figshare
Browse

Surface Immobilization of Viruses and Nanoparticles Elucidates Early Events in Clathrin-Mediated Endocytosis

Version 2 2018-11-17, 00:44
Version 1 2018-09-26, 13:52
Posted on 2018-11-17 - 00:44
Clathrin-mediated endocytosis (CME) is an important entry pathway for viruses. Here, we applied click chemistry to covalently immobilize reovirus on surfaces to study CME during early host–pathogen interactions. To uncouple chemical and physical properties of viruses and determine their impact on CME initiation, we used the same strategy to covalently immobilize nanoparticles of different sizes. Using fluorescence live microscopy and electron microscopy, we confirmed that clathrin recruitment depends on particle size and discovered that the maturation into clathrin-coated vesicles (CCVs) is independent from cargo internalization. Surprisingly, we found that the final size of CCVs appears to be imprinted on the clathrin coat at early stages of cargo–cell interactions. Our approach has allowed us to unravel novel aspects of early interactions between viruses and the clathrin machinery that influence late stages of CME and CCVs formation. This method can be easily and broadly applied to the field of nanotechnology, endocytosis, and virology.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?