figshare
Browse

Supplementary material from "Nature's technical ceramic: the avian eggshell"

Posted on 2017-01-11 - 09:58
Avian eggshells may break easily when impacted at a localized point; however, they exhibit an impressive resistance when subjected to a well-distributed compressive load. For example, a common demonstration of material strength is firmly squeezing a chicken egg along its major axis between one's hands without breaking it. This research provides insight into the underlying mechanics by evaluating both macroscopic and microstructural features. Eggs of different size, varying from quail (30 mm) to ostrich (150 mm), are investigated. Compression experiments were conducted along the major axis of the egg using force-distributing rubber cushions between steel plates and the egg. The force at failure increases with egg size, reaching loads upwards of 5000 N for ostrich eggs. The corresponding strength, however, decreases with increasing shell thickness (intimately related to egg size); this is rationalized by a micro-defects model. Failure occurs by axial splitting parallel to the loading direction—the result of hoop tensile stresses due to the applied compressive load. Finite-element analysis is successfully employed to correlate the applied compressive force to tensile breaking strength for the eggs, and the influence of geometric ratio and microstructural heterogeneities on the shell's strength and fracture toughness is established.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Read the peer-reviewed publication

Journal of the Royal Society Interface

AUTHORS (6)

Eric N. Hahn
Vincent R. Sherman
Andrei Pissarenko
Samuel D. Rohrbach
Daniel J. Fernandes
Marc A. Meyers
need help?