23%

73%

72%

62%

57%

17%

12%

19%

20%

lexrank

wordpattern

contextif

simpleif

100 50 0 50 100
Percent of Responses

Strongly disagree Disagree Neither agree or disagree Agree Strongly agree

(c) (SR3)

Fig. 5: Distribution of responses per technique per question

Answer to RQ1: Challenges in SO navigation include sifting
through lots of information, adapting solutions to the user’s
context, and combining solutions from multiple threads.

VII. RQ2: POTENTIAL OF HIGHLIGHTING INFORMATION

In RQ2, we explore the potential of highlighting information
on SO. To do so, we analyze the responses to two questions:
(EQ4) where we explicitly asked participants what information
they want highlighted and (EQ5) which explicitly asks partic-
ipants whether they think highlighting conditional information
could be helpful. Note that we put (EQ5) as the last question
of the survey to avoid any bias.

The codes we use for the responses in (EQ4) are: most
relevant solution (12), direct answer (10), relevant explanations
(8), tips (4), code (4), confirmed information (2), step-by-step
solution (2), no highlighting (2), and summary (1). Our inter-
rater agreement for this coding task was 0.85. Naturally, most
participants wanted the most-relevant solution (e.g., “I would
like the most relevant solution to be highlighted”) or a direct
answer (e.g., “Any links to programs or interfaces that are the
direct solution”) to be highlighted. It is interesting to note here
that the most-relevant solution to the question in the thread
may not necessarily be the most relevant one to the user. Thus,
the term “most relevant” is relative to the specific problem the
user is looking to solve, which may have slight differences to
the one in the thread. The third code in our list shows that
not only are direct solutions relevant, the explanations that are
needed to understand them are very important to participants.
Previous work investigating code examples also found similar
results about the importance of explanations [11].

For (EQ5), twenty participants said yes to highlighting
conditional information; 11 said maybe. The following are

the codes for participant justifications (if any): yes, good to
know cases (9), yes, provides easy/quick navigation (6), yes,
depends on stack (4), yes, with granularity selection (1), and no,
may miss big picture (1). Our inter-rater agreement was 0.82.
These comments suggest that the majority of participants think
that highlighting conditional sentences is a good idea (e.g.,
“Knowing a solution is specific to a technology, etc. will let me
quickly decide if I should continue reading or look elsewhere”).
Participants say that it is good to know the different cases when
finding a solution, that it makes navigation easier, and that such
highlighting is useful if the user’s technology stack matches the
highlighted information. Such comments match our intuition
and motivation for this work. One participant had an interesting
suggestion of allowing users to select the granularity level of the
highlighting they want (e.g., programming languages, operating
systems etc.): “It might be nice to have some granularity to
the highlighting that a user could specify (i.e., Do you want
to highlight x, y, z?)”.

Answer to RQ2: Participants would find highlighting the most
relevant solution useful. Highlighting conditional information
may be useful, especially to understand the various cases for
a solution.

VIII. RQ3: TECHNIQUE COMPARISON

To compare the performance of the four techniques for
RQ3, we perform a quantitative analysis of the ratings from
Questions (SR1), (SR2), and (SR3). Figure 5 shows the
distribution of responses for the sentences identified by each
technique for each question. We use a two-sided unpaired
Wilcoxon signed-rank test to compare the rating distribution
of the various techniques and calculate effect size using
r = Z/sqrt(N) [34]. We use a Benjamini & Hochberg (BH) p-
value adjustment measure to account for multiple comparisons,
and use α = 0.05. Table I also shows the percentage of the
identified sentences that were highly rated by participants.

General Quality of Sentences: In (SR1), we asked partic-
ipants to select a statement that best describes the highlighted
sentence. While we found no statistically significant differences
between the rating distributions of all four techniques, Table I
shows that simpleif had the highest number of highly rated
sentences (32). This is expected given that simpleif naturally
identifies more sentences given its simple criteria. However,
a higher percentage of the sentences identified by lexrank
end up being highly rated by participants, in this case seen as
meaningful and useful.

