figshare
Browse

Structural Basis for Adenosylcobalamin Activation in AdoCbl-Dependent Ribonucleotide Reductases

Posted on 2010-10-15 - 00:00
Class II ribonucleotide reductases (RNR) catalyze the formation of an essential thiyl radical by homolytic cleavage of the Co−C bond in their adenosylcobalamin (AdoCbl) cofactor. Several mechanisms for the dramatic acceleration of Co−C bond cleavage in AdoCbl-dependent enzymes have been advanced, but no consensus yet exists. We present the structure of the class II RNR from Thermotoga maritima in three complexes: (i) with allosteric effector dTTP, substrate GDP, and AdoCbl; (ii) with dTTP and AdoCbl; (iii) with dTTP, GDP, and adenosine. Comparison of these structures gives the deepest structural insights so far into the mechanism of radical generation and transfer for AdoCbl-dependent RNR. AdoCbl binds to the active site pocket, shielding the substrate, transient 5′-deoxyadenosyl radical and nascent thiyl radical from solution. The e-propionamide side chain of AdoCbl forms hydrogen bonds directly to the α-phosphate group of the substrate. This interaction appears to cause a “locking-in” of the cofactor, and it is the first observation of a direct cofactor−substrate interaction in an AdoCbl-dependent enzyme. The structures support an ordered sequential reaction mechanism with release or relaxation of AdoCbl on each catalytic cycle. A conformational change of the AdoCbl adenosyl ribose is required to allow hydrogen transfer to the catalytic thiol group. Previously proposed mechanisms for radical transfer in B12-dependent enzymes cannot fully explain the transfer in class II RNR, suggesting that it may form a separate class that differs from the well-characterized eliminases and mutases.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?