figshare
Browse

Wideband dielectric metamaterial reflectors: Mie scattering or leaky Bloch mode resonance?

Posted on 2018-03-07 - 23:24
Metamaterials are important as they possess properties not found in simple materials. Photonic device technology applying metamaterials supports many new and useful applications. Here, we address the fundamental physics of wideband metamaterial reflectors. We show that these devices operate because of resonant leaky Bloch modes propagating in the periodic lattice. Moreover, in contrast to published literature, we demonstrate that Mie scattering in individual array particles is not a causal effect. In particular, by connecting the constituent particles by a matched sublayer and thereby destroying the Mie cavity, we find that the resonance bandwidth actually expands even though localized Mie resonances have been extinguished. There is no abrupt change in the reflection characteristics on addition of a sublayer to any metamaterial array consisting of discrete particles. Thus, the physics of the discrete and connected arrays is the same. The resonant Bloch mode picture is supported by numerous additional examples and analyses presented herein.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?