figshare
Browse

Surfactant-Assisted Ozonolysis of Alkenes in Water: Mitigation of Frothing Using Coolade as a Low-Foaming Surfactant

Posted on 2022-02-08 - 16:06
Aqueous-phase ozonolysis in the atmosphere is an important process during cloud and fog formation. Water in the atmosphere acts as both a reaction medium and a reductant during the ozonolysis. Inspired by the atmospheric aqueous-phase ozonolysis, we herein report the ozonolysis of alkenes in water assisted by surfactants. Several types of surfactants, including anionic, cationic, and nonionic surfactants, were investigated. Although most surfactants enhanced the solubility of alkenes in water, they also generated excessive foaming during the ozone bubbling, which led to the loss of products. Mitigation of the frothing was accomplished by using Coolade as a nonionic and low-foaming surfactant. Coolade-assisted ozonolysis of alkenes in water provided the desired carbonyl products in good yields and comparable to those achieved in organic solvents. During the ozonolysis reaction, water molecules trapped within the polyethylene glycol region of Coolade were proposed to intercept the Criegee intermediate to provide a hydroxy hydroperoxide intermediate. Decomposition of the hydroxy hydroperoxide led to formation of the carbonyl product without the need for a reductant typically required for the conventional ozonolysis using organic solvents. This study presents Coolade as an effective surfactant to improve the solubility of alkenes while mitigating frothing during the ozonolysis in water.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?