TIGERi: modeling and visualizing the responses to perturbation of a transcription factor network
Posted on 2017-05-31 - 05:00
Abstract Background Transcription factor (TF) networks play a key role in controlling the transfer of genetic information from gene to mRNA. Much progress has been made on understanding and reverse-engineering TF network topologies using a range of experimental and theoretical methodologies. Less work has focused on using these models to examine how TF networks respond to changes in the cellular environment. Methods In this paper, we have developed a simple, pragmatic methodology, TIGERi (Transcription-factor-activity Illustrator for Global Explanation of Regulatory interaction), to model the response of an inferred TF network to changes in cellular environment. The methodology was tested using publicly available data comparing gene expression profiles of a mouse p38α (Mapk14) knock-out line to the original wild-type. Results Using the model, we have examined changes in the TF network resulting from the presence or absence of p38α. A part of this network was confirmed by experimental work in the original paper. Additional relationships were identified by our analysis, for example between p38α and HNF3, and between p38α and SOX9, and these are strongly supported by published evidence. FXR and MYC were also discovered in our analysis as two novel links of p38α. To provide a computational methodology to the biomedical communities that has more user-friendly interface, we also developed a standalone GUI (graphical user interface) software for TIGERi and it is freely available at https://github.com/namshik/tigeri/ . Conclusions We therefore believe that our computational approach can identify new members of networks and new interactions between members that are supported by published data but have not been integrated into the existing network models. Moreover, ones who want to analyze their own data with TIGERi could use the software without any command line experience. This work could therefore accelerate researches in transcriptional gene regulation in higher eukaryotes.
CITE THIS COLLECTION
DataCiteDataCite
3 Biotech3 Biotech
3D Printing in Medicine3D Printing in Medicine
3D Research3D Research
3D-Printed Materials and Systems3D-Printed Materials and Systems
4OR4OR
AAPG BulletinAAPG Bulletin
AAPS OpenAAPS Open
AAPS PharmSciTechAAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität HamburgAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)ABI Technik (German)
Academic MedicineAcademic Medicine
Academic PediatricsAcademic Pediatrics
Academic PsychiatryAcademic Psychiatry
Academic QuestionsAcademic Questions
Academy of Management DiscoveriesAcademy of Management Discoveries
Academy of Management JournalAcademy of Management Journal
Academy of Management Learning and EducationAcademy of Management Learning and Education
Academy of Management PerspectivesAcademy of Management Perspectives
Academy of Management ProceedingsAcademy of Management Proceedings
Academy of Management ReviewAcademy of Management Review
Han, Namshik; Noyes, Harry; Brass, Andy (2017). TIGERi: modeling and visualizing the responses to perturbation of a transcription factor network. figshare. Collection. https://doi.org/10.6084/m9.figshare.c.3794566.v1