figshare
Browse

Ultrafast Lithium Storage Using Antimony-Doped Tin Oxide Nanoparticles Sandwiched between Carbon Nanofibers and a Carbon Skin

Version 2 2016-11-03, 16:40
Version 1 2016-10-31, 17:18
Posted on 2016-10-19 - 00:00
Metal oxides as anode materials for Li-ion batteries (LIBs) are of significant interest to many potential technologies because of their high theoretical capacity value, low price, and environmentally friendly features. In spite of these considerable benefits and ongoing progress in the field, momentous challenges exist, related with structural disintegration due to volume expansion of electrode materials. This leads to rapid capacity decline and must be resolved in order to progress for realistic utilization of LIBs with ultrafast cycling stability. This article proposes a novel architecture of Sb-doped SnO2 nanoparticles sandwiched between carbon nanofiber and carbon skin (CNF/ATO/C) using electrospinning and hydrothermal methods. The CNF/ATO/C exhibits superb electrochemical behavior such as high specific capacity and outstanding cycling stability (705 mA h g–1 after 100 cycles), outstanding high-rate performance (411 mA h g–1 at 2000 mA g–1), and ultrafast cycling stability (347 mA h g–1 at 2000 mA g–1 after 100 cycles), which is high compared to any reported value using SnO2-based anode materials. Thus, this unique architecture furnishes profitable effects, including electroactive sites, structural stability, and electrical conductivity, which can potentially be realizes for ultrafast LIBs.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?