Desire to Locate Sentences: In (SR2), we ask participants
if they would like to quickly locate the highlighted sentence
when navigating the thread. Again, we find no statistically
significant differences between the distribution of ratings across
the techniques. However, as shown in Table I, the number of
highly rated sentences in each technique differs between (SR1)
and (SR2). We point out that the highly rated sentences
in (SR2) are not necessarily a subset of those in (SR1)
due to the nature of the question. Question (SR1) asked
participants to rate the sentence on its own rather than for

TABLE I: Number of sentences identified by each technique, and percentage of those sentences that were highly rated

Technique Number of Sentences (SR1) Highly Rated (SR2) Highly Rated (SR3) Highly Rated
simpleif 49 32 (65%) 30 (61%) 29 (59%)
contextif 20 13 (65%) 9 (45%) 11 (55%)
wordpattern 21 16 (76%) 17 (81%) 16 (76%)
lexrank 20 16 (80%) 14 (70%) 16 (80%)
Total Unique Sentences 76 51 (67%) 49 (64%) 48 (63%)

a specific purpose/goal, while (SR2) specifically asks about
the goal of quickly locating a given sentence. One example of a
sentence that was positively rated in (SR1) but negatively rated
in (SR2) is “And if so it returns the default value” from answer
50523464 . This sentence is part of a paragraph that explains the
logic of a piece of code that preceded it. While the sentence is
meaningful and may be helpful as an explanation of the problem
and provided code, someone navigating this thread would not
be keen about quickly locating this sentence per se since it
does not give any information about the context/topic/value
of the answer. On the other hand, an example of a sentence
that was less positively rated in (SR1) but positively rated
in (SR2) is “You’re not looping over an Array, you are looping
over the properties of an Object with a for...in loop.’ from
thread 50958104 . While this sentence does not provide a
direct solution to the problem, it explains why the problem
occurs. As one participant elaborates “The highlighted sentence
gives an explanation to the problem but is not suggesting any
solution to the problem. But, still highlighting it might help
me in navigating to that solution which might also contain the
actual solution to the problem.”

Table I shows that wordpattern has the highest propor-
tion of highly rated sentences for (SR2). It is also worth
noting that contextif has a smaller number of highly
rated sentences when compared to simpleif. Given that
contextif is a subset of simpleif, this suggests that
some of our filtering criteria may have been too strict, resulting
in filtering out sentences that are valued by participants. We
discuss this phenomenon in more detail in Section X, as well
as look more closely at the overlap between the sentences
identified by the four techniques.

Helpfulness In Identifying Relevant Solutions: In (SR3),
we ask participants whether the given sentence helps them
quickly identify relevant solutions and disregard irrelevant ones.
This is the most important question for our goal of providing
useful navigational cues to Stack Overflow users. Table I shows
the percentage of sentences identified by each technique that
were highly rated by participants. Again, there may be sentences
that are highly rated in this question but not in other ones. For
example, the following sentence “But if you have an include
property in your tsconfig.json:” from thread 51494250
has a median rating >= 4 for (SR3) but not (SR2). As one
participant explains their rating for this sentence, “This explains
one situation in which this person’s solution might be helpful”.
Thus, when specifically asked if this sentence would help users
quickly identify relevant solutions and disregard irrelevant ones,
more participants rated this sentence more positively.

Following this logic, as shown in Table I, we can see that
the number of contextif sentences that were positively

rated increased between (SR2) and (SR3), suggesting that
these conditional sentences do indeed serve the purpose of
differentiating between solutions better. However, lexrank
still outperforms the other techniques in terms of having the
highest ratio of its sentences rated highly. Note that we find a
statistically significant difference between the rating distribution
of contextif and lexrank (p = 0.045), but with a very
small [35] effect size of 0.155.

Answer to RQ3: When considering a median rating of at
least “Agree”, a higher percentage of lexrank’s sentences
are perceived as helpful navigational cues.

