figshare
Browse

The role of hypoxia-inducible factor-1α in zinc oxide nanoparticle-induced nephrotoxicity in vitro and in vivo

Posted on 2016-09-27 - 05:00
Abstract Background Zinc oxide nanoparticles (ZnO NPs) are used in an increasing number of products, including rubber manufacture, cosmetics, pigments, food additives, medicine, chemical fibers and electronics. However, the molecular mechanisms underlying ZnO NP nephrotoxicity remain unclear. In this study, we evaluated the potential toxicity of ZnO NPs in kidney cells in vitro and in vivo. Results We found that ZnO NPs were apparently engulfed by the HEK-293 human embryonic kidney cells and then induced reactive oxygen species (ROS) generation. Furthermore, exposure to ZnO NPs led to a reduction in cell viability and induction of apoptosis and autophagy. Interestingly, the ROS-induced hypoxia-inducible factor-1α (HIF-1α) signaling pathway was significantly increased following ZnO NPs exposure. Additionally, connective tissue growth factor (CTGF) and plasminogen activator inhibitor-1 (PAI-1), which are directly regulated by HIF-1 and are involved in the pathogenesis of kidney diseases, displayed significantly increased levels following ZnO NPs exposure in HEK-293 cells. HIF-1α knockdown resulted in significantly decreased levels of autophagy and increased cytotoxicity. Therefore, our results suggest that HIF-1α may have a protective role in adaptation to the toxicity of ZnO NPs in kidney cells. In an animal study, fluorescent ZnO NPs were clearly observed in the liver, lungs, kidneys, spleen and heart. ZnO NPs caused histopathological lesions in the kidney and increase in serum creatinine and blood urea nitrogen (BUN) which indicate possible renal possible damage. Moreover, ZnO NPs enhanced the HIF-1α signaling pathway, apoptosis and autophagy in mouse kidney tissues. Conclusions ZnO NPs may cause nephrotoxicity, and the results demonstrate the importance of considering the toxicological hazards of ZnO NP production and application, especially for medicinal use.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?