Systematic protein-protein interaction and pathway analyses in the idiopathic inflammatory myopathies
Posted on 2016-07-07 - 05:00
Abstract Background The idiopathic inflammatory myopathies (IIM) are autoimmune diseases characterised by acquired proximal muscle weakness, inflammatory cell infiltrates in muscle and myositis-specific/associated autoantibodies. It is unclear which pathways are involved in IIM, and the functional relationship between autoantibody targets has not been systematically explored. Protein-protein interaction and pathway analyses were conducted to identify pathways relevant to disease, using autoantibody targets and gene products of IIM-associated single nucleotide polymorphism (SNP) loci. Methods Protein-protein interactions were analysed using Disease Association Protein-Protein Link Evaluator (DAPPLE). Gene ontology and pathway analyses were conducted using Database for Annotation Visualisation and Integrated Discovery (DAVID) and Gene Relationships Across Implicated Loci (GRAIL). Analyses were undertaken including the targets of published autoantibodies, significant and suggestive SNPs from an IIM association study and autoantibody targets plus SNPs combined. Results The protein-protein interaction networks formed by autoantibody targets and associated SNPs showed significant direct and/or indirect connectivity (p < 0.05). Autoantibody targets plus associated SNPs combined resulted in more significant indirect and common interactor connectivity, suggesting autoantibody targets and proteins encoded by IIM-associated loci may be involved in common pathways. Tumour necrosis factor receptor-associated factor 6 (TRAF6) was identified as a hub protein, and UBE3B, HSPA1A, HSPA1B and PSMD3 also were identified as genes with significant connectivity. Pathway analysis identified that autoantibody targets and associated SNP regions are significantly interconnected (p < 0.01), and confirmed autoantibody target involvement in translational and post-translational processes. ‘Ubiquitin’ was the only keyword strongly linking significant genes across regions in all three GRAIL analyses of autoantibody targets and IIM-associated SNPs. Conclusions Autoantibody targets and IIM-associated loci show significant connectivity and inter-relatedness, and identify several key genes and pathways in IIM pathogenesis, possibly mediated via the ubiquitination pathway.
CITE THIS COLLECTION
DataCiteDataCite
3 Biotech3 Biotech
3D Printing in Medicine3D Printing in Medicine
3D Research3D Research
3D-Printed Materials and Systems3D-Printed Materials and Systems
4OR4OR
AAPG BulletinAAPG Bulletin
AAPS OpenAAPS Open
AAPS PharmSciTechAAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität HamburgAbhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)ABI Technik (German)
Academic MedicineAcademic Medicine
Academic PediatricsAcademic Pediatrics
Academic PsychiatryAcademic Psychiatry
Academic QuestionsAcademic Questions
Academy of Management DiscoveriesAcademy of Management Discoveries
Academy of Management JournalAcademy of Management Journal
Academy of Management Learning and EducationAcademy of Management Learning and Education
Academy of Management PerspectivesAcademy of Management Perspectives
Academy of Management ProceedingsAcademy of Management Proceedings
Academy of Management ReviewAcademy of Management Review
Parkes, Joanna; Rothwell, Simon; Day, Philip; McHugh, Neil; Betteridge, Zoë; Cooper, Robert; et al. (2016). Systematic protein-protein interaction and pathway analyses in the idiopathic inflammatory myopathies. figshare. Collection. https://doi.org/10.6084/m9.figshare.c.3609506.v1