figshare
Browse

Strongly Reduced Non-Radiative Voltage Losses in Organic Solar Cells Prepared with Sequential Film Deposition

Posted on 2021-10-27 - 15:07
With nearly 100% yields for mobile charge carriers in organic solar cells (OSCs), the relatively large photovoltage loss (ΔVoc) is a critical barrier limiting the power conversion efficiency of OSCs. Herein, we aim to improve the open-circuit voltage (Voc) in OSCs with non-fullerene acceptors via sequential film deposition (SD). We show that ΔVoc in planar heterojunction (PHJ) devices prepared by the SD method can be appreciably mitigated, leading increases in Voc to 80 mV with regard to the Voc of bulk heterojunction devices. In PHJ OSCs, the energy level of intermolecular charge-transfer states is found to increase with a decrease in the level of aggregation in the solid state. These properties explain the enhanced electroluminescent quantum efficiency and resultant suppression of the voltage losses induced by nonradiative charge recombination and interfacial charge transfer. This work provides a promising strategy for tackling the heavily discussed photovoltage loss in OSCs.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?