figshare
Browse

Supplementary material from "Physics of unsteady thrust and flow generation by a flexible surface flapping in the absence of a free stream"

Version 2 2018-10-24, 15:34
Version 1 2018-10-10, 10:51
Posted on 2018-10-24 - 15:34
Inspired by the flexible wings and fins of flying and swimming animals, we investigate the flow induced by the interaction between a flapping flexible surface and the surrounding fluid for the limiting case of Strouhal number St → ∞ (zero free-stream speed). The model selected for this purpose is a two-dimensional sinusoidally pitching rigid symmetric foil to which is attached at the trailing edge a thin chordwise flexible surface (along the chord line). The flow so generated is a coherent jet aligned along the foil centreline, containing a reverse Bénard–Kármán vortex street and delivering a corresponding unidirectional thrust. We analyse the flow and thrust generation process. The measured velocity field suggests that the flow and thrust generation mainly occurs during the phases when the trailing edge is near the centreline. Flexibility of the surface is important in accelerating the near-wake flow and in transferring momentum and energy to the fluid. We present a detailed account of when and where the momentum and energy are added to the fluid. This study shows that the deformations of the flexible surface are responsible for generating a favourable pressure gradient along the jet direction, and for the observed unsteady actuator disc-type action.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?