IX. RQ4: HELPFUL NAVIGATION INFORMATION

We now present the results of our qualitative analysis to
answer RQ4. We present the details of the final set of codes
used, the inter-rater agreement for each question, and the
number of instances per code. For all questions, we find that
the majority of instances were assigned exactly one code, with
a max number of codes of 3.

Sentence Analysis: To understand the information partici-
pants look for in navigation cues, we look at the 48 unique
highly rated sentences for Question (SR3). Our goal is to
identify the kind of information in the sentence, or its role in
the thread. Thus, we also use participants’ rating justifications
from (SR4) to guide us during the process.

The set of codes we use, along with the number of instances
per code in parentheses is as follows: explanation (23), specific
condition (19), API note (17), direct solution (5), label (5),
and other (1). Our inter-rater agreement kappa score is 0.78.
Looking at the top three codes, an example of an explanation
sentence is “If it returned a falsy value (i.e. 0) then the value
of the other operand of || will be returned (which is sorting by
timestamp).” Here, the poster is explaining some concept related
to the question, or in other cases related to the provided solution.
For explanation sentences, participants use justifications that
involve the words “explain”, e.g., “That’s the simplest and
clear[est] explanation.” An example of a sentence highlighting
a specific condition is “You can use session storage if you want
the data to be retrieved once PER SESSION or local storage
if you want to have better control of the data’s ‘expiration’.”
Participants provided justifications for this category of sentences
such as “This single sentence answers the question thoroughly,
with two separate options.” Sentences containing API notes
typically provided extra information about a specific method.
An example is “Another thing to notice, is that require is
synchronous, so if your JSON is specially large, the first time
you instantiate MyClass the event loop will be blocked.” One
of the participants comments on this sentence saying, “This

http://stackoverflow.com/questions/50523464
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...in
http://stackoverflow.com/questions/50958104
http://stackoverflow.com/questions/51494250

type of information would allow me to avoid a future bug or
unexpected behavior, and directly relates to the question.”

General reasons for high ratings: In (EQ1), we asked
participants about what generally made them rate a sentence
highly. Recall that participants answer this question at the end
of the survey, allowing them to reflect on all sentences they
evaluated. The set of codes we use, along with the number of
instances per code in parentheses is as follows: direct solution
(16), explanation (13), relevance of info (11), code/lib (6), well-
written (5), SO info (2), alternate solution (1), and warning
(1). Our inter-rater agreement kappa score is 0.86.

Our codes show that participants explicitly mention the
existence of a direct solution or explanation the most. The
quality of the sentence itself, in terms of how well-written or
concise it is, also affected their rating. Several participants find
that a sentence is useful when it mentions a specific library, or
piece of code (e.g., an API). It is interesting to see that only
one participant explicitly mentions alternatives, while based
on our previous analysis of what information is contained in
highly rated sentences, 19 out of the 48 analyzed sentences
contained some form of a specific condition. We speculate that
participants do not necessarily refer to these as conditional
sentences, or alternative solutions, but instead find them useful
because they mention particular contexts, whether programming
languages, library names, or APIs.

General reasons for low ratings: We also look at the
answers to (EQ2), which asked about general reasons for
low ratings. The set of codes we use, along with the number
of instances per code in parentheses is as follows: not
relevant to main issue (23), filler sentences (7), no meaningful
information (6), speculation (4), not standalone (2), formatting
(1), complicated (1), contains no code (1), generic (1), and
other (1). Our inter-rater agreement kappa score is 0.87.

As can be seen, sentences that did not contain information
relevant to the main issue being asked in the thread, such as
direct solutions, were seen as not useful. Filler sentences are
farewell sentences or just social comments, such as people
saying good bye or good luck at the end of a post. Sentences
with no meaningful information of how to apply the given
information to solve the problem were also rated low.

Answer to RQ4: The majority of highly rated sentences
in (SR3) contain explanations or specific conditions. The
most mentioned factor affecting participants’ sentence ratings
is whether they directly solve the main issue in question.

