figshare
Browse

Supplementary material from "Deciphering noise amplification and reduction in open chemical reaction networks"

Posted on 2018-12-05 - 11:19
The impact of fluctuations on the dynamical behaviour of complex biological systems is a longstanding issue, whose understanding would elucidate how evolutionary pressure tends to modulate intrinsic noise. Using the Itō stochastic differential equation formalism, we performed analytic and numerical analyses of model systems containing different molecular species in contact with the environment and interacting with each other through mass-action kinetics. For networks of zero deficiency, which admit a detailed- or complex-balanced steady state, all molecular species are uncorrelated and their Fano factors are Poissonian. Systems of higher deficiency have non-equilibrium steady states and non-zero reaction fluxes flowing between the complexes. When they model homo-oligomerization, the noise on each species is reduced when the flux flows from the oligomers of lowest to highest degree, and amplified otherwise. In the case of hetero-oligomerization systems, only the noise on the highest-degree species shows this behaviour.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?