figshare
Browse

Solvothermal Synthesis of Ultrasmall Tungsten Oxide Nanoparticles

Posted on 2012-12-21 - 00:00
The synthesis of catalytically useful, ultrasmall oxide nanoparticles (NPs) of group 5 and 6 metals is not readily achievable through reported methods. In this work, we introduce a one-pot, two-precursor synthesis route to <2 nm MOx NPs in which a polyoxometalate salt is decomposed thermally in a high-boiling organic solvent oleylamine. The use of ammonium metatungstate resulted in oleylamine-coated, crystalline WOx NPs at consistently high yields of 92 ± 5%. The semicrystalline NPs contained 20–36 WOx structural units per particle, as determined from aberration-corrected high-resolution scanning transmission electron microscopy, and an organic coating of 16–20 oleylamine molecules, as determined by thermogravimetric analysis. The NPs had a mean size of 1.6 ± 0.3 nm, as estimated from atomic force microscopy and small-angle X-ray scattering measurements. Carrying out the synthesis in the presence of organic oxidant trimethylamine N-oxide led to smaller WOx NPs (1.0 ± 0.4 nm), whereas the reductant 1,12-dodecanediol led to WOx nanorods (4 ± 1 nm × 20 ± 5 nm). These findings provide a new method to control the size and shape of transition metal oxide NPs, which will be especially useful in catalysis.

CITE THIS COLLECTION

DataCite
No result found
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?