X. DISCUSSION

Our goal in this work is to investigate what kind of infor-
mation is helpful for developers to navigate through potential
solutions on Stack Overflow, and possible techniques to identify
this information. Our work is the first to investigate essential
sentences for the purpose of navigating technical information
on Stack Overflow. Our qualitative results suggest that we are
on the right track in thinking that contextual information may
be useful. We believe that techniques that identify and highlight
such contextual information can provide valuable navigation

9 2

12

8

41

lexrank word pattern

31

7

1

simpleif

contextif

q10

Fig. 6: Venn diagram illustrating the techniques corresponding
to the 48 highly rated sentences in Question (SR3)

cues on Stack Overflow. Identifying conditions and contexts
related to a query can also help users contextualize their search
and reach their target thread more easily. For example, if we
identify that there is a big variation in answers to a given
task based on the programming language or operating system,
we can prompt the user to select one of the existing contexts
during their search. Finally, this information can also help with
automated thread or answer tagging on Stack Overflow, which
would make both manual navigation as well as automated
search engines more effective.

Instead of re-inventing the wheel, we looked for existing
techniques that may potentially find relevant information for our
purposes, namely lexrank and wordpattern. Our results
show that both techniques are indeed promising, since a high
proportion of the sentences they identify is highly rated by
participants. Additionally, given the idea of contextual informa-
tion, we focused on conditional sentences since conditions may
likely signal specific contexts. In the contextif technique,
we designed some heuristics to identify meaningful conditions.
However, the results show that our heuristics were rather strict,
where they filtered out many simpleif sentences that ended
up being highly rated by participants. We plan to investigate
if ignoring parts of speech in the condition helps and if other
means for differentiating technology related conditions can be
used [36], [37], [38].

Not all sentences that help users navigate a thread are
necessarily providing context information. For example, the
following sentence, detected by lexrank, “You are trying
to cast to [String: Any], but you have an array of
[String: Any] because your response enclosed in []
brackets.” was highly rated. Since it does not contain any
conditional phrases, it was not picked up by simpleif or
contextif. However, participants found it relevant since it
provided a direct explanation of the problem being faced in
this thread. We conclude that there may be different types of
navigation issues at hand. The first is a user who knows the
particular thread that describes their exact problem and just
wants to quickly find (and understand) the direct solution. In
this case, a sentence such as the above one is what they need.
The second is a user who is facing a similar problem but in
a very specific context and is browsing threads to try to find
someone who shares this context. In this case, sentences that
contextualize the solution (and thus likely contain some form
of condition) are more useful. Our survey did not differentiate
these types of users since we did not provide them a concrete
task to do. Thus, we conclude that both types of information

are useful, but may depend on the use case.
Figure 6 illustrates this point further. We show all the 48

sentences that were highly rated in Question (SR3), and the
corresponding techniques that identified them, including any
overlap. As can be seen, the majority (29/48 = 60%) of
these highly rated sentences are conditional sentences (i.e.,
simpleif sentences), while the remaining sentences are
identified by wordpattern or lexrank. Additionally, with
the exception of a very small effect size for the difference
between lexrank and contextif, we found no statistically
significant difference between the four techniques. Thus, we
can conclude that there is no single technique that is clearly
a “winner”, and a future direction could be investigating
meaningful combinations as well as additional techniques.

Finally, it is worth noting that the highly rated sentences did
not necessarily exist in the accepted answer for the thread or
in the highest scoring answers. For example, the sentence “I’d
only put require inside the constructor if it was a dynamic
dependency, [...]” had a median rating of 5, even though the
corresponding answer’s score was 1. This supports our belief
that developers often look for information relevant to their
context, which may exist in various answers in a thread.

XI. THREATS TO VALIDITY

Internal Validity: There may be additional essential sen-
tences useful for navigational cues that none of the techniques
detected. Thus, our comparison of techniques is a relative one
with respect to the four examined techniques.

