figshare
Browse

Ultrasensitive Ethene Detector Based on a Graphene–Copper(I) Hybrid Material

Version 3 2018-01-03, 21:04
Version 2 2018-01-03, 19:48
Version 1 2017-12-04, 17:36
Posted on 2018-01-03 - 21:04
Ethene is a highly diffusive and relatively unreactive gas that induces aging responses in plants in concentrations as low as parts per billion. Monitoring concentrations of ethene is critically important for transport and storage of food crops, necessitating the development of a new generation of ultrasensitive detectors. Here we show that by functionalizing graphene with copper complexes biologically relevant concentrations of ethene and of the spoilage marker ethanol can be detected. Importantly, in addition these sensors provide us with important insights into the interactions between molecules, a key concept in chemistry. Chemically induced dipole fluctuations in molecules as they undergo a chemical reaction are harvested in an elegant way through subtle field effects in graphene. By exploiting changes in the dipole moments of molecules that occur upon a chemical reaction we are able to track the reaction and provide mechanistic insight that was, until now, out of reach.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?