figshare
Browse

Supplementary material from "Fish in habitats with higher motorboat disturbance show reduced sensitivity to motorboat noise"

Version 3 2018-10-16, 01:30
Version 2 2018-09-26, 06:10
Version 1 2018-09-11, 16:45
Posted on 2018-10-16 - 01:30
Anthropogenic noise can negatively impact many taxa worldwide. It is possible that in noisy, high-disturbance environments, the range and severity of impacts could diminish over time, but the influence of previous disturbance remains untested in natural conditions. This study demonstrates the effects of motorboat noise on the physiology of an endemic cichlid fish in Lake Malawi. Exposure to motorboats (driven 20–100 m from fish) and loudspeaker playback of motorboat noise both elevated the oxygen-consumption rate at a single lower-disturbance site, characterized by low historic and current motorboat activity. Repeating this assay at further lower-disturbance sites revealed a consistent effect of elevated oxygen consumption in response to motorboat disturbance. However, when similar trials were repeated at four higher-disturbance sites, no effect of motorboat exposure was detected. These results demonstrate that disturbance history can affect local population responses to noise. Action regarding noise pollution should consider the past, as well as the present, when planning for the future.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email

Usage metrics

Biology Letters

AUTHORS (6)

Harry R. Harding
Timothy A. C. Gordon
Rachel E. Hsuan
Alex C. E. Mackaness
Andrew N. Radford
Stephen D. Simpson
need help?