figshare
Browse

The B12-Radical SAM Enzyme PoyC Catalyzes Valine Cβ‑Methylation during Polytheonamide Biosynthesis

Version 2 2017-04-26, 14:49
Version 1 2016-11-29, 15:36
Posted on 2017-04-26 - 14:49
Genomic and metagenomic investigations have recently led to the delineation of a novel class of natural products called ribosomally synthesized and post-translationally modified peptides (RiPPs). RiPPs are ubiquitous among living organisms and include pharmaceutically relevant compounds such as antibiotics and toxins. A prominent example is polytheonamide A, which exhibits numerous post-translational modifications, some of which were unknown in ribosomal peptides until recently. Among these post-translational modifications, C-methylations have been proposed to be catalyzed by two putative radical S-adenosylmethionine (rSAM) enzymes, PoyB and PoyC. Here we report the in vitro activity of PoyC, the first B12-dependent rSAM enzyme catalyzing peptide Cβ-methylation. We show that PoyC catalyzes the formation of S-adenosylhomocysteine and 5′-deoxyadenosine and the transfer of a methyl group to l-valine residue. In addition, we demonstrate for the first time that B12-rSAM enzymes have a tightly bound MeCbl cofactor that during catalysis transfers a methyl group originating from S-adenosyl-l-methionine. Collectively, our results shed new light on polytheonamide biosynthesis and the large and emerging family of B12-rSAM enzymes.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?