figshare
Browse

Supplementary material from "Routes to global glaciation"

Version 2 2020-08-03, 09:05
Version 1 2020-07-11, 16:27
Posted on 2020-08-03 - 09:05
Theory and observation suggest that Earth and Earth-like planets can undergo runaway low-latitude glaciation when changes in solar heating or in the carbon cycle exceed a critical threshold. Here, we use a simple dynamical-system representation of the ice–albedo feedback and the carbonate–silicate cycle to show that glaciation is also triggered when solar heating changes faster than a critical rate. Such ‘rate-induced glaciations’ remain accessible far from the outer edge of the habitable zone, because the warm climate state retains long-term stability. In contrast, glaciations induced by changes in the carbon cycle require the warm climate state to become unstable, constraining the kinds of perturbations that could have caused global glaciation in Earth’s past. We show that glaciations can occur when Earth’s climate transitions between two warm stable states; this property of the Earth system could help explain why major events in the development of life have been accompanied by glaciations.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Read the peer-reviewed publication

Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences

AUTHORS (2)

Constantin W. Arnscheidt
Daniel H. Rothman
need help?