figshare
Browse

Unidirectional Spin–Orbit Interaction Induced by the Line Defect in Monolayer Transition Metal Dichalcogenides for High-Performance Devices

Posted on 2019-08-13 - 20:30
Spin–orbit (SO) interaction is an indispensable element in the field of spintronics for effectively manipulating the spin of carriers. However, in crystalline solids, the momentum-dependent SO effective magnetic field generally results in spin randomization by a process known as the Dyakonov–Perel spin relaxation, leading to the loss of spin information. To overcome this obstacle, the persistent spin helix (PSH) state with a unidirectional SO field was proposed but difficult to achieve in real materials. Here, on the basis of first-principles calculations and tight-binding model analysis, we report for the first time a unidirectional SO field in monolayer transition metal dichalcogenides (TMDs, MX2, M = Mo, W; and X = S, Se) induced by two parallel chalcogen vacancy lines. By changing the relative positions of the two vacancy lines, the direction of the SO field can be tuned from x to y. Moreover, using k·p perturbation theory and group theory analysis, we demonstrate that the emerging unidirectional SO field is subject to both the structural symmetry and 1D nature of such defects engineered in 2D TMDs. In particular, through transport calculations, we confirm that the predicted SO states carry highly coherent spin current. Our findings shed new light on creating PSH states for high-performance spintronic devices.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?