The choice of the threshold used for the definition of “highly
rated” affects the results we obtain. We chose a threshold that
indicates a high rating, based on the meaning of each question.

Participants may provide random answers to the survey
questions, including the quality gate question in which it will
be correct in 40% of the time. This is always a threat to any
survey, and we tried to mitigate it as much as possible.

We rely on the Stanford CoreNLP toolkit for the processing
of sentences. Any inaccuracies in it may lead to inaccuracies
in the presented techniques.

When sampling from Stack Overflow, we did not apply any
filtering based on answer score, because an essential sentence
does not necessarily exist only in highly scored answers. As
discussed in Section X, we found highly rated sentences in
answers with score 1. Additionally, we found no Spearman
rank correlation between any of the ratings and answer score.

Construct Validity: The two existing techniques we used,
wordpattern and lexrank, were not designed for the
purpose of SO navigation cues. Our goal is to investigate how
applicable existing techniques are to identifying navigational
cues and to identify future steps.

Our survey participants were not provided with a concrete
task to think of when evaluating threads. This was intentional
since creating a concrete task with a specific context that
does not bias the results towards the conditional sentences
in the thread is difficult. Without a concrete task/context, a
controlled experiment setting to compare the highlighting of
essential sentences to current navigation techniques is infeasible.

Participants might rate the sentences differently if they were
provided with a specific context. Our survey mitigates that
by asking about different aspects of the sentences, as well as
eliciting free-form feedback that we qualitatively analyzed.

To ensure that we can statistically compare the techniques
and to avoid burdening participants, we evaluated threads with
a similar number of extracted sentences by each technique.
This sampling may mean that we evaluated on a unique subset
of threads since the majority of threads had sentences identified
by only some of the techniques.

External Validity: There are other language patterns that
encode conditional information, e.g., “For Linux, use ...” Thus,
the current simpleif and contextif sentences do not
necessarily represent all contextual information. To investigate
the idea of using conditional information for navigational cues,
we started with the simple form of sentences with “if”.

Our results are based on the evaluation of 20 json threads,
with 76 highlighted sentences, by 43 participants, and may not
generalize beyond that. That said, our survey participants have
diverse background, with varying expertise levels with json
as well as varying occupations and programming experience,
which gives us confidence that our results are not biased towards
the views of a particular population sample.

XII. CONCLUSION

Given the amount of information available on Stack Overflow,
identifying which part of which answer is suitable for a user’s
task and context is difficult. In this paper, we compared four
techniques to identify essential sentences providing navigational
cues for guiding users to the most suitable (part of an) answer.
Our results show that a high percentage of the sentences
identified by a text summarization technique, lexrank, are
highly rated. However, we also show that the other techniques
find many additional highly rated sentences, which suggests that
there is no clear silver bullet. We find that most of the highly
rated sentences contain explanations or specific conditions.
The results support our intuition that conditional or contextual
information can help users quickly navigate information on
Stack Overflow. We plan to investigate additional heuristics to
further differentiate between useful contextual information and
irrelevant conditions. We publicly share all the code and data
from our work [30], which also includes the collected sentence
ratings from our survey evaluation that can be used to guide
future work.

ACKNOWLEDGEMENTS

Thanks to Benyamin Noori for early investigation of con-
ditional sentences and to Samer Al Masri for implementing
the survey website. This research was undertaken, in part,
thanks to funding from the Canada Research Chairs program
and the Australian Research Council’s Discovery Early Career
Researcher Award (DECRA) funding scheme (DE180100153).
This work was inspired by the International Workshop series
on Dynamic Software Documentation, held at McGill’s Bellairs
Research Institute.

REFERENCES

[1] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Mining StackOverflow to turn the IDE into a self-confident programming
prompter,” in Proceedings of the Working Conference on Mining Software
Repositories, 2014, pp. 102–111.

[2] L. B. L. de Souza, E. C. Campos, and M. d. A. Maia, “Ranking
crowd knowledge to assist software development,” in Proceedings of the
International Conference on Program Comprehension, 2014, pp. 72–82.

[3] M. M. Rahman and C. Roy, “Effective reformulation of query for code
search using crowdsourced knowledge and extra-large data analytics,” in
Proceedings of the International Conference on Software Maintenance
and Evolution, 2018, pp. 473–484.

[4] R. F. G. Silva, C. K. Roy, M. M. Rahman, K. A. Schneider, K. Paixao,
and M. de Almeida Maia, “Recommending comprehensive solutions for
programming tasks by mining crowd knowledge,” in Proceedings of the
International Conference on Program Comprehension. Piscataway, NJ,
USA: IEEE Press, 2019, pp. 358–368.

[5] B. Xu, Z. Xing, X. Xia, and D. Lo, “AnswerBot: Automated generation
of answer summary to developers’ technical questions,” in Proceedings
of the International Conference on Automated Software Engineering,
2017, pp. 706–716.

[6] G. Uddin and F. Khomh, “Automatic mining of opinions expressed about
APIs in Stack Overflow,” IEEE Transactions on Software Engineering,
2019, to appear.

[7] A. Zagalsky, D. M. German, M.-A. Storey, C. G. Teshima, and G. Poo-
Caamaño, “How the R community creates and curates knowledge: an
extended study of Stack Overflow and mailing lists,” Empirical Software
Engineering, vol. 23, no. 2, pp. 953–986, 2018.

[8] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, and M. Lanza, “Pattern-
based mining of opinions in Q&A websites,” in Proceedings of the
International Conference on Software Engineering. IEEE Press, 2019,
pp. 548–559.

[9] M. P. Robillard and Y. B. Chhetri, “Recommending reference API
documentation,” Empirical Software Engineering, vol. 20, no. 6, pp.
1558–1586, Dec 2015.

[10] S. Gottipati, D. Lo, and J. Jiang, “Finding relevant answers in software
forums,” in Proceedings of the International Conference on Automated
Software Engineering, 2011, pp. 323–332.

[11] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming Q&A in StackOverflow,” in
Proceedings of the International Conference on Software Maintenance,
2012, pp. 25–34.

[12] T. Ye, B. Xie, Y. Zou, and X. Chen, “Interrogative-guided re-ranking
for question-oriented software text retrieval,” in Proceedings of the
International Conference on Automated Software Engineering, 2014, pp.
115–120.

[13] Y. Zou, T. Ye, Y. Lu, J. Mylopoulos, and L. Zhang, “Learning to rank
for question-oriented software text retrieval (t),” in Proceedings of the
International Conference on Automated Software Engineering, 2015, pp.
1–11.

[14] E. Bagheri and F. Ensan, “Semantic tagging and linking of software
engineering social content,” Automated Software Engineering, vol. 23,
no. 2, pp. 147–190, 2016.

[15] M. Soliman, A. Rekaby Salama, M. Galster, O. Zimmermann, and
M. Riebisch, “Improving the search for architecture knowledge in online
developer communities,” in Proceedings of the International Conference
on Software Architecture, 2018, pp. 186–195.

[16] R. F. Silva, C. K. Roy, M. M. Rahman, K. A. Schneider, K. Paixao,
and M. de Almeida Maia, “Recommending comprehensive solutions
for programming tasks by mining crowd knowledge,” in Proceedings
of the International Conference on Program Comprehension, 2019, pp.
358–368.

[17] G. Uddin and F. Khomh, “Opiner: an opinion search and summarization
engine for APIs,” in Proceedings of the International Conference on
Automated Software Engineering, 2017, pp. 978–983.

[18] C. Treude and M. P. Robillard, “Augmenting API documentation with
insights from Stack Overflow,” in Proceedings of the International
Conference on Software Engineering, 2016, pp. 392–403.

[19] G. Petrosyan, M. P. Robillard, and R. De Mori, “Discovering information
explaining API types using text classification,” in Proceedings of the
International Conference on Software Engineering - Volume 1, 2015, pp.
869–879.

[20] H. Jiang, J. Zhang, X. Li, Z. Ren, and D. Lo, “A more accurate
model for finding tutorial segments explaining APIs,” in Proceedings
of the International Conference on Software Analysis, Evolution, and
Reengineering, 2016, pp. 157–167.

[21] H. Jiang, J. Zhang, Z. Ren, and T. Zhang, “An unsupervised approach
for discovering relevant tutorial fragments for APIs,” in Proceedings of
the International Conference on Software Engineering, 2017, pp. 38–48.

[22] C. Treude, M. P. Robillard, and B. Dagenais, “Extracting development
tasks to navigate software documentation,” IEEE Transactions on
Software Engineering, vol. 41, no. 6, pp. 565–581, 2015.

[23] Y. Tian, F. Thung, A. Sharma, and D. Lo, “APIBot: Question answering
bot for API documentation,” in Proceedings of the International
Conference on Automated Software Engineering, 2017, pp. 153–158.

[24] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring resource specifications
from natural language API documentation,” in Proceedings of the
International Conference on Automated Software Engineering, 2009,
pp. 307–318.

[25] “Beautifulsoup python library,” https://www.crummy.com/software/
BeautifulSoup/bs4/doc/.

[26] “Stanford CoreNLP,” https://stanfordnlp.github.io/CoreNLP/.
[27] G. Erkan and D. R. Radev, “Lexrank: Graph-based lexical centrality

as salience in text summarization,” Journal of Artificial Intelligence
Research, vol. 22, no. 1, pp. 457–479, 2004.

[28] “Open-source lexrank implementation,” https://github.com/linanqiu/
lexrank.

[29] E. Wong, J. Yang, and L. Tan, “Autocomment: Mining question and
answer sites for automatic comment generation,” in Proceedings of the
International Conference on Automated Software Engineering. IEEE,
2013, pp. 562–567.

[30] “Online artifact page,” https://doi.org/10.6084/m9.figshare.10005515.
[31] “Amazon mechanical turk,” https://www.mturk.com/.
[32] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software

engineering research: A critical review and guidelines,” in Proceedings
of the International Conference on Software Engineering, 2016, pp.
120–131.

[33] A. P. Kirilenko and S. Stepchenkova, “Inter-coder agreement in one-
to-many classification: Fuzzy kappa,” PLOS ONE, vol. 11, pp. 1–14,
2016.

[34] A. Field, J. Miles, and Z. Field, Discovering statistics using R. Sage
publications, 2012.

[35] S. S. Sawilowsky, “New effect size rules of thumb,” Journal of Modern
Applied Statistical Methods, vol. 8, no. 2, p. 26, 2009.

[36] D. Yan and S. Guo, “Leveraging contextual sentences for text classifica-
tion by using a neural attention model,” Computational Intelligence and
Neuroscience, vol. 2019, 2019.

[37] S. W. K. Chan and J. Franklin, “Dynamic context generation for natural
language understanding: A multifaceted knowledge approach,” IEEE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans, vol. 33, no. 1, pp. 23–41, 2003.

[38] M. Nassif, C. Treude, and M. Robillard, “Automatically categorizing
software technologies,” IEEE Transactions on Software Engineering,
2018, to appear.

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://stanfordnlp.github.io/CoreNLP/
https://github.com/linanqiu/lexrank
https://github.com/linanqiu/lexrank
https://doi.org/10.6084/m9.figshare.10005515
https://www.mturk.com/

	Introduction
	Related Work
	Identifying Essential Sentences
	Common Pre-processing Steps
	Technique 1: wordpattern
	Technique 2: lexrank
	Technique 3: simpleif
	Technique 4: contextif

	Evaluation Setup
	Thread Selection
	Survey Design
	Participant Recruitment
	Data Analysis

	Survey Summary Statistics
	RQ1: Navigation Challenges
	RQ2: Potential of Highlighting Information
	RQ3: Technique Comparison
	RQ4: Helpful Navigation Information
	Discussion
	Threats to Validity
	Conclusion